
Let A be the algebra generated by p, q, z with the relations [p, q] =
z, [p, z] = [q, z] = 0.

Claim 0.1. (1) paqb =
∑a

k=0

(
a
k

)∏a−k−1
j=0 (b− j)qb−a+kpkza−k

(2) p2b−aqb+ap2a−b =
∑b+a

i=0 c(a, b, i)p
a+b−iqa+b−izi where c(a, b, i) are

polynomials of degree i.

Definition 0.2. Let g = n⊕ h⊕ n− be a semi-simple Lie algebra.

(1) We fix a complete order on the set α ∈ Φ+ of positive roots.
(2) We denote by σ the anti-involution of g such that

σ|h = Id, σ(xα) = yα, σ(yα) = xα ∈ Φ

(3) We denote by q : U(g) → U(h) the projection defined by the iso-
morphism U(g) = U(h)⊕ (n−U(g) + U(g)n).

(4) Let A be the bilinear form on U(g) with values in U(h) = S(h)
given by A(x, y) := q(σ(x)y), x, y ∈ U(g)

(5) For any η ∈ Λ+ we denote by Aη the restriction of the form A to
U(n−)η and by Dη ∈ S(h) the discriminant of the form Aη which
is defined uniquely up to a multiplication by c ∈ C⋆.

(6) A partition ω of η ∈ Λ+ is an presentation of η as a sum η =
α1 + α2 + ... + αd(ω) where αi are positive roots such that α1 ≥
α2 ≥ ... ≥ αd(ω). We denote by P̃(η) the set of partition of η.

(7) For any partition ω of η ∈ Λ+ we define yω := yα1yα2 ...yαd
∈

U(n−)−η

Claim 0.3. (1) |P̃(η)| = P(η).
(2) deg(Aη(yω′ , yω′′)) ≤ min(d(ω′), d(ω′′)).
(3) If ω′ ̸= ω′′ and d(ω′) = d(ω′′) then deg(Aη(yω′ , yω′′) < d(ω′).
(4) If ω′ = ω′′ then deg(Aη(yω′ , yω′′)) = d(ω).
(5) deg(Dη) =

∑
ω∈P̃(η) d(ω).

Theorem 0.4 (Shapovalov). Dη =
∏

α∈Φ+

∏
r>0(hα + ρ(α)− r)P(η−rα)

Proof. Let D̃η :=
∏

α∈Φ+

∏
r>0(hα+ρ(α)− r)P(η−rα). As follows from

the previous Claim we have deg(Dη) = deg(D̃η). So it is sufficient to prove

that Dη is divisible by (hα + ρ(α)− r)P(η−rα) for any α ∈ Φ+, r > 0.
Given α ∈ Φ+, r > 0 we choose a generic λ on the hyperplane < α, λ+

ρ >= r. Since we know the existence of an imbedding M(λ− rα) ↪→ M(λ)
we see that the kernel of the canonical map ϕ : M(λ) → M(λ)∨ contains

M(λ−rα). ThereforeDη(λ+tρ) is divisible by tP(η−rα) in the ring C[[t]]. �
Remark 0.5. One can prove the Shapovalov’s theorem and therefore

the Jantzen’s formula without the knowledge of the existence of imbeddings
M(λ − rα) ↪→ M(λ) [see Kac, V. G.; Kazhdan, D. A. Structure of rep-
resentations with highest weight of infinite-dimensional Lie algebras. Adv.
in Math. 34 (1979), no. 1, 97108. ] and then deduce the existence of
imbeddings M(λ− rα) ↪→ M(λ) from this formula.
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The relative Lie algebra cohomology. Let g be a Lie algebra and b
a Lie subalgebra and y → ȳ be the projection from g to g/bWe denote by Dk

the U(g)-modules U(g)⊗U(b)Λ
k(g/b) and define differentials dk : Dk → Dk−1

for k > 0 by

dk(u⊗ x1 ∧ ... ∧ xk) =
k∑

i=1

(−1)i+1uyi ⊗ x1 ∧ ... ∧ x̂i ∧ ... ∧ xk)+

+
∑

1≤i<j≤k

(−1)i+ju⊗ [yi, yj ] ∧ x1... ∧ x̂i ∧ ... ∧ xj ∧ ... ∧ xk)

where ȳi = xi and define d0 : D0 → C by d0(u⊗1) = ϵ(u) where ϵ : U(g) → C
is the counit.

Lemma 0.6. (1) The differential dk is well defined [that is the right
side does not depend on a choice of preimages yi of xi].

(2) dk−1 ◦ dk = 0 for all k > 0
(3) The complex ... → Dk → .... → D0 → C is exact. In other words

the complex ... → Dk → .... → D0 is a resolution of the U(g)-
module C.

Remark 0.7. If dim(g) = n < ∞ then Dk = {0} for k > n.

Proof. The proof is pretty standard. I’ll outline a proof only in the
case when g is the Lie algebra of a Lie group G and b is the Lie algebra
of a subgroup B of G. Let Ω∗ be the De-Rham complex on G/B and Ω̂∗

be the completion of Ω∗ at e ∈ G/B. The natural action of G on G/B

induces an action of the Lie algebra g on Ω̂∗. I’ll leave for you to construct
an identification of Dk with continuous linear functional on Ω̂k in such a
way that the differential dk is dual to the De-Rham differential on Ω̂∗. The
Lemma follows now from the exactness of the De-Rham complex. �

Definition 0.8. Let g = n⊕ h⊕ n− be a semi-simple Lie algebra.

(1) We denote by −Rk ⊂ h∨ the set of weights in the decomposition of
h-module Λk(n−). So

Λk(n−) =
∑
µ∈Rk

Λk(n−)−µ

(2) For any w ∈ W we denote by Φ(w) ⊂ Φ+ the subset of positive
roots γ such that w(γ) ∈ Φ− and write µ(w) :=

∑
γ∈Φ(w) γ.

Claim 0.9. (1) µ(w) ∈ Rl(w) for any w ∈ W and the space Λl(w)(n−)−µ(w)

is one-dimensional.
(2) For any w′, w′′ ∈ W such that l(w′) = l(w′′) and any γ ∈ Φ+ we

have µ(w′)− µ(w′′)− γ /∈ Λ+.


