Let A be the algebra generated by p, q, z with the relations [p, q] =z, [p, z] = [q, z] = 0.

CLAIM 0.1. (1)  $p^a q^b = \sum_{k=0}^a \binom{a}{k} \prod_{j=0}^{a-k-1} (b-j) q^{b-a+k} p^k z^{a-k}$  (2)  $p^{2b-a} q^{b+a} p^{2a-b} = \sum_{i=0}^{b+a} c(a,b,i) p^{a+b-i} q^{a+b-i} z^i$  where c(a,b,i) are polynomials of degree i.

Definition 0.2. Let  $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$  be a semi-simple Lie algebra.

- (1) We fix a complete order on the set  $\alpha \in \Phi^+$  of positive roots.
- (2) We denote by  $\sigma$  the anti-involution of  $\mathfrak{g}$  such that

$$\sigma_{|\mathfrak{h}} = Id, \sigma(x_{\alpha}) = y_{\alpha}, \sigma(y_{\alpha}) = x_{\alpha} \in \Phi$$

- (3) We denote by  $q:U(\mathfrak{g})\to U(\mathfrak{h})$  the projection defined by the isomorphism  $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (\mathfrak{n}^- U(\mathfrak{g}) + U(\mathfrak{g})\mathfrak{n}).$
- (4) Let A be the bilinear form on  $U(\mathfrak{g})$  with values in  $U(\mathfrak{h}) = S(\mathfrak{h})$ given by  $A(x,y) := q(\sigma(x)y), x, y \in U(\mathfrak{g})$
- (5) For any  $\eta \in \Lambda_+$  we denote by  $A_{\eta}$  the restriction of the form A to  $U(\mathfrak{n}^-)_{\eta}$  and by  $D_{\eta} \in S(\mathfrak{h})$  the discriminant of the form  $A_{\eta}$  which is defined uniquely up to a multiplication by  $c \in \mathbb{C}^*$ .
- (6) A partition  $\omega$  of  $\eta \in \Lambda_+$  is an presentation of  $\eta$  as a sum  $\eta =$  $\alpha_1 + \alpha_2 + ... + \alpha_d(\omega)$  where  $\alpha_i$  are positive roots such that  $\alpha_1 \geq$  $\alpha_2 \geq ... \geq \alpha_d(\omega)$ . We denote by  $\tilde{\mathcal{P}}(\eta)$  the set of partition of  $\eta$ .
- (7) For any partition  $\omega$  of  $\eta \in \Lambda_+$  we define  $y_\omega := y_{\alpha_1} y_{\alpha_2} ... y_{\alpha_d} \in$  $U(\mathfrak{n}^-)_{-n}$

(1)  $|\tilde{\mathcal{P}}(\eta)| = \mathcal{P}(\eta)$ . CLAIM 0.3.

- (2)  $deg(A_{\eta}(y_{\omega'}, y_{\omega''})) \leq min(d(\omega'), d(\omega'')).$ (3) If  $\omega' \neq \omega''$  and  $d(\omega') = d(\omega'')$  then  $deg(A_{\eta}(y_{\omega'}, y_{\omega''}) < d(\omega').$ (4) If  $\omega' = \omega''$  then  $deg(A_{\eta}(y_{\omega'}, y_{\omega''})) = d(\omega).$
- (5)  $deg(D_{\eta}) = \sum_{\omega \in \tilde{\mathcal{P}}(\eta)} d(\omega)$ .

Theorem 0.4 (Shapovalov).  $D_{\eta} = \prod_{\alpha \in \Phi^+} \prod_{r>0} (h_{\alpha} + \rho(\alpha) - r)^{\mathcal{P}(\eta - r\alpha)}$ 

PROOF. Let  $\tilde{D}_{\eta} := \prod_{\alpha \in \Phi^+} \prod_{r>0} (h_{\alpha} + \rho(\alpha) - r)^{\mathcal{P}(\eta - r\alpha)}$ . As follows from the previous Claim we have  $deg(\tilde{D}_{\eta}) = deg(\tilde{D}_{\eta})$ . So it is sufficient to prove that  $D_{\eta}$  is divisible by  $(h_{\alpha} + \rho(\alpha) - r)^{\mathcal{P}(\eta - r\alpha)}$  for any  $\alpha \in \Phi^+, r > 0$ .

Given  $\alpha \in \Phi^+$ , r > 0 we choose a generic  $\lambda$  on the hyperplane  $< \alpha, \lambda +$  $\rho >= r$ . Since we know the existence of an imbedding  $M(\lambda - r\alpha) \hookrightarrow M(\lambda)$ we see that the kernel of the canonical map  $\phi: M(\lambda) \to M(\lambda)^{\vee}$  contains  $M(\lambda - r\alpha)$ . Therefore  $D_n(\lambda + t\rho)$  is divisible by  $t^{\mathcal{P}(\eta - r\alpha)}$  in the ring  $\mathbb{C}[[t]]$ .

Remark 0.5. One can prove the Shapovalov's theorem and therefore the Jantzen's formula without the knowledge of the existence of imbeddings  $M(\lambda - r\alpha) \hookrightarrow M(\lambda)$  [see Kac, V. G.; Kazhdan, D. A. Structure of representations with highest weight of infinite-dimensional Lie algebras. Adv. in Math. 34 (1979), no. 1, 97108. and then deduce the existence of imbeddings  $M(\lambda - r\alpha) \hookrightarrow M(\lambda)$  from this formula.

The relative Lie algebra cohomology. Let  $\mathfrak{g}$  be a Lie algebra and  $\mathfrak{b}$  a Lie subalgebra and  $y \to \bar{y}$  be the projection from  $\mathfrak{g}$  to  $\mathfrak{g}/\mathfrak{b}$  We denote by  $D_k$  the  $U(\mathfrak{g})$ -modules  $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \Lambda^k(\mathfrak{g}/\mathfrak{b})$  and define differentials  $d_k : D_k \to D_{k-1}$  for k > 0 by

$$d_k(u \otimes x_1 \wedge \dots \wedge x_k) = \sum_{i=1}^k (-1)^{i+1} u y_i \otimes x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge x_k) + \sum_{1 \leq i < j \leq k} (-1)^{i+j} u \otimes \overline{[y_i, y_j]} \wedge x_1 \dots \wedge \hat{x}_i \wedge \dots \wedge x_j \wedge \dots \wedge x_k)$$

where  $\bar{y}_i = x_i$  and define  $d_0 : D_0 \to \mathbb{C}$  by  $d_0(u \otimes 1) = \epsilon(u)$  where  $\epsilon : U(\mathfrak{g}) \to \mathbb{C}$  is the counit.

- LEMMA 0.6. (1) The differential  $d_k$  is well defined [that is the right side does not depend on a choice of preimages  $y_i$  of  $x_i$ ].
  - (2)  $d_{k-1} \circ d_k = 0 \text{ for all } k > 0$
- (3) The complex ...  $\rightarrow D_k \rightarrow .... \rightarrow D_0 \rightarrow \mathbb{C}$  is exact. In other words the complex ...  $\rightarrow D_k \rightarrow .... \rightarrow D_0$  is a resolution of the  $U(\mathfrak{g})$ -module  $\mathbb{C}$

REMARK 0.7. If  $dim(\mathfrak{g}) = n < \infty$  then  $D_k = \{0\}$  for k > n.

PROOF. The proof is pretty standard. I'll outline a proof only in the case when  $\mathfrak{g}$  is the Lie algebra of a Lie group G and  $\mathfrak{b}$  is the Lie algebra of a subgroup B of G. Let  $\Omega^*$  be the De-Rham complex on G/B and  $\hat{\Omega}^*$  be the completion of  $\Omega^*$  at  $e \in G/B$ . The natural action of G on G/B induces an action of the Lie algebra  $\mathfrak{g}$  on  $\hat{\Omega}^*$ . I'll leave for you to construct an identification of  $D_k$  with continuous linear functional on  $\hat{\Omega}^k$  in such a way that the differential  $d_k$  is dual to the De-Rham differential on  $\hat{\Omega}^*$ . The Lemma follows now from the exactness of the De-Rham complex.

DEFINITION 0.8. Let  $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}^-$  be a semi-simple Lie algebra.

(1) We denote by  $-R_k \subset \mathfrak{h}^{\vee}$  the set of weights in the decomposition of  $\mathfrak{h}$ -module  $\Lambda^k(\mathfrak{n}^-)$ . So

$$\Lambda^k(\mathfrak{n}^-) = \sum_{\mu \in R_k} \Lambda^k(\mathfrak{n}^-)_{-\mu}$$

- (2) For any  $w \in W$  we denote by  $\Phi(w) \subset \Phi^+$  the subset of positive roots  $\gamma$  such that  $w(\gamma) \in \Phi^-$  and write  $\mu(w) := \sum_{\gamma \in \Phi(w)} \gamma$ .
- CLAIM 0.9. (1)  $\mu(w) \in R_{l(w)}$  for any  $w \in W$  and the space  $\Lambda^{l(w)}(\mathfrak{n}^-)_{-\mu(w)}$  is one-dimensional.
- (2) For any  $w', w'' \in W$  such that l(w') = l(w'') and any  $\gamma \in \Phi^+$  we have  $\mu(w') \mu(w'') \gamma \notin \Lambda^+$ .