DEFINITION 0.1. Let A be a unital finite-dimensional algebra over an algebraically closed field k and $M_i, 1 \leq i \leq r$ be representatives of non-isomorphic simple A-modules.

(1) We define the radical of A by

$$Rad(A) := \{ a \in A | \pi(a) = 0 \}$$

for all irreducible representations π of A.

(2) A finite-dimensional algebra A is semisimple iff $Rad(A) = \{0\}$.

CLAIM 0.2. (1) $Rad(A) \subset A$ is a two-sided nilpotent ideal.

(2) If the algebra A is semisimple then the maps $A \to End_k(M_i), 1 \le i \le r$ induce an isomorphism $A \to \bigoplus_{i=1}^r End_k(M_i)$.

Lemma 0.3. Let A be a ring, $I \subset A$ a two-sided nilpotent ideal, $\bar{A} := A/I$ and $\bar{e} \in \bar{A}$ an idempotent. [That is $\bar{e}^2 = \bar{e}$]. Then

- (1) There exists a lift of \bar{e} to an idempotent $e \in A$
- (2) Any two such such lifts are conjugate by an element in Id + I.

PROOF. By induction it is easy to reduce the proof to the case when $I^2=\{0\}$. So we assume that $I^2=\{0\}$. In this case I has a structure of a two-sided A/I-module. Let $\tilde{e}\in A$ be any lift of \bar{e} and $a:=\tilde{e}^2-\tilde{e}\in I$. Any lift e of \bar{e} has the form $e=\tilde{e}+b, b\in I$ and the condition $e^2=e$ is equivalent to the condition $\bar{e}b+b\bar{e}-b=a$. For the proof of the first claim it is sufficient to note that $b:=(2\bar{e}-1)a$ satisfies this condition. Let e' be another lift of \bar{e} such that $e'^2=e'$. Then e'=e+c where $c\in I$ is such that ec+ce=c. Since $e^2=e$ this equation implies that ece=0 and that (1-e)c(1-e)=0. So c=ec(1-e)+(1-e)ce=[e,[e,c]]. Hence [since $I^2=\{0\}$] we have $e'=(1+[c,e])e(1+[c,e])^{-1}$.

DEFINITION 0.4. A complete system of orthogonal idempotents in a unital algebra B is a collection of elements $e_1, ..., e_n \in B$ such that

$$e_i e_j = e_i \delta_{i,j}, 1 \le i, j \le n$$

COROLLARY 0.5. Given a complete system of orthogonal idempotents $\bar{e}_1,...,\bar{e}_n \in A/I$ there exists lift $e_1,...,e_n \in A$ of $\bar{e}_1,...,\bar{e}_n$ to a complete system of orthogonal idempotents in A.

PROOF. The proof is by induction in m. If m=2 then this Corollary is a restatement of the previous Lemma. For m>2 we choose a lift e_1 of \bar{e}_1 and apply the inductive assumption to the algebra $(1-e_1)A(1-e_1)$.

THEOREM 0.6. (1) For any $i, 1 \le i \le r$ there exists unique indecomposable finitely generated projective A-module P_i such that

$$dim(Hom_A(P_i, M_j)) = \delta_{i,j}$$

(2) $A = \bigoplus_{i=1}^{r} d_i P_i$ where $d_i := dim_k(M_i)$.

(3) Any indecomposable finitely generated projective A-module is isomorphic to P_i for some $i, 1 \le i \le r$.

PROOF. For any $i, 1 \leq i \leq r$ choose a basis $\{m_t^i\}, 1 \leq t \leq d_i$ of M_i and denote by $\bar{e}_t^i \subset End(M_i)$ the projection on the line km_t^i along the hyperplane generated by vectors $m_s^i, s \neq t$. As we know $Rad(A) \subset A$ is a two-sided nilpotent ideal and $A/Rad(A) = \bigoplus_{i=1}^r End_k(M_i)$ and it is clear that $\{\bar{e}_t^i\}$ is a complete system of orthogonal idempotents in $A/Rad(A) = \bigoplus_{i=1}^r End_k(M_i)$. Let $\{e_t^i\} \in A$ be a lift of $\{\bar{e}_t^i\}$ to a complete system of orthogonal idempotents in A. We define $P_{i,t} := Ae_t^i \subset A$ for $1 \leq i \leq r, 1 \leq t \leq d_i$. Then $A = \bigoplus_{1 \leq i \leq r, 1 \leq t \leq d_i} P_{i,t}$ and we see that the A-modules $P_{i,t}$ are projective.

By the construction $Hom_A(P_{i,t}, M_j) = e_t^i M_j$. So we see that $dim(Hom_A(P_{i,t}, M_j)) = \delta_{i,j}$. Since for a fixed i the elements $\bar{e}_t^i \in End(M_i)$ are conjugated by an element of $End^*(M_i)$ it follows form Lemma 1 that the elements $e_t^i \in A, 1 \le t \le d_i$ are conjugated by an element of A^* and therefore the A-modules $P_{i,t}, 1 \le t \le d_i$ are isomorphic. We will write P_i instead of $P_{i,t}, 1 \le t \le d_i$.

I'll leave for you to check that the modules P_i are indecomposable and that any indecomposable finitely generated projective A-module is isomorphic to P_i for some $i, 1 \le i \le r$.

DEFINITION 0.7. Let \mathcal{C} be an abelian k-category

- (1) We say that C is finite if
 - (a) It has a finite number of equivalence classes of simple objects $M_i, 1 \le i \le r$ and $End_{\mathcal{C}}(M_i) = k$ for all $i, 1 \le i \le r$.
 - (b) Every object of \mathcal{C} has finite length and
 - (c) For any simple object $M \in Ob(\mathcal{C})$ there exists a projective object $P \in Ob(\mathcal{C})$ such that $Hom_{\mathcal{C}}(P, M) \neq \{0\}$.
- (2) We say that a projective object $P \in Ob(\mathcal{C})$ is a progenerator if any object of \mathcal{C} is a quotient of some finite multiple of P.

PROBLEM 0.8. Let \mathcal{C} be a finite abelian k-category. Then

- (1) A projective object $P \in Ob(\mathcal{C})$ is a progenerator if $Hom_{\mathcal{C}}(P, M) \neq \{0\}$ for any simple object $M \in Ob(\mathcal{C})$
- (2) There exists a progenerator $P \in Ob(\mathcal{C})$

DEFINITION 0.9. Let $\mathcal C$ be a finite abelian k-category, $P \in Ob(\mathcal C)$ be a progenerator. We denote

- (1) by A_P the ring $End_{\mathcal{C}}(P)^{op}$
- (2) by $A_P fmodules$ the category of finitely generated A_P -modules
- (3) by F_P the functor from \mathcal{C} to the category $A_P fmodules$ given by

$$F_P(M) := Hom_{\mathcal{C}}(P, M)$$

THEOREM 0.10. The functor $F_P(M)$ defines an equivalence between C and the category A_P – f modules.

PROOF. The action of A_P on P defines a map $\alpha_P \in Hom_{\mathcal{C}}(P \otimes_k A_P, P)$. For any finitely generated A_P -module X we define $\alpha_X \in Hom_{A_P}(A_P \otimes_k X, X)$ as the action map from $(a \otimes \to ax, a \in A_P, x \in X)$. We denote by G the functor from the category $A_P - fmodules$ to \mathcal{C} given by $G(X) =: Coker(\psi_X)$ where $\psi_X \in Hom_{\mathcal{C}}(P \otimes_k A_P \otimes_k X, P \otimes_k X)$ is given by

$$\psi_X := \alpha_P \otimes Id_X - Id_P \otimes \alpha_X : P \otimes_k A_P \otimes_k X \to P \otimes_k X$$

I'll leave for you to construct isomorphisms $F\circ G\to Id_{A_P-fmodules}$ and $G\circ F\to Id_{\mathcal C}$