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e numbers, 
ag numbers, g-numbers and 
onvo-lutions1.1 Fa
e numbersFor a d-polytope P the number of its k-fa
es is denoted by fk(P ). The ve
tor(f0(P ); f1(P ); : : : fd�1(P ))is 
alled the f -ve
tor of P .A basi
 problem (perhaps hopeless for d > 3) is:Problem 1.1 Chara
terize all the f -ve
tors of d-polytopes.A more realisti
 subproblem is:Problem 1.2 Find all the linear relations (linear equalities and linear inequalities) amongfa
e numbers of d-polytopes 2



It is well known [Gr67, Zie95℄ that the only linear equality that holds among fa
e numbersof d-polytopes is Euler's relation: d�1Xi=0 fi(P ) = 1 + (�1)d:As for inequalities for d > 5 the only known linear inequalities are quite trivial:fr(P ) �  d+ 1r + 1!;2f1(P ) � df0(P );2fd�2(P ) � dfd�1(P ):1.2 Flag numbersFor a d-polytope P , and a subset S = fi1; : : : ; ikg � f0; 1; : : : ; d � 1g the 
ag numberf dS(P ) is the number of 
hains of fa
es of P F1 � F2 � � � � � Fk su
h that dimFj = ij.We will omit the supers
ript d if its value is 
lear from the 
ontext. (The same de�nitionapplies to ranked latti
es.) The ve
tor of 
ag numbers fS(P ) (where the indi
es are ordereda

ording to some �xed ordering) is 
alled the 
ag ve
tor of P . For simpli
ial polytopes the
ag numbers are determined by the fa
e numbers, but for general polytopes 
ag numbersseems to be the \
orre
t" invariants.Problem 1.3 Chara
terize 
ag ve
tors of d-polytopes.Again this may be hopeless and a more realisti
 task is:Problem 1.4 Find all the linear relations among 
ag numbers of d-polytopesWe will denote by Ad the aÆne spa
e spanned by 
ag ve
tors of d-polytopes and byPd � Ad the 
one spanned by 
ag ve
tors of d-polytopes.Remark: While these problems on 
ag numbers are more general than the 
orrespond-ing problems for fa
e-numbers, deriving 
on
lusions for the fa
e numbers from informationon 
ag numbers may also be a non-trivial task.1.3 The theorem of Bayer and BilleraA remarkable theorem of Bayer and Billera [BayB85℄ asserts that the aÆne dimension ofthe spa
e Ad of 
ag ve
tors of d-polytopes is 
d� 1, were 
d is the d-th Fibona

i number.Bayer and Billera used Euler's formula to dedu
e the following relation 
ommonlyreferred to as the \generalized Dehn-Sommerville relations":Let S � f0; 1; : : : d�1g, k 2 S[f�1; dg and i � k�2. If S 
ontains no integer betweeni and k then 3



k�1Xj=i+1 f dS[fjg(P ) = (1� (�1)k�i�1)f dS(P ):Bayer and Billera also showed that these relations span all the aÆne relations among
ag numbers of d-polytopes.1.4 Bases for 
ag ve
tors and bases for polytopesA d-form will denote a linear 
ombination of 
ag numbers f dS. A basis for the spa
e of 
agnumbers of d-polytopes is a 
olle
tion of d-forms whi
h aÆnely span the spa
e Ad. Thespe
ial 
ag numbers are those 
ag numbers f dS su
h that S � f1; 2; : : : d � 2g and S doesnot 
ontain two 
onse
utive integers. It follows from the generalized Dehn-Sommervillerelation that every 
ag number 
an be represented as an aÆne 
ombination of spe
ial 
agnumbers. Other bases of 
ag numbers of d-polytopes were found in [Kal88, BilL℄.A basis of polytopes is a 
olle
tion of 
d polytopes whose 
ag ve
tors are aÆnely inde-pendent. See [BayB85, Kal88℄ for two su
h 
onstru
tions.1.5 h- and g-numbers for simpli
ial polytopesLet d > 0 be a �xed integer. Given a sequen
e f = (f0; f1; : : : ; fd�1) of nonnegativeintegers, put f�1 = 1 and de�ne h[f ℄ = (h0; h1; : : : ; hd) by the relationdXk=0hkxd�k = dXk=0 fk�1(x� 1)d�k: (1)If f = f(P ) is the f -ve
tor of a simpli
ial d-polytope P then h[f ℄ = h(P ) is 
alled theh-ve
tor of P . The g-ve
tor g(K) = (g0; g1; : : : ; g[d=2℄) of P is de�ned by gi = hi � hi�1.Thus, g0 = 1, g1 = f0� (d+1), g2 = f1�df0+�d+12 � and g3 = f2� (d�1)f1+�d2�f0+�d+13 �and so on.In 1970 M
Mullen [M
M71℄ proposed a 
omplete 
hara
terization of f -ve
tors of bound-ary 
omplexes of simpli
ial d-dimensional polytopes. M
Mullen's 
onje
ture was settled in1980. Billera and Lee [BiLe81℄ proved the suÆ
ien
y part of the 
onje
ture and Stanley[Sta80℄ proved the ne
essity part. Stanley's proof relies on deep algebrai
 ma
hinery in-
luding the hard Lefs
hetz theorem for tori
 varieties. Re
ently, M
Mullen [M
M93℄ founda self-
ontained proof of the ne
essity part of the g-theorem. It is 
onje
tured that theg-theorem applies to arbitrary simpli
ial spheres.For positive integers n � k > 0 there is a unique expression of n of the formn =  akk !+  ak�1k � 1!+ : : :+  aii !; (2)where ak > ak�1 > : : : > ai � i > 0. This given, de�ne�k(n) =  ak�1 � 1k � 1 !+  ak�1 � 1k � 2 !+ : : :+  ai � 1i� 1 !: (3)4



Theorem 1.1 (The g-theorem) For a ve
tor h = (h0; h1; : : : ; hd) of nonnegative inte-gers the following 
onditions are equivalent:(i) h is the h-ve
tor of some simpli
ial d-polytope.(ii) h satis�es the following 
onditions(a) hk = hd�k for k = 0; 1; : : : ; [d2 ℄Put gk = hk � hk�1.(b) g0=1 and gk � 0 , k = 1; 2; ; : : : ; [d2 ℄.(
) �k(gk+1) � gk; k < [d2 ℄1.6 h- and g-numbers for general polytopesInterse
tion homology theory has led to deep and mysterious extensions of h- and g-numbers from simpli
ial polytopes to general polytopes. The de�nition [Sta9400℄ goes asfollows. For a polytope P denote by Pk the set of k-fa
es of P . De�ne by indu
tion twopolynomials hP (x) = dXk=0hdkxd�k; gP (x) = [d=2℄Xk=0 gdkxd�k;by the rules: (a) gdk = hdk � hdk�1, (b) If P is the empty polytope or a 0-polytope P ,hP = gP = 1, and hP (x) = dXk=0(x� 1)d�kXfgF (x) : x 2 Pkg:Thus gd1(P ) = f0(P )� d� 1 andgd2(P ) = f1(P ) +Xff0(F )� 3 : F 2 P2g � df0(P ) +  d+ 12 !:The value of gd2 for general polytopes has also a rigidity theoreti
 meaning and isnonnegative for every polytope. The nonnegativity of gd2 is still open for more generalobje
ts like polyhedral spheres and manifolds. It follows from interse
tion homology theoryfor tori
 varieties that gdk is nonnegative for every rational polytope. This is still open forgeneral polytopes.Problem 1.5 Chara
terize g-ve
tors of d-polytopes.It is 
onje
tured that g-ve
tors of arbitrary d-polytopes satisfy (and therefore are 
har-a
terized by) the same non linear relations whi
h were proved for simpli
ial polytopes.Problem 1.6 What is the signi�
an
e of the g-numbers for the 
ombinatorial theory ofd-polytopes?
5



1.7 Duality of polytopesFor a d-polytope P we denote by P � the dual of P . There is an order-reversing bije
tionbetween fa
es of P and fa
es of P �. Put �gdk(P ) = gdk(P �). Clearly �gdk(P ) is nonnegative forevery rational polytope P .There are various 
onne
tions between 
ag numbers of polytopes and their dual whi
hare quite mysterious and are related to mirror symmetry. See [Sta92, BaBo96, Kal88℄.1.8 Intervals in fa
e-latti
es of polytopesThe set of fa
es of a d-polytope form a ranked poset of rank d+1 with the latti
e property.We will use the dimension as the grading and thus the empty fa
e will have grade �1.Intervals in the fa
e latti
es of polytopes are themselves fa
e latti
es of polytopes, see[Gr67, Zie95, Kal88℄. Intervals of type [a; b℄ are intervals [F;G℄ where dimF = a anddimG = b. If a = �1 then F is the empty fa
e and [F;G℄ is simply the fa
e latti
e of G.1.9 ConvolutionsLet md; me be linear 
ombinations of 
ag numbers of d- and e-polytopes respe
tively. Fora polytope P of dimension d+ e+ 1 de�ne the 
onvolution of md and me bymd �me(P ) =Xfmd(F ) �me(P=F ) : F a d-fa
e of Pg:For a Hopf-algebrai
 treatment of 
ag numbers and their 
onvolutions, see [BilL℄. Thefollowing lemma [Kal88℄ is immediate.Lemma 1.2(1) md �me(P ) is a linear 
ombination of 
ag numbers of (d+ e+ 1)-polytopes.(2) If md(P ) = 0 for every d-polytope P or me(Q) = 0 for every e-polytope Q thenmd �me(R) = 0 for every d+ e + 1-polytope R.(3) If md(P ) � 0 for every d-polytope P and me(Q) � 0 for every e-polytope Q thenmd �me(R) � 0 for every d+ e+ 1-polytope R.Convolutions of the gi's and �gi's yield a large 
olle
tion of linear inequalities for 
agnumbers of d-polytopes. We will denote by Qd the 
one of 
ag numbers des
ribed by allthese inequalities. As it turns out the simple inequalities f di (P ) � �d+1i+1� do not follow from
onvolutions of the gi's. We denote by Q0d the 
one of 
ag numbers obtained by addingthese inequalities, their polars and the derived inequalities by 
onvolutions.1.10 The 
d-indexRemarkable 
lasses of invariants for Eulerian posets are given by Fine's 
d-index. See[BayK91, Sta940℄. The 
d-index for d-dimensional polytopes is a polynomial of degree din two non-
ommuting variables of degrees 1 and 2, respe
tively. This polynomial has 
d6




oeÆ
ients, ea
h one of whi
h is a d-form. (Namely, a linear 
ombination of 
ag numbersof d-polytopes) and together they 
onsist of a basis of su
h forms. It was proved byStanley [Sta940℄ that these 
oeÆ
ients are nonnegative for every d-polytope, and Billeraand Ehrenborg [BiEh℄ proved that the values of these forms are at least as large as theirvalue for the d-simplex. In low dimensions these inequalities already follows from thosein Q0d.2 FLAGTOOLThe previous se
tion shows that the Generalized Dehn Sommerville Equations and thenonnegativity of 
onvolutions of the numbers gki and gik (0 � k � d, 0 � i � bk=2
) yield alot of linear relations between the 
ag numbers of general d-polytopes for a �xed dimensiond. It is very hard to 
ompute them or to derive new results from them without using a
omputer be
ause the number of those relations is large already for small dimensions.Therefore, Meisinger [Mei94℄ developed a program 
alled FLAGTOOL. The main purposeof this program is to� 
ompute all (known) linear relations between the 
ag numbers of general d-polytopesfor small dimensions, say 3 � d � 10,� extra
t and automati
ally prove new results from those relations.The aim of the following se
tion is to present the main features of the program.2.1 Basi
 ideas and motivationIn 1990 Kalai [Kal90℄ proved that every d-polytope (d � 5) has a 2-fa
e with less than5 verti
es. This implies that there does not exist a 5-polytope all 2-fa
es of whi
h arepentagons. The proof was obtained by taking for dimension �ve all known linear inequal-ities for 
ag numbers and all possible 
onvolutions of the inequality 
orresponding to thenegation of the theorem's 
laim (f 20 � 5 � 0 for intervals of type [�1; 2℄). The resultingset of linear inequalities, as an input of a Linear Programming Problem, had no feasiblesolution and therefore the 
orre
tness of the theorem followed.This suggests that more results 
an be proved in a similar way by using this ideasystemati
ally. The main aspe
t for the development of FLAGTOOL is based on this ideaand 
an be summarized as follows. We in
lude examples for a better understanding. Seealso Figure 1 for the general s
heme of supporting theorem proving with FLAGTOOL.1. Consider a �xed dimension d. FLAGTOOL works with dimensions 3 � d � 10.This value 
an be in
reased if it does not ex
eed the 
omputer's memory 
apa
ity or
auses runtime problems.2. For a �xed dimension d we derive all known nonnegative d-forms from the numbersgki and gik (0 � k � d, 0 � i � bk=2
) and their 
onvolutions. (It turned out that a7



BASIC INPUTrr g-numbersGeneralizedDehn Sommer-ville Equations
USER INPUTrrr DimensionNegation of
onje
turedinequalityInterval(s)Convolutionof Input- �?System A of li-near inequalities?Conversion of Ato spe
ial 
ags?LP-solver -� A infeasibleA feasible NEW THEOREMNO STATEMENT �Prove the theorem\by hand" or by asymboli
 algebra programFigure 1: Automated theorem proving by FLAGTOOL
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lot of the resulting inequalities are redundant. FLAGTOOL omits those redundantinequalities and 
omputes a system B of linear inequalities in terms of 
ag numbersfor ea
h dimension d.)3. (a) In order to prove a linear inequality for 
ag or fa
e numbers in this �xed di-mension d, we have to add the negation of this inequality to the system B. Toprove �2f1+3f2�2f3 � 0 whi
h holds for all 5-polytopes, we add the negation2f1 � 3f2 + 2f3 � 1 � 0.(b) To prove fa
ts about low dimensional fa
es or quotients, we have to add inequal-ities (negation of 
onje
tured inequalities) to intervals (in the fa
e-latti
es) ofa d-polytope and to 
onvolve them with the numbers gki and gik (0 � k � d,0 � i � bk=2
) to 
reate a system of inequalities whi
h 
ontains the systemB. To prove the result that 5-polytopes always have a 2-fa
e with less than 5verti
es, we have to add the 2-dimensional inequality f 20 � 5 � 0 to the bottominterval [�1; 2℄.4. Express all the new linear inequalities in terms of spe
ial 
ag numbers. This resultsin a set A (that 
ontains B) of linear inequalities.5. If the set A of linear inequalities has no feasible solution, the negation of at leastone of the added inequalities is true for all rational polytopes. If only gd0 , gd1 andgd2 are used in 
onvolutions, the result holds for all polytopes. The infeasibility 
anbe proved for example by using phase I of an LP-solver or symboli
 mathemati
alprograms.The program itself 
onsists of a set of subtools whi
h are des
ribed brie
y in the Ap-pendix. For more details see the user manual of FLAGTOOL [Mei94℄.3 The linear 
one of 
ag ve
tors and f-ve
tors3.1 What are all the linear inequalities for 
ag numbers?It was 
onje
tured in [Kal88℄ that Pd = Qd, i. e., that every linear inequality on the 
agnumbers of general d-polytopes is equivalent to the nonnegativity of some nonnegative
ombination of 
onvolutions of the gki and gik (0 � k � d, 0 � i � bk=2
). It turned outthat this 
onje
ture is false.Proposition 3.1 The linear inequality (�)f2 � 35 � 0 whi
h holds for all 6-polytopes isnot a nonnegative 
ombination of 
onvolutions of the numbers gki and gik (0 � k � 6; 0 �i � bk=2
).Proof: We determined using FLAGTOOL all the linear inequalities for the 
one Q6. Thepoint(f0; f1; f2; f3; f4; f02; f03; f04; f13; f14; f24; f024) = (7; 21; 0; 0; 21; 105; 350; 315; 630; 840; 630; 2520)9



satis�es all these inequalities but violates (*).3.2 Flag numbers of 4-polytopesEuler's theorem easily implies a 
omplete des
ription of fa
e numbers (hen
e 
ag numbers)of 3-polytopes. In the Appendix we give a list of the known nonredundant inequalities for4-, 5- and (rational) 6-polytopes.The situation for 4-dimensional polytopes was 
onsidered by Barnette [Ba74℄ and Bayer[Bay87℄. Bayer des
ribed the 
one Q4 and in parti
ular identi�ed its seven extreme rays.It is not hard to show that four of these rays are indeed extreme rays of P4 the 
one of 
agnumbers of 4-polytopes. In order to show that Q4 des
ribes all linear inequalities among4-polytopes 
ertain 
onstru
tions of 4-polytopes are needed. For examples an in�nite 
lassof self-dual 2-simpli
ial polytopes with vanishing g2 will take 
are of one su
h ray. Anin�nite family of self-dual 2-simpli
ial polytopes so that the ratio f2f1 is unbounded willtake 
are of a se
ond ray.On the other hand, Billera and Ehrenborg 
onje
tured that for 4-polytopes10f0 � f1 + 9f3 � 2f03 � 45:They showed that if true this relation added to Q4 would 
hara
terize the linear 
one of
ag numbers of 4-polytopes.Note the interesting 
onsequen
es of this inequality for 2-simpli
ial 2-simple 4-polytopes.For all su
h polytopes f0 = f3 and f1 = f2 and f03 = f0 + 2f1. The inequality of Billeraand Ehrenborg would be for su
h polytopes f1 � 9f0 � 45, namely it will give a linearupper bound for the number of edges in terms of the number of verti
es.3.3 What are all the linear inequalities for fa
e numbers?When studying the linear inequalities for the 
ag numbers of arbitrary d-polytopes thequestion arises what information on the ordinary f -ve
tor 
an be derived from those in-equalities. For a �xed dimension d � 4 we have a set of n linear inequalities A1 �0; : : : ; An � 0 obtained by 
onvolution of the numbers gki and gik (0 � k � d, 0 � i �bk=2
). Ea
h Aj (1 � j � n) is a d-form in 
d � 1 variables (the spe
ial 
ag numberswithout f;) and 
d � d variables among them are not fa
e numbers.Information about the ordinary f -ve
tor 
an be obtained by proje
ting the 
one of 
ag-ve
tors onto the spa
e of f -ve
tor. We obtained the image of Q0d under this proje
tion bya su

essive elimination of the 
d � d variables whi
h are not fa
e numbers. Eliminationof a variable fS (fS a spe
ial 
ag number) here means to generate all possible nonnegative
ombinations of the Ai where fS does no longer appear.For dimensions 4 and 5 proje
ting Q0d into the spa
e of fa
e-numbers gave, beside theinequalities mentioned in the introdu
tion, two nontrivial inequalities whi
h were foundearlier by Bayer and Kalai. Bayer [Bay87℄ showed that for 4-polytopesg42 + g00 � g21 � g0010



= (f02 � 3f2 + f1 � 4f0 + 10) + (6f1 � 6f0 � f02)= �3f2 + 7f1 � 10f0 + 10 � 0:and Kalai [Kal88℄ showed that for 5-polytopesg21 � g21 + g00 � g21 � g10 + g10 � g21 � g00= (�6f3 + 3f03 � f13 � 3f02 + 9f2)+(2f13 � 3f03)+(�6f1 � f03 � f13 + 3f02)= 6f1 � 9f2 + 6f3 � 0) 2f1 � 3f2 + 2f3 � 0No further inequalities for 4- and 5-polytopes are obtained by proje
ting Q04 and Q05.In dimension d = 6 we have 28 nonredundant linear inequalities A1 � 0; : : : ; A28 � 0obtained by FLAGTOOL. When we eliminated su

essively the variables f02, f03, f04, f13,f14 and f024 and remove redundan
y the result is that no new linear inequality for theordinary f -ve
tor is obtained.If no further inequalities for fa
e numbers exist this would imply, for example, thatthere is a sequen
e Pn of 6-polytopes so that for every k 6= 3, f3(P ) = o(fk(Pn)) as ntends to in�nity. This seems very unlikely. Barany 
onje
tured that for every d-polytopefk(P ) � minff0(P ); fd�1(P )g and this seems very likely albeit beyond our rea
h.4 Low dimensional fa
es and quotients of high dimen-sional polytopes4.1 Some basi
 
onje
turesMu
h of the rest of the paper is related to the following three 
onje
tures:Conje
ture 4.1 For every integer k > 0 there exist integers n(k) and d(k) so that everyd-polytope d � d(k) has a k-dimensional fa
e with at most n(k) verti
es.It 
an be 
onje
tured that n(k) 
an be 
hosen to be 2k and that the following stronger
onje
ture holdsConje
ture 4.2 For every integer k > 0 there exists d0(k) so that every d-polytope, d �d0(k) has a k-dimensional fa
e whi
h is either a simplex or 
ombinatorially isomorphi
 toa 
ube.Conje
ture 4.3 (Perles) For every integer k > 0 there exists f(k) so that every d-polytope d � f(k) has a k-dimensional quotient whi
h is a simplex.11



For simple polytopes the �rst 
onje
ture follows from a fundamental result of Nikulin,see [Nik86, Kal90℄. The se
ond 
onje
ture is open even for simple polytopes.And �nally,Problem 4.4 Is it true that for every k there is g(k) su
h that for every d-polytope, d >g(k) either P or its polar P � has a k-dimensional fa
e whi
h is a simplex.4.2 Small low dimensional fa
es of high dimensional polytopesTheorem 4.1 Every rational d-polytope (d � 9) has a 3-fa
e with less than 78 verti
esor 78 fa
ets. Using the simple relation f0 � 2f2 � 4, whi
h holds for all 3-polytopes, thisimplies that there exists always a 3-fa
e with less than or equal to 150 verti
es.Proof: Assume that every 3-fa
e of an arbitrary 9-polytope has 78 or more verti
es orfa
ets. This assumption 
an be expressed by the inequalities f 30 � 78 � 0 and f 32 � 78 � 0.A system of 53 linear 9-forms obtained by 
onvolutions of the g-numbers and of thesetwo added inequalities (in the bottom interval [�1; 3℄) has no nonnegative feasible solutionand therefore Theorem 4.1 is proved. See [MKK℄. The proof was obtained as follows.FLAGTOOL 
reates 227 linear inequalities whi
h 
ontain the 53 inequalities above. Theinfeasibility was �rst 
he
ked using phase I of the LP-solver CPLEX and then provedusing the symboli
 mathemati
al program MAPLE V. It seems impossible to prove theinfeasibility \by hand." The details of this proof (whi
h for a 
omputer generated proof isquite short) do not seem to 
ontribute to our (human) insight for understanding why thetheorem is true.4.3 Small (k+1)-fa
es for high dimensional k-simpli
ial polytopesConje
ture 4.2 would imply that for high enough dimension d every 2-simpli
ial polytope
ontain a k-dimensional fa
e whi
h is a simplex. In this se
tion we show that every k-simpli
ial (2 � k � 3) d-polytope P (all k-dimensional fa
es of P are simpli
es) has small(k + 1)-dimensional fa
es if the dimension d is high enough.Theorem 4.2 Every 2-simpli
ial d-polytope (d � 5) has a 3-fa
e with less than 8 verti
es.Proof: It suÆ
es to show that Theorem 4.2 holds for 5-polytopes, be
ause every 5-dimensional fa
e of every 2-simpli
ial d-polytope (d > 5) is again 2-simpli
ial and thereforehas a small 3-fa
e.Assume that every 3-fa
e of a 2-simpli
ial 5-polytope has 8 or more verti
es. This assump-tion is expressed by the inequality f 30 � 8 � 0 in the bottom interval [�1; 3℄. Consider thefollowing �ve inequalities for 5-polytopes obtained by 
onvolutions of the g-numbers andthe added inequality.
12



[1℄ g10 � g21 � g00 = �6f1 � f13 + 3f02 � 0[2℄ (f0 � 8) � g10 = f03 � 8f3 � 0[3℄ g21 � g21 = �6f3 + 3f03 � f13 � 3f02 + 9f2 � 0[4℄ g00 � g42 = �8f1 + 2f13 + f02 � 3f03 + 10f0 � 0[5℄ g15 = �f0 + f1 � f2 + f3 � 4 � 0By using the fa
t that for 2-simpli
ial polytopes the inequality f02 = 3f2 holds we 
anprove the infeasibility of these �ve inequalities. The following nonnegative 
ombination ofthe inequalities shows the infeasibility. This was obtained by Fourier-Motzkin Elimination.3 � [1℄ + 3 � [2℄ + [3℄ + 2 � [4℄ + 24 � [5℄ = �4f0 � 10f1 � 6f3 � 96 < 0 2Theorem 4.3 Every 2-simpli
ial d-polytope (d � 7) has a 3-fa
e with less than 7 verti
es.Proof: Again it suÆ
es to prove the theorem for 7-polytopes. Assume that every 3-fa
eof a 2-simpli
ial 7-polytope has 7 or more verti
es (inequality f 30 � 7 � 0 in the bottominterval [�1; 3℄) and that every 2-fa
e is triangular (inequality 3 � f 20 � 0 in the interval[�1; 2℄). Note that g21 = f 20 � 3 � 0 and therefore f 20 = 3. Consider the following 15inequalities for 7-polytopes obtained by 
onvolutions of the g-numbers, their duals and theadded inequalities. The theorem follows again from the infeasibility of this system of linearinequalities.[1℄ (3� f0) � g00 � g21 � g00 = 18f03 � 36f3 + 18f24 + 3f035 � 6f35 � 6f13�6f024 � f135 � 0[2℄ (f0 � 7) � g21 � g00 = �6f03 � f035 + 3f024 + 42f3 + 7f35 � 21f24+15f14 � 15f04 � 0[3℄ g10 � g41 � g00 = �f024 + f025 � 10f1 � 3f13 + 5f14 � 5f15+5f02 � 0[4℄ g10 � g42 � g00 = 3f024 � f025 + 20f1 + 4f13 � 10f14 + 4f15�10f02 � 0[5℄ g61 � g00 = �14 + 7f0 + 7f2 � 7f3 + 7f4 � 7f5 � f02+f03 � f04 + f05 � 5f1 � 0[6℄ (3� f0) � g21 � g10 = 6f35 � 3f035 + f135 � 9f25 + 3f025 � 0[7℄ (f0 � 7) � g00 � g21 = �3f024 + 2f035 + 15f04 � 15f14 + 21f24�14f35 � 0[8℄ (3� f0) � g10 � g21 = f135 � 3f035 + 6f35 � 9f24 + 3f024 � 0[9℄ g10 � g21 � g21 = �3f024 � 6f15 � f135 + 3f025 + 9f14 � 0[10℄ g40 � g21 = 2f5 � f05 + f15 � f25 + f35 � 3f4 � 0[11℄ (f0 � 7) � g30 = f03 � 7f3 � 0[12℄ g20 � g42 = �8f3 + 4f03 � 4f13 + 2f35 � f035 + f135+f24 � 3f25 + 10f2 � 0[13℄ g21 � g42 = 24f3 � 12f03 � 6f35 + 3f035 + 4f13 � f135+f024 � 3f025 + 10f02 � 3f24 + 9f25�30f2 � 0[14℄ (3� f0) � g40 = �f02 + 3f2 � 0[15℄ g00 � g16 = �f02 + f03 � f04 + f05 + 2f1 � 7f0 � 013



The following positive 
ombination of the 15 inequalities obtained by FLAGTOOLproves the infeasibility of the system.112 � [1℄+ 84 � [2℄+ 84 � [3℄+ 105 � [4℄+ 540 � [5℄+ 112 � [6℄ + 168 � [7℄+ 336 � [8℄+ 210 � [9℄+ 1260 �[10℄ + 252 � [11℄ + 189 � [12℄ + 315 � [13℄ + 1260 � [14℄ + 720 � [15℄ = �1260f5 � 1260f0 � 7560 < 02Theorems 4.2 and 4.3 were obtained by dire
t support of FLAGTOOL. The addedinequalities, as part of the user input for our program, are f0 � 3 � 0 in the bottominterval [�1; 2℄ and f0 � xd � 0 in the bottom interval [�1; 3℄. The quantity xd is a
onje
tured lower bound for the number of verti
es of a 3-fa
e. Several tests with di�erentvalues for the dimension d and the quantity xd lead to the following lower bounds for xd,whi
h are suÆ
ient to show the infeasibility of the system of n inequalities. Note that inall 
ases the numbers g0; g1; g2 are suÆ
ient to prove the theorems and so they are notrestri
ted to rational polytopes. (The �rst and third rows of the table are just Theorems5 and 6 above.) d xd use of gi n5 8 g2 166 8 g2 327 7 g2 658 7 g2 1229 7 g2 22710 7 g2 424Similar work with FLAGTOOL shows that every 3-simpli
ial d-polytope (d � 7) has asmall 4-fa
e.The added inequalities are f0 � 4 � 0 in the bottom interval [�1; 3℄ and f0 � xd � 0in the bottom interval [�1; 4℄. The following lower bounds for the vertex number xd ofa 4-fa
e for whi
h the infeasibility holds, the use of the g-numbers and the number n ofgenerated inequalities were obtained.d xd use of gi n7 10 g2 608 10 g2 1119 9 g2 20610 9 g2 3824.4 Low dimensional quotients with few verti
esIt is a 
lassi
al result that every 3-polytope or its dual has a triangular 2-fa
e. It followsthat every d-polytope (d � 3) has a 2-quotient Q whi
h is a triangle. Indeed if a 3-polytopeP and his dual both has no triangular fa
e then we will obtain that14



[1℄ (f0 � 4) � g00 = �8 + 4f0 � 2f1 � 0[2℄ g00 � (f0 � 4) = 2f1 � 4f0 � 0[1℄ + [2℄ = �8 < 0In what follows we will prove that higher dimensional analogous of this fa
t hold as well.We show that high dimensional polytopes always have small 3-dimensional quotients insome interval of the fa
e latti
e. The most important result is that every d-polytope (d � 9)has a 3-quotient whi
h is a simplex. For lower dimensions we show that every d-polytope(5 � d � 8) has a 3-quotient with less than xd verti
es. These results were obtained byadding the 3-dimensional inequality f0 � xd � 0 to all intervals [�1; 3℄ : : : [d � 4; d℄. Thelower bounds for the quantity xd, the use of the g-numbers and the number n of nonnegative
onvolutions (inequalities) produ
ed by FLAGTOOL are as follows:d xd use of gi n5 8 g1 146 7 g1 287 6 g1 558 6 g1 1039 5 g2 243In parti
ular,Theorem 4.4 Every d-polytope (d � 9) has a 3-quotient whi
h is a simplex.In a similar way we prove that every d-polytope (7 � d � 9) has a 4-quotient withless than xd verti
es. The values for xd, the use of the g-numbers and the number n ofnonnegative d-forms produ
ed by FLAGTOOL are as follows:d xd use of gi n7 16 g2 618 13 g2 1129 10 g2 2104.5 Low dimensional \small" quotients in pres
ribed lo
ationsNote that Conje
ture 4.2 would imply that if d is large enough we 
an always �nd a k-dimensional quotient of the form G=F whi
h is a simplex, where the dimension e of F isspe
i�ed and e 6= �1; d�k�1. In this se
tion we show that 2- and 3-dimensional quotientswith small number of verti
es appear in 
ertain spe
i�ed intervals of a high dimensionalpolytope.A 
onsequen
e of the fa
t that every 3-polytope or its dual has a triangular 2-fa
eand of the fa
t that the union of two adja
ent 2-dimensional intervals are representing a3-dimensional interval is the following 
orollary.15



Corollary 4.5 Every d-polytope (d � 3) has a triangle as a 2-quotient either in the interval[e; e+ 3℄ or in the interval [e+ 1; e+ 4℄ (�1 � e � d� 4).In what follows we present similar, but new results 
on
erning triangular 2-quotientsin 
ertain lo
ations. Again all results were obtained by dire
t support of FLAGTOOL.Theorem 4.6 Every d-polytope (d � 6) has a triangular 2-quotient either in the interval[0; 3℄ or in the interval [2; 5℄. In parti
ular, every 6-polytope or its dual has a 3-fa
e with a3-valent vertex.Theorem 4.7 Every 7-polytope has a triangle as a 2-quotient of a 1-fa
e in a 4-fa
e, i. e.,it has a 4-fa
e with an edge that is 
ontained in three 3-fa
es.Moreover we prove that there always exist small 3-quotients in 
ertain interesting lo
a-tions. For example we show that every d-polytope (7 � d � 9) has a small 3-fa
e or its dualhas a small 3-fa
e with less than xd verti
es. The added inequalities for FLAGTOOL aref0� xd � 0 in the bottom interval [�1; 3℄ and in the top interval [d� 4; d℄. The quantitiesxd, the use of the g-numbers and the number n of nonnegative 
onvolutions (inequalities)produ
ed by FLAGTOOL are as follows:d xd use of gi n7 17 g2 628 55 g2 1169 21 g2 194Next we show that from a 
ertain dimension there exist small 3-quotients in the intervals[0; 4℄ and [1; 5℄. Several tests with FLAGTOOL by adding the inequality f0 � xd � 0 inthe interval [0; 4℄ lead to the following lower bounds xd for whi
h the infeasibility of the ninequalities obtained by 
onvolutions of the g-numbers and the added inequality holds.d xd use of gi n5 12 g2 146 12 g2 287 10 g2 578 10 g2 1049 10 g2 172For the interval [1; 5℄ the result is as follows.d xd use of gi n6 12 g2 287 8 g2 568 8 g2 1039 8 g2 16816



4.6 Low dimensional quotients with small g2In the previous se
tions low dimensional quotients with small g1 were 
onsidered. We willnow 
onsider quotients with small g2.Theorem 4.8 Every d-polytope (d � 7) has a 4-quotient Q su
h that g2(Q) = 0.5 Other possible appli
ations and extensions5.1 Non-linear inequalities and linear 
onsequen
esThe nonlinear relations among g-numbers whi
h are known to hold for simpli
ial polytopesare 
onje
tured for general polytopes. Other nonlinear inequalities were re
ently proved.Convolutions still apply, what 
an be derived from these inequalities? Do they imply linearinequalities for the 
ag numbers?For simpli
ial d-polytopes (and more generally, for sub
omplexes of their boundary
omplexes) one 
an derive quite sharp upper bounds for fi in terms of fi�1. (These bounds
alled the generalized upper bound inequalities are attianed for 
y
li
 polytopes). See[Kal91℄. For i � [d=2℄ + 1 these bounds are linear. Are these bounds 
ontinue to applyfor the non-simpli
ial 
ase? This is 
onje
tured to be true in [Kal91℄. This 
onje
turewould imply a positive answer to Barany's question (Se
tion 3.3) as well as the follow-ing remarkable extension of Bj�orner's partial unimodality results for simpli
ial polytopes[Bj94℄:Conje
ture 5.1 The fa
e numbers fi of d-polytopes are non-de
reasing for i � [(d+3)℄=4and nonin
reasing for i � [3(d� 1)=4℄.The result of Braden and Ma
Pherson whi
h we are going now to dis
uss may berelevant or even the key for proving su
h a 
onje
ture.There are various relations involving 
ag numbers of a polytope P and those of aspe
i�
 fa
e F and the quotient P=F . Braden and Ma
Pherson [BrMP℄ proved for rationalpolytopes that gP (x) � gF (x)� gP=F (x):(Here the inequality means that all 
oeÆ
ients of the polynomial on the left hand sideare at least as large as those in the right hand side.) FLAGTOOL does not involve su
hrelations. Can they be added to the pi
ture? For simpli
ial 
omplexes relations betweenfa
e numbers of a 
omplex and its links are fundamental in proving nonlinear relations[M
M70, BjK91℄. The Braden-Ma
Pherson inequalities already have various interestingappli
ations [Kal88, Bay98, BiEh℄. Bayer found sharp form of the upper bound theoremfor general polytopes and Billera and Ehrenborg used the Braden-Ma
Phersob result andtheir own monotoni
ity theorem for the 
d-index to derive various nonlinear inequalities.It seems that there is mu
h yet to be explored.17



5.2 Spe
ial 
lasses of polytopesSimpli
ial and 
ubi
al polytopesThe fa
e numbers of simpli
ial polytopes are 
ompletely 
hara
terized. (Although �ndinginteresting 
ombinatorial 
onsequen
es from this 
hara
terization is still a 
hallenge, seee. g. [Bj94℄.) Perhaps it is the right time to introdu
e and study more deli
ate numeri
alinvariants for them. (For some ideas see [Gr70℄.) E. g., for simpli
ial 4-polytopes we 
an
onsider the number of pairs of fa
ets whi
h has an edge in 
ommon. (Or, similarly, we
an study the f -ve
tor of the deleted join of the polytope.)The knowledge of 
ubi
al polytopes is mu
h less 
omplete (see [Ad96, BBC97, JZ℄).For both simpli
ial and 
ubi
al polytopes 
ag numbers are determined by fa
e numbersand the aÆne spa
e spanned by fa
e numbers is of dimension [d=2℄.In the 
ubi
al 
ase there are analogs of the gi's introdu
ed by Adin [Ad96℄ who 
onje
-tured them to be non-negative. It would be interesting to �nd 
ombinatorial 
onsequen
esfrom the nonnegativity of the gi for the links (and possibly also Adin's 
onje
ture) e. g.,�nding an analog of Nikulin's theorem [Nik86, Theorem C℄ or showing that dual-to-
ubi
ald- polytopes always have a e-dimensional fa
e whi
h is a simplex (where e tends to in�nitywith d).Quasi simpli
ial polytopesQuasi simpli
ial polytopes are polytopes all whose fa
es are simpli
ial. For these polytopesthe fa
e numbers determine all 
ag numbers [Kal88℄ and the aÆne spa
e of fa
e numbersis d � 1. It seems that �nding the linear inequalities for fa
e-numbers for su
h polytopeswhi
h 
an be derived from the nonnegativity of the gi's 
an be done automati
ally formu
h higher dimensions (d � 100 seems realisti
).As pointed out by Anders Bj�orner su
h a study 
an 
ontribute to the 
lassi�
ationof hyperboli
 re
e
tion groups, see [Nik86, Kho86℄. The results obtained so far heav-ily use Nikulin's theorem [Nik86, Thm. C℄ as well as its extension by Khovanskii to thequasi-simpli
ial 
ase. For this appli
ation we need to 
onsider only the restri
ted 
lass ofpolytopes whose fa
ets are Cartesian produ
ts of simpli
es.k-simpli
ial (d� k)-simple d-polytopesRe
all that a polytope P is 
alled k-simpli
ial if all its k-fa
es are simpli
es. P is k-simple ifP � is k-simpli
ial. If P is a k-simpli
ial, r-simple d-polytope (k; r;� d) and k+ r > d thenP is a simplex. Finding k-simpli
ial (d � k)-simple d-polytopes (for k; d � k > 1), apartfrom the simplex itself, is of great interest. No su
h example is known lfor k; d � k � 4.The 
onvex hulls of middle points of the edges of the simplex (the 2-hypersimplex) are2-simpli
ial (d � 2)-simple polytopes. The 
onvex hull of the even verti
es of the d-
ubeare 3-simpli
ial (d�3)-simple. (These examples and others were worked out by Perles who18



may have had also a single example for k = d � k = 4 that was forgotten.) It would beinteresting to understand the linear relations among 
ag ve
tors of su
h polytopes.Fa
et-forming polytopesA d-polytope P is a fa
et forming polytope if there is a (d + 1)-polytope all whose fa
etsare isomorphi
 to P . By eliminating variables we 
an, in prin
iple, determine the averagebehavior of 
ag numbers of fa
ets of a d-polytope (and more generally the behavior ofthe averages of 
ag numbers for e-dimensional fa
es of d-polytope). Clearly every su
hinequality will apply to fa
et-forming polytopes. It turns out that for d = 4; 5 no newinequalities are obtained. More sophisti
ated appli
ations of the inequalities in Q5 
anbe used to show that 
ertain 4-polytopes are not fa
et-forming, see [Kal90℄. It would beinteresting to extend these results to higher dimension.Bary
entri
 subdivisionsAnother interesting dire
tion is to try to determine all linear relations between fa
e num-bers of bary
entri
 subdivisions of d-polytopes. Re
all that the number fk(BP ) of thebary
entri
 subdivision BP of P is simply the sum of fS(P ) for all sets S of 
ardinalityk + 1. Again, this is a question about the proje
tion of Q0d to some small dimensionalsubspa
e. This dire
tion was not worked out yet.ZonotopesUnderstanding 
ag numbers of zonotopes is of great interest. There are several famousopen problems and some advan
es seem to be related to the kind of arguments used here.Billera, Ehrenborg and Readdy [BER97℄ showed that the aÆne spa
e spanned by 
agnumber of d-dimensional zonotopes is the entire spa
e spanned by 
ag numbers of d-polytopes. (In other words, they proved the existen
e of a basis of polytopes all whosemembers are zonotopes. They did not 
onstru
t expli
itly su
h a basis.)Other posetsThere is mu
h a
tivity 
on
erning the 
ombinatori
s and the linear relation of 
ag numbersof various 
lasses of ranked posets [BayH, BilH, BilH0℄. The generalized Dehn-Sommervilleinequalities apply to all Eulerian posets while the inequality g1 � 0 aplly to all relatively
omplemented latti
es. Thus, both these properties apply to general Eulerian latti
es andFLAGTOOL 
an thus be useful to their study. (We do not know, for example, if the
onje
tures of Se
tion 4.1 may apply to arbitrary Eulerian latti
es.)
19



5.3 Extensions of FLAGTOOLHigh dimensionsIt may be useful to try to extend FLAGTOOL to higher dimensions. Sin
e the number ofvariables and inequalities grows rapidly and the resulting LP problems are not sparse we
annot expe
t too mu
h but extending the program up to 20 dimensions may be feasible.As we already mentioned, for restri
ted 
lasses of polytopes (quasisimpli
ial, for example)we may hope for a similar program appli
able in mu
h larger dimensions.Further automationFLAGTOOL is used to automate 
ertain 
ombinatorial arguments whi
h were done \byhand" in a few papers and with some 
omputer support in another [Ba74, Bay87, Kal90℄.Let G be a spe
i�
 system of linear inequalities for 
ag numbers of k-polytopes. Mostof the theorems proved using FLAGTOOL are of the following form:Every d-polytope 
ontain a k-dimensional quotient (possibly in a pres
ribed lo
ation)whi
h satisfy the inequalities in G.The 
urrent modus operandi (see Figure 1) was that we tested various 
onje
tures ofthis kind using FLAGTOOL, but here also further automation seems possible.Problem 5.2 Find automati
ally (all the) theorems of this form that are derived from theknown linear inequalities.Note that this problem is not identi
al to �nding all 
ag-number inequalities whi
hholds on average for k-dimensional quotients in pres
ribed lo
ations.Using other types of reasoningThere are arguments whi
h are similar to those we use but use additional ingredients. Forexample: studying the behavior of 
ertain fa
e number relations along a shelling pro
essof the polytope. See for example [Ba80, BlBl90℄. Can these arguments be automated (andthus systemati
ally extended) too?Blind and Blind [BlBl90℄ proved that every d-polytope with no triangular 2-fa
es must
ontain at least as many k-fa
es as the d-dimensional 
ube. This is a type of theorem that
ould have been derived using FLAGTOOL but it does not follow from the known 
agnumber inequalities. The proof of Blind and Blind 
ontains further ingredients.Challenge 5.3 Automate (and extend) the theorem of Blind and Blind.Challenge 5.4 Automate (and extend) the proofs of [BBMM90℄.Seymour's arguments [Sey82℄ in 
onne
tion with the points-lines-planes 
onje
ture havesome similar 
avor to the arguments used here.Challenge 5.5 Automate (and extend) Seymour's theorems.20



6 Con
lusionFLAGTOOL 
an serve as a useful tool for proving theorems 
on
erning the 
ombinatorialstru
ture of polytopes of dimension d � 10 and for testing and making 
onje
tures forarbitrary polytopes. At present the proofs obtained from FLAGTOOL do not seem to givemu
h insight (to humans) about the theorems and, in parti
ular, do not supply a re
ipefor extensions to higher dimensions.7 AppendixFLAGTOOL is a 
omputer program implementing the ideas des
ribed in this paper; seealso [Mei94℄. The 
ode may be obtained from the se
ond author on request.7.1 Des
ription of the available toolsAfter starting FLAGTOOL, a menu whose topi
s 
orrespond to the available tools appearson the s
reen. After exe
uting a tool the program returns to the menu. Most of the toolsare simple I/O-programs, i. e. they transfer data from or to a �le or s
reen. Other toolslike (5), (8), (13) and (18) require nontrivial data stru
tures and algorithms. Here is a
omplete enumeration of the available tools.(1) DIMENSIONThis simple tool is used to 
hange the 
urrent working dimension d and provides thenew basi
 input for d. FLAGTOOL a

epts values from dimension 3 up to dimension10 (this 
an easily be raised to higher dimensions).(2) GMAXThis 
hanges the use of the g-numbers. The maximum possible value depends on the
urrent working dimension. If this value is less than three, i. e. only g0, g1 and g2 areused in 
onvolutions, results hold for all polytopes, not only for rational polytopes(see se
tion 1.6).(3) ADDThis tool is used for adding a new inequality for proper fa
es or quotients of d-polytopes to the system (maybe the negation of a 
onje
tured inequality) and forspe
ifying the dimension of this inequality and the intervals in whi
h this inequalityappears.(4) DELETEDelete is used for removing added inequalities (with ADD) and spe
i�ed intervals.(5) MAKEThis tool 
omputes a system A of linear inequalities by 
onvolution of the g-inequa-lities and the added inequalities in spe
i�ed intervals. Every inequality is expressed21



in terms of spe
ial 
ag numbers. See se
tion 4.4 of [Mei94℄ for data stru
tures andalgorithms.(6) INADDThis adds a new inequality in the present working dimension to a 
urrent system Aof linear inequalities, whi
h was 
reated by the MAKE-tool by 
onvolutions of theg-numbers and added inequalities in spe
i�ed intervals and 
hanged by tool (6), (7),(8) or (9).(7) INDELThis serves for deleting an inequality from a 
urrent system A of linear inequalities.(8) ELIMThis tool eliminates a spe
ial 
ag number from the 
urrent system A of linear in-equalities.(9) DSELIMThis eliminates a spe
ial 
ag number from the 
urrent system A of linear inequalitiesusing only Generalized Dehn Sommerville Equations.(10) MPSThis tool 
reates an mps-�le (LP input format) whi
h 
orresponds either to the
urrent system of linear inequalities (an obje
tive fun
tion in terms of spe
ial 
agnumbers 
an be spe
i�ed) or to the dual problem.(11) SAVEA 
urrent system of linear inequalities is saved on a �le.(12) FETCHThis reads a system of linear inequalities from a �le 
reated by the SAVE-tool.(13) DISPLAYThis tool is used for displaying the 
urrent input or more information about 
agnumbers. The following options are available.(a) STATUSDisplay the 
urrent input of FLAGTOOL (working dimension, use of the g-numbers and added inequalities).(b) SYSTEMDisplay the 
urrent system A of inequalities.(
) G-NUMDisplay the g-numbers and their duals up to the present working dimension.(
) DEHNDisplay the expression of the 
ag numbers by the spe
ial 
ag numbers as asolution of the Generalized Dehn Sommerville Equations.22



(14) READThis reads input for FLAGTOOL from a �le.(15) WRITEThis writes the 
urrent FLAGTOOL input to a �le.(16) SOLVEThis tool is available only if FLAGTOOL is linked with the linear programmingsolver CPLEXTM 1. It 
omputes the obje
tive fun
tion value, if it is spe
i�ed, orsimply tests the infeasibility of an mps-�le 
reated by FLAGTOOL.(17) REDThis tool removes redundant inequalities from a given system A of linear inequalitiesprodu
ed, for example, by the ELIM-tool. Only if FLAGTOOL is linked with theLP-solver CPLEXTM RED-tool is available.(18) CDThis tool 
omputes the 
oeÆ
ients in the 
d index (see se
tion 1.10) for the presentworking dimension in terms of spe
ial 
ag numbers.(19) DUALFor a 
urrent system of linear inequalities the system of the 
orresponding dualinequalities is 
omputed.(19) HELPThis provides the user with online information about the program, the tools and theinterpretation of the output.7.2 Working with FLAGTOOLA short demonstration into how FLAGTOOL works is given by explaining a typi
alFLAGTOOL-session that proves Kalai's result about the existen
e of small 2-fa
es in d-polytopes (d � 5).FLAGTOOL starts with the following menu. Note, that the following 
onventions areused to distinguish 
omputer output from user input. All output produ
ed by the 
omputerwill appear in typewriter-like font. Text entered by the user will appear in itali
 font.Wel
ome to FLAGTOOL!Here is a list of available 
ommands.Type 'help' followed by a 
ommand name for moreinformation on 
ommands, for example 'helpadd'.1CPLEXTM is a registered trademark of CPLEX OPTIMIZATION INC.23



(dim)ension set or 
hange the working dimension(gm)ax set or 
hange the use of the $g$-numbers(ad)d add an inequality for proper fa
es or quotients(de)lete delete one or more added inequalities(ma)ke 
ompute a system of inequalities by 
onvolution(ina)dd add an inequality to a 
urrent system(ind)el delete inequalities from a 
urrent system(el)im eliminate a flag from a 
urrent system(ds)elim eliminate a flag by using Dehn Sommerville(mp)s 
reate an mps-file(sa)ve write a 
urrent system to a file(fe)t
h get a 
urrent system from a file(dis)play display the input, the 
urrent system ormore information about flag numbers(re)ad read input from a file(wr)ite write input to a file(so)lve solve an mps-file with CPLEX(red)undant remove redundan
y from a 
urrent system(
d)index 
ompute the 
oeffi
ients in the 
d index(du)al 
ompute the dual system of inequalities(
om)mands list the FLAGTOOL 
ommands(qu)it leave FLAGTOOLCommands may be exe
uted by entering the 
ommand name (orat least the letters in the bra
ket) and FLAGTOOL willprompt you for additional required information.First we have to set the working dimension and the use of the g-numbers. Note thatg2 is needed for the proof, i. e. FLAGTOOL 
annot prove Kalai's theorem only with g1.FLAGTOOL> dimPresent value for the working dimension: 3New value for the working dimension: 5Okay, new value for the working dimension: 5FLAGTOOL> gmPresent value for the use of the g-numbers: 1New value for the use of the g-numbers: 2New value for the use of the g-numbers: 2In order to prove that every 5-polytope has a 2-fa
e with less than 5 verti
es we haveto add the inequality f 20 � 5 � 0 to the bottom interval [�1; 2℄ ('add' 
ommand), 
onvolvethis inequality with the numbers gki and gik (0 � k � 5; 0 � i � bk=2
) ('make' 
ommand),24




reate an mps-�le ('mps' 
ommand) and solve the 
orresponding linear program ('solve'
ommand).FLAGTOOL> addThere are 0 added inequalities.Enter the dimension of the new inequality: 2Enter the new inequality: f0-5Enter the interval(s) in whi
h it appears: [-1,2℄Inequality added!FLAGTOOL> makeNote, that you have added inequalities for properfa
es or quotients!Flagtool 
omputes a system of inequalities, please wait ...Current system A with 15 inequalities 
reated!FLAGTOOL> mpsEnter '1' (dual) or '0' (primal): 0Enter '1' (min) or '0' (max): 1Enter the obje
tive fun
tion: 0Enter a name for the new mps-file : kalai5.mpsFile kalai5.mps 
reated!FLAGTOOL> solveEnter the name for the mps-file : kalai5.mpsproblem is infeasible!Before the session ends we have a look at the 
urrent system of linear inequalities byusing the `(dis)play' 
ommand.FLAGTOOL> disDisplay options :(sta)tus display the 
urrent input(sys)tem display the 
urrrent system of inequalitiesand their meanings(g_n)um display the g-numbers up to the presentworking dimension(deh)n display the Dehn Sommerville Equationsfor the spe
ified working-dimension25



Display what: sysWorking dimension: 51 -6f1-f13+3f02 = (G_0_1)*(G_1_2)*(G_0_0)2 -10+5f0+5f2-5f3-f02+f03-3f1 = (G_1_4)*(G_0_0)3 -10+5f0-5f1+5f2-3f3 = (G^_1_4)*(G_0_0)4 20-10f0-10f2-f03+4f3+4f1+3f02 = (G_2_4)*(G_0_0)5 2f13-3f03 = (G_0_0)*(G_1_2)*(G_0_1)6 2f3-f03+f13-3f2 = (G_0_2)*(G_1_2)7 f02-3f2 = (G_1_2)*(G_0_2)8 -6f3+3f03-f13-3f02+9f2 = (G_1_2)*(G_1_2)9 f02-5f2 = (-5+f0)*(G_0_2)10 -10f3+5f03-3f13-3f02+15f2 = (-5+f0)*(G_1_2)11 2f1-5f0 = (G_0_0)*(G_1_4)12 -f02+f03+2f1-5f0 = (G_0_0)*(G^_1_4)13 -8f1+2f13+f02-3f03+10f0 = (G_0_0)*(G_2_4)14 -6+f0 = (G_1_5)15 -f0+f1-f2+f3-4 = (G^_1_5)FLAGTOOL> quitThe infeasibility of the system of 15 inequalities and thus the 
orre
tness of the theorem
an be proved by hand. Consider the six nonnegative 5-forms 1, 5, 9, 10, 13 and 15. Thefollowing nonnegative 
ombination of these six inequalities results in an inequality whi
his stri
tly less than zero and therefore the infeasibility is proved.(�6f1 � f13 + 3f02)+ 4 � (2f13 � 3f03)+ 8 � (f02 � 5f2)+ 3 � (�10f3 + 5f03 � 3f13 � 3f02 + 15f2)+ (�8f1 + 2f13 � 3f03 + f02 + 10f0)+ 10 � (�f0 + f1 � f2 + f3 � 4)= �20f0 � 5f1 � 4f2 � 40 < 07.3 Known 
ag number inequalities for d-polytopes, d � 6We des
ribe now (nonredundant) d-forms (linear 
ombinations of 
ag numbers of d-poly-topes) whi
h are known to be nonnegative, for d = 3; 4; 5; 6.
26



Dimension 3 1 g21 � g00 = �6 + 3f0 � f12 g00 � g21 = 2f1 � 3f0Dimension 4 1 g00 � g21 � g00 = �6f0 � f02 + 6f12 g21 � g10 = f02 � 3f23 g10 � g21 = f02 � 3f14 g41 = �5 + f05 g14 = f0 � f1 + f2 � 56 g42 = 10� 4f0 + f02 � 3f2 + f1Dimension 5 1 g10 � g21 � g00 = �6f1 � f13 + 3f022 g41 � g00 = �10 + 5f0 + 5f2 � 5f3 � f02 + f03 � 3f13 g14 � g00 = �10 + 5f0 � 5f1 + 5f2 � 3f34 g42 � g00 = 20� 10f0 � 10f2 � f03 + 4f3 + 4f1 + 3f025 g00 � g21 � g10 = 2f13 � 3f036 g20 � g21 = 2f3 � f03 + f13 � 3f27 g21 � g20 = f02 � 3f28 g21 � g21 = �6f3 + 3f03 � f13 � 3f02 + 9f29 g00 � g41 = 2f1 � 5f010 g00 � g14 = �f02 + f03 + 2f1 � 5f011 g00 � g42 = �8f1 + 2f13 + f02 � 3f03 + 10f012 g51 = �6 + f013 g15 = �f0 + f1 � f2 + f3 � 4Dimension 61 g20 � g21 � g00 = �6f2 � f24 + 3f13 � 3f03 + 6f32 g21 � g21 � g00 = �6f02 � f024 + 18f2 + 3f24 � 3f13 + 9f03 � 18f33 g00 � g41 � g00 = �2f13 + 2f14 � 10f0 � 3f02 + 5f03 � 5f04 + 10f14 g00 � g14 � g00 = �10f0 � 5f02 + 5f03 � 3f04 + 10f127



5 g00 � g42 � g00 = 6f13 � 2f14 + 20f0 + 4f02 � 10f03 + 4f04 � 20f16 g51 � g00 = �6f2 + 6f3 � 6f4 � 4f0 + f02 � f03 + f04 + 4f17 g15 � g00 = �6f0 + 6f1 � 6f2 + 6f3 � 4f48 g10 � g21 � g10 = f024 � 3f149 g41 � g10 = f04 � 5f410 g14 � g10 = f04 � f14 + f24 � 5f411 g42 � g10 = f14 � 3f24 + f024 � 4f04 + 10f412 g21 � g00 � g21 = 2f024 + 18f3 � 9f03 + 3f13 � 6f2413 g00 � g21 � g20 = 2f13 � 3f0314 g00 � g21 � g21 = �6f13 � 6f04 � f024 + 6f14 + 9f0315 g30 � g21 = f04 � f14 + f24 � 3f316 g21 � g30 = f02 � 3f217 g10 � g41 = f02 � 5f118 g10 � g14 = �f13 + f14 + f02 � 5f119 g10 � g42 = �4f02 + f024 + f13 � 3f14 + 10f120 g00 � g51 = 2f1 � 6f021 g00 � g15 = f02 � f03 + f04 � 2f1 � 4f022 g61 = �7 + f023 g16 = f0 � f1 + f2 � f3 + f4 � 724 g62 = 21� 6f0 + f02 � 3f2 + f125 g26 = f24 � f14 + f04 � 6f0 + 6f1 � 6f2 + 21 + 3f3 � 5f426 g63 = �35 + 15f0 � 4f02 � 5f1 + f14 � 3f24 + f024 � 4f04 + 10f4+f03 � 4f3 + 13f2 (nonnegativity is known only for rational polytopes)27 Added = f2 � 35 (see Se
tion 1:9)28 Added = f3 � 35
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