
Definition 0.1. Let A be a unital finite-dimensional algebra over an
algebraically closed field k and Mi, 1 ≤ i ≤ r be representatives of non-
isomorphic simple A-modules.

(1) We define the radical of A by

Rad(A) := {a ∈ A|π(a) = 0}

for all irreducible representations π of A.
(2) A finite-dimensional algebra A is semisimple iff Rad(A) = {0}.

Claim 0.2. (1) Rad(A) ⊂ A is a two-sided nilpotent ideal.
(2) If the algebra A is semisimple then the maps A → Endk(Mi), 1 ≤

i ≤ r induce an isomorphism A→ ⊕r
i=1Endk(Mi).

Lemma 0.3. Let A be a ring, I ⊂ A a two-sided nilpotent ideal, Ā := A/I
and ē ∈ Ā an idempotent. [That is ē2 = ē]. Then

(1) There exists a lift of ē to an idempotent e ∈ A
(2) Any two such such lifts are conjugate by an element in Id+ I.

Proof. By induction it is easy to reduce the proof to the case when
I2 = {0}. So we assume that I2 = {0}. In this case I has a structure of
a two-sided A/I-module. Let ẽ ∈ A be any lift of ē and a := ẽ2 − ẽ ∈ I.
Any lift e of ē has the form e = ẽ + b, b ∈ I and the condition e2 = e is
equivalent to the condition ēb+ bē− b = a. For the proof of the first claim
it is sufficient to note that b := (2ē − 1)a satisfies this condition. Let e′ be

another lift of ē such that e′2 = e′. Then e′ = e + c where c ∈ I is such
that ec + ce = c. Since e2 = e this equation implies that ece = 0 and that
(1 − e)c(1 − e) = 0. So c = ec(1 − e) + (1 − e)ce = [e, [e, c]]. Hence [since
I2 = {0}] we have e′ = (1 + [c, e])e(1 + [c, e])−1. �

Definition 0.4. A complete system of orthogonal idempotents in a
unital algebra B is a collection of elements e1, ..., en ∈ B such that

eiej = eiδi,j , 1 ≤ i, j ≤ n

Corollary 0.5. Given a complete system of orthogonal idempotents
ē1, ..., ēn ∈ A/I there exists lift e1, ..., en ∈ A of ē1, ..., ēn to a complete
system of orthogonal idempotents in A.

Proof. The proof is by induction in m. If m = 2 then this Corollary is
a restatement of the previous Lemma. For m > 2 we choose a lift e1 of ē1
and apply the inductive assumption to the algebra (1− e1)A(1− e1). �

Theorem 0.6. (1) For any i, 1 ≤ i ≤ r there exists unique inde-
composable finitely generated projective A-module Pi such that

dim(HomA(Pi,Mj)) = δi,j

(2) A = ⊕r
i=1diPi where di := dimk(Mi).
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(3) Any indecomposable finitely generated projective A-module is iso-
morphic to Pi for some i, 1 ≤ i ≤ r.

Proof. For any i, 1 ≤ i ≤ r choose a basis {mi
t}, 1 ≤ t ≤ di of Mi and

denote by ēit ⊂ End(Mi) the projection on the line kmi
t along the hyperplane

generated by vectors mi
s, s ̸= t. As we know Rad(A) ⊂ A is a two-sided

nilpotent ideal and A/Rad(A) = ⊕r
i=1Endk(Mi) and it is clear that {ēit} is a

complete system of orthogonal idempotents in A/Rad(A) = ⊕r
i=1Endk(Mi).

Let {eit} ∈ A be a lift of {ēit} to a complete system of orthogonal idempotents
in A. We define Pi,t := Aeit ⊂ A for 1 ≤ i ≤ r, 1 ≤ t ≤ di. Then A =
⊕1≤i≤r,1≤t≤diPi,t and we see that the A-modules Pi,t are projective.

By the constructionHomA(Pi,t,Mj) = eitMj . So we see that dim(HomA(Pi,t,Mj)) =
δi,j . Since for a fixed i the elements ēit ∈ End(Mi) are conjugated by an
element of End⋆(Mi) it follows form Lemma 1 that the elements eit ∈ A, 1 ≤
t ≤ di are conjugated by an element of A⋆ and therefore the A-modules
Pi,t, 1 ≤ t ≤ di are isomorphic. We will write Pi instead of Pi,t, 1 ≤ t ≤ di.

I’ll leave for you to check that the modules Pi are indecomposable and
that any indecomposable finitely generated projective A-module is isomor-
phic to Pi for some i, 1 ≤ i ≤ r. �

Definition 0.7. Let C be an abelian k-category

(1) We say that C is finite if
(a) It has a finite number of equivalence classes of simple objects

Mi, 1 ≤ i ≤ r and EndC(Mi) = k for all i, 1 ≤ i ≤ r.
(b) Every object of C has finite length and
(c) For any simple object M ∈ Ob(C) there exists a projective

object P ∈ Ob(C) such that HomC(P,M) ̸= {0}.
(2) We say that a projective object P ∈ Ob(C) is a progenerator if any

object of C is a quotient of some finite multiple of P .

Problem 0.8. Let C be a finite abelian k-category. Then

(1) A projective object P ∈ Ob(C) is a progenerator if HomC(P,M) ̸=
{0} for any simple object M ∈ Ob(C)

(2) There exists a progenerator P ∈ Ob(C)

Definition 0.9. Let C be a finite abelian k-category, P ∈ Ob(C) be a
progenerator. We denote

(1) by AP the ring EndC(P )
op

(2) by AP − fmodules the category of finitely generated AP -modules
(3) by FP the functor from C to the category AP − fmodules given by

FP (M) := HomC(P,M)

Theorem 0.10. The functor FP (M) defines an equivalence between C
and the category AP − fmodules.
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Proof. The action of AP on P defines a map αP ∈ HomC(P⊗kAP , P ).
For any finitely generated AP -module X we define αX ∈ HomAP

(AP ⊗k

X,X) as the action map from (a⊗ → ax, a ∈ AP , x ∈ X. We denote by
G the functor from the category AP − fmodules to C given by G(X) =:
Coker(ψX) where ψX ∈ HomC(P ⊗k AP ⊗k X,P ⊗k X) is given by

ψX := αP ⊗ IdX − IdP ⊗ αX : P ⊗k AP ⊗k X → P ⊗k X

I’ll leave for you to construct isomorphisms F ◦ G → IdAP−fmodules and
G ◦ F → IdC �


