Let $R = k[t, t^{-1}]$. Any element $F \in R$ has a form $F = \sum_{n=-N}^{N} c_n(F)t^n$. We define $Res : R \to k$ by $Res(F) := c_1(F)$. [The correct way is to write $Res(Fdt) := c_1(F)$ but I'll ignore the distinction]. It is clear that $Res(dF/dt) \equiv 0$.

We denote by $sl_n(R)$ the Lie algebra of $n \times n$ -matrices A with coefficients in R such that Tr(A) = 0 and define a new Lie algebra $\widetilde{sl}_n(R)$ which is equal to $sl_n(R) \oplus k$ as a vector space and

 $[(A,c),(B,d):=[A,B], Res(Tr(AB')), A,B\in sl_n(R), c,d\in k$ where

$$Tr(AB') = \sum_{1 \le p,q \le n} (a_{pq} db_{qp}/dt)$$

Claim 1. $\tilde{sl}_n(R)$ is a Lie algebra.

Remark. The Jakobi identity follows from the equality $Res(dF/dt) \equiv 0$.

Let $D : R \to R$ be the differentiation given by D(F) := tdF/dt. It defines a linear operators D of the Lie algebra $sl_n(R), D(a_{ij}) := (D(a_{ij}))$ and the Lie algebra $\widetilde{sl}_n(R), D(A, c) := (D(A), 0)$.

Claim 2 $D: \widetilde{sl}_n(R) \to \widetilde{sl}_n(R)$ is a differentiation of the Lie algebra $\widetilde{sl}_n(R)$.

We define $\hat{sl}_n(R) := D \ltimes \tilde{sl}_n(R)$.

Lemma [Easy]. If $I \subset \hat{sl}_n(R)$ is an ideal then either $I = \{0\}$ or $I = \tilde{sl}_n(R)$ or $I = \{(0, c)\}, c \in k$ of $I = \hat{sl}_n(R)$.

Let $A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$. The realization of A could be presented as $\mathfrak{h}, \alpha_1^{\vee}, \alpha_2^{\vee} \in \mathfrak{h}, \alpha_1, \alpha_2 \in \mathfrak{h}^{\vee}$ where

$$\mathfrak{h} = \mathfrak{h}^{\vee} = \mathbb{R}^3, \alpha_1^{\vee} = (1, 0, 0), \alpha_2^{\vee} = (0, 1, 0), \alpha_1 = \begin{pmatrix} 2\\ -2\\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -2\\ 2\\ 1 \end{pmatrix}$$

We choose h'' = (0, 0, 1) and denote by $\langle , \rangle : \mathfrak{h}^{\vee} \times \mathfrak{h} \to \mathbb{R}$ be the natural pairing. Then the symmetric bilinear form $[,] : \mathfrak{h} \times \mathfrak{h} \to \mathbb{R}$ such that

$$h'', h''] = 0, [\alpha_i^{\lor}, h] = <\alpha_i, h >$$

is given by the pairing $[,]:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ given by

$$[(x_1, x_2, x_3), (y_1, y_2, y_3)] := \sum_j c_{ij} x_i y_j$$

where

$$C = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

By the definition $\tilde{\mathfrak{g}}_A$ is the Lie algebra generated by e_1, e_2, f_1, f_2, h where $h \in \mathfrak{h}$ and relations

$$[e_i, f_j]\delta_{ij}\alpha_i^{\vee}, [h, h'] = 0, [h, e_i] = <\alpha_i, h >, [h, f_i] = -<\alpha_i, h >$$

and $\mathfrak{g}_A = \tilde{\mathfrak{g}}_A/r$ where $r \subset \tilde{\mathfrak{g}}_A$ is the maximal ideal such that $r \cap \mathfrak{h} = \{0\}$. I want to give an explicit description of the Lie algebra \mathfrak{g}_A .

We construct now a surjective Lie algebra morphism $\phi : \tilde{\mathfrak{g}}_A \to \hat{sl}_2(R)$ by

$$e_{1} \to \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, 0 \right), f_{1} \to \left(\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, 0 \right)$$
$$e_{2} \to \left(\begin{pmatrix} 0 & 0 \\ t & 0 \end{pmatrix}, 0 \right), f_{2} \to \left(\begin{pmatrix} 0 & t^{-1} \\ 0 & 0 \end{pmatrix}, 0 \right)$$
$$\alpha_{1}^{\vee} \to \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, 0 \right), \alpha_{2}^{\vee} \to \left(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, 0 \right), h'' \to D$$

[Please check the relations and correct signs if I made a mistake].

It is clear that ϕ defines an imbedding of ϕ into $\hat{sl}_2(R)$. It follows now from Lemma that ϕ defines an isomorphism $\mathfrak{g}_A \to \hat{sl}_2(R)$.

Problem 0.1. a) Give an explicit description of the Weyl group W and the Tits cone X for \mathfrak{g}_A where $A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$.

b) Find a Cartan metrix A_n such that $\mathfrak{g}_{A_n} = \hat{sl}_n(R)$.