
The In
uen
e of Variables on Boolean Fun
tions(extended abstra
t)Je� Kahn� Gil Kalaiy Nathan Linialz
1 Introdu
tionThis paper applies methods from harmoni
 analysis to prove some general theorems on booleanfun
tions. The result that is easiest to des
ribe says that \Boolean fun
tions always have smalldominant sets of variables." The exa
t de�nitions will be given shortly, but let us be morespe
i�
: Let f be an n�variable boolean fun
tion taking the value zero for half of the 2nvariable assignments. Then there is a set of o(n) variables su
h that almost surely the value off is undetermined as long as these variables are not assigned values. This proves some of the
onje
tures made in [BL℄.These new 
onne
tions with harmoni
 analysis are very promising. Besides the results onboolean fun
tions they enable us to prove new theorems on the rapid mixing of the randomwalk on the 
ube, as well as new theorems in the extremal theory of �nite sets.We begin by reviewing some de�nitions from [BL℄. Let f be a boolean fun
tion on n vari-ables, and let S be some set of variables. The in
uen
e of S over f, denoted by If (S) isde�ned as follows. Assign values to the variables not in S at random, that is, variables areset independently of ea
h other and the probability of a zero assignment is one half. Thispartial assignment may already suÆ
e to set the value of f . The probability that f remainsundetermined is de�ned as the in
uen
e of S over f .For 
on
reteness let us temporarily restri
t ourselves to fun
tions f for whi
h Pr(f = 0) =1=2. (The probability spa
e 
onsists of all binary n�strings with uniform distribution.) It wasobserved in [BL℄ that the average in
uen
e of a single variable over f is at least 1=n. This is a
onsequen
e of a standard fa
t in 
ombinatori
s, the edge isoperimetri
 inequality for the 
ube.(e.g. [Bo, Theorem 16.2℄). One also noti
es that for the fun
tion f(x1; :::; xn) = x1 the in
uen
eof x1 is one while all the other xi have zero in
uen
e. So in this 
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small as 1=n. However in all the examples that were examined in that paper there was at leastone variable whose in
uen
e was as big as 
(log n=n). In fa
t, Ben-Or and Linial 
onstru
ta fun
tion f for whi
h ea
h variable has in
uen
e �(log n=n). This prompted the 
onje
turethat for every f with Pr(f = 0) = 1=2 there is a variable whose in
uen
e is 
(log n=n). This
onje
ture is proved in the present arti
le. Moreover we show that the sum of squares of theindividual in
uen
es is 
(log2 n=n).What 
an be said about the in
uen
e of larger sets of variables? We should �rst point outthat in dealing with the in
uen
e of a set of variables there are several di�erent quantities tobe 
onsidered. We have already en
ountered one of them, viz., If (S). Besides this, there isthe in
uen
e of S towards zero whi
h we now de�ne, and the in
uen
e towards one, whi
h isde�ned analogously. Let p := Pr(f = 0). Assign values to the variables outside S at random,and denote by p0 the probability that given the values assigned to the variables not in S; it ispossible to assign values to the variables in S so as to make f equal to zero. The di�eren
e p0�pis de�ned to be I0f (S); the in
uen
e of S toward zero. The question then arises of the existen
eof small sets of variables with large in
uen
e, where the meaning of the question depends, of
ourse, on the notion of in
uen
e intended. It is worth mentioning (and easy to 
he
k) that forall f and S : If (S) = I0f (S) + I1f (S):In the 
ase we are most interested in, when Pr(f = 0) = 1=2, it is 
lear that in
uen
etowards either zero or one 
annot ex
eed 1=2. We look for sets whi
h get 
lose to this bound.Now in the above mentioned 
onstru
tion from [BL℄ a set of variables whose in
uen
e towardszero is 12 � o(1) must have 
ardinality 
(n= log n). This was 
onje
tured (ibid.) to be bestpossible. We prove a slightly weaker result showing that there always is a set of O(n!(n)= log n)variables whose in
uen
e towards zero is 12 � o(1), where !(n) is any fun
tion whi
h tends toin�nity with n: Clearly the same holds with zero repla
ed by one. Let us mention the following
losely related problem: There is a 
onstru
tion (again from [BL℄) of a fun
tion f where setsof o(n�) variables have o(1) in
uen
e both towards zero and towards one, � = log 2= log 3 =0:63 : : :. It may well be that there is a 
onstant � < 1 su
h that there is always a set of O(n�)variables where at least one of I0f (S); I1f (S) is 12 � o(1): We are unable to settle this question atthe time of writing.Let us also remark that our results extend beyond the 
ase where Pr(f = 0) = 1=2. Wehave stated all of our results in this 
ase, sin
e it is the most interesting one for 
omputers
ien
e appli
ations and to avoid more te
hni
al statements.A word is in order now about our methods. We use ideas from harmoni
 analysis. This 
ir
leof problems turns out to be best viewed in terms of the Fourier analysis of the n�dimensional
ube, thought of as the abelian group Zn2 : We assume familiarity with the most basi
 fa
tsof harmoni
 analysis whi
h 
an be found in essentially any text in the area. (For exampleDym and M
Kean [DM℄ is an ex
ellent introdu
tion to the subje
t whi
h 
ontains numerousinteresting appli
ations.) We need only the most basi
 notions of this theory viz., 
hara
ters,dual group, and Fourier transform. The only fa
t we use is Parseval's identity. The harmoni
analysis of Zn2 ; will be reviewed as needed. We make substantial use of Be
kner's [B℄ elegantinequalities in (
lassi
al) Fourier analysis. 2



Our method enables us to prove new results on the rapid mixing of the random walk onthe 
ube. While many of the properties of this walk are well studied and the speed at whi
h it
onverges to the (uniform) limit distribution is known, not so mu
h is known if we start from adistribution whi
h is not 
on
entrated at one point. In parti
ular what if the initial distributionis uniform on a set of verti
es of a given size? We are able to give estimates for this problemwhi
h turn out to be asymptoti
ally 
orre
t for a large range of sizes. However, the problem ingeneral is still far from solved.Although it is tempting to 
onje
ture that in worst (=slowest) 
ase the initial distribution issupported on some simple set su
h as a Hamming ball or a sub
ube su
h an exa
t result seemswell beyond the rea
h of present methods. In fa
t, the present analyti
 methods seem, for themost part, ill-suited to exa
t results, while 
ombinatorial te
hniques whi
h have proved quitepowerful for extremal problems with more obvious 
andidates for extrema have to date beensurprisingly ine�e
tive for problems of the type we are 
onsidering. There are many naturalproblems in this area for whi
h exa
t determination of extrema seems unlikely, and it maybe that the 
orre
t approa
h to some of these involves blending 
ombinatorial and analyti
methods.There is a 
lose 
onne
tion between the problems we mentioned on in
uen
e and someaspe
ts of the following very general question: Let F be a family of m binary n�ve
tors. What
an be said about the distribution of Hamming distan
es between the ve
tors in F ? At thislevel of generality this question is 
ompletely hopeless. In parti
ular it 
ontains all of the theoryof error 
orre
ting 
odes. On the other hand, many spe
ial 
ases of this problem whi
h may betra
table are very far from being understood. Our methods allow us to derive some new resultson the following, narrower 
lass of problems: How densely pa
ked may F be? For example:given n, jF j and an integer b � n, what is the largest possible number of pairs of ve
tors in Fwhose Hamming distan
e is at most b ?For b = 1 this is answered by the edge isoperimetri
 inequality for the 
ube, mentionedbefore. The answer is basi
ally that sub
ubes of the 
ube are the best families. Already forb = 2 this is not true. There seems to be a more 
ompli
ated dependen
y on the relationshipbetween jF j and n. Our methods allow us to get estimates for this "dense pa
king" problem,whi
h in 
ertain 
ases are exa
t, and in other ranges 
an be shown to be fairly tight.It is interesting to 
ompare the out
omes of this method with what 
an be a
hieved usingeigenvalues. Many of the questions addressed in this paper 
an be formulated as dealing withthe expansion fa
tors of various graphs. It is often possible to derive some estimates for theexpansion fa
tor from eigenvalues. However, this method is known to break down 
ompletelywhen applied to small sets of verti
es. Our method su

eeds in getting nontrivial estimatesin some 
ases where the eigenvalue method fails. If this phenomenon 
an be extended toother graphs as well there 
ould be extremely interesting 
onsequen
es in theoreti
al 
omputers
ien
e, but we were so far unable to make mu
h further progress in this dire
tion.One more word about the literature: Many of the questions we 
onsider here 
ome from[BL℄, an earlier version of whi
h is [BL'℄. A survey of this area in
luding the 
onne
tion withvarious problems in 
omputer s
ien
e, 
an be found in [BLS℄.3



2 Harmoni
 Analysis of Zn2 and in
uen
es.Assuming some familiarity with basi
 harmoni
 analysis, we 
an explain its 
onne
tion withthe problems on in
uen
e des
ribed above. The group we deal with is Zn2 . As a set this isjust the n�dimensional 
ube Cn and the group stru
ture allows us to make use of the tools ofharmoni
 analysis. We think of the elements in this group in a number of equivalent ways: asgroup elements, as binary ve
tors or as 
hara
teristi
 ve
tors of sets whi
h we also identify withthe sets themselves. All these terminologies will be used throughout. First we need to �nd allthe 
hara
ters. This is well known and easy to 
he
k, so we state this fa
t without proof:Proposition 2.1: Asso
iate with every A � [n℄; a real fun
tion u = uA de�ned on Zn2 by:uA(B) = (�1)jATBj:Then uA is a 
hara
ter for Zn2 and moreover all irredu
ible 
hara
ters of Cn are obtained inthis way.(Here and throughout [n℄ stands for f1; :::; ng.)Note that the isomorphism between Zn2 and its dual is expli
itly given by this proposition.We think of A both as an element of Cn and as the 
hara
ter asso
iated with it. Throughoutthis paper we will deal with fun
tions f de�ned on Cn, typi
ally expanded as PA �AuA. Notethat the �'s are the usual Fourier transform of f and are preferred to the traditional f̂ only fortypographi
 
onvenien
e. We also think of Cn as a probability spa
e with uniform distribution.This allows us to take inner produ
ts of fun
tions on the 
ube:< f; g >:=XA f(A)g(A)2�n:The Fourier 
oeÆ
ients for f are given by:�A =< f; uA >=XB (�1)jATBjf(B):We need the following fa
t from [BL℄ whi
h is an easy 
onsequen
e of the shifting te
hnique ofthe extremal theory of �nite sets (e.g. [F℄):Proposition 2.2: For any boolean fun
tion f there exists a monotone boolean fun
tion g onthe same set of variables su
h that(i)Pr(f = 0) = Pr(g = 0):(ii)8A � [n℄; If (A) � Ig(A):Inequality (ii) holds also for in
uen
es towards zero and one.
4



A 
onsequen
e of this proposition is that there is no loss of generality in assuming that f ismonotone. Now for a monotone f and any variable xi the in
uen
e of xi on f is easily seen tobe given by: 2�nXi62S f(S[fig) � f(S)But this is exa
tly the same as �fig: This fa
t 
reates the link between our problems andharmoni
 analysis. We are looking for bounds on the Fourier 
oeÆ
ients of 
ertain real fun
tionsde�ned on Cn. Our �rst diÆ
ulty is how to exploit the 
ondition that our fun
tions take onlythe values 0; 1, whi
h is not parti
ularly natural from the standpoint of mathemati
al analysis.Roughly, this is a

omplished as follows. Some initial 
ombinatorial manipulations redu
ethe problem to another, similar problem involving fun
tions taking values 0; 1;�1, but havingrelatively small support. In this 
ase it is not so mu
h the pre
ise range of the fun
tions as thefa
t that we have good 
ontrol of their various norms whi
h be
omes useful, and we are able to
omplete the proof using some inequalities of Be
kner [B℄ relating the norms of a fun
tion andthose of its images under 
ertain linear operators.First we prove our main new theorems on boolean fun
tions and then we go on to sket
hsome sample new results on random walks on the 
ube and in the extremal theory of �nite sets.3 Lower bounds on in
uen
es.We begin with a statement of our result on the in
uen
e of single variables. The result isgiven now in its more general form and not only for the 
ase where f is equally often zero andone. This more general form 
an then be applied repeatedly to derive the lower bounds on thein
uen
e of sets of variables. Let us re
all that Cn, the n�dimensional 
ube is equipped withthe uniform probability distribution, so we 
an speak, for example of the probability that f iszero.Theorem 3.1: Let f be a boolean fun
tion on n variables, whi
h equals one with probability pand assume p � 1=2. Then X(If (xi))2 � Cp2 log2 n=nwhere C is an absolute positive 
onstant, (for example C = 1=5 suÆ
es.) Consequently thereexists at least one variable whose in
uen
e is at least Cp logn=n. These bounds are tight ex
eptfor the value of C.Also, X(If (xi)) � p log 1p:This bound is tight.So these are the best lower bounds for the ve
tor of in
uen
es of the individual variables in eu-
lidean (L2) norm, max (L1) norm and sum (L1) norm. The L1 estimate is, of 
ourse, an easy
onsequen
e of the L2 estimate. In fa
t with a little more 
are we 
an get essentially the samebound even for mu
h smaller norms. For example, let p = 1=2; and set � := C log logn= log n;5



and q = (1 + �): Then the Lq-norm of the ve
tor of in
uen
es is 
( (C�1) log nn ) whi
h is parti
u-lar in 
( log nn ) if C-1 is greater than some positive 
onstant. This is very nearly best possible,sin
e for C < 1 the upper bound of (approximately) logC n=n obtained from the half-
ube iso(log n=n): It does seem reasonable to 
onje
ture that for every q the 
orre
t answer is theminimum of log n=n and the value obtained from the half-
ube.The L1 estimate mentioned in the theorem is nothing but a restatement of the edge isoperi-metri
 inequality for the 
ube. It is quoted here only for 
ompleteness' sake. In the 
ase p = 1=2it implies the existen
e of a variable with an in
uen
e of at least 1=n, as noted already in [BL℄.Some improvements on this latter bound were made by Noga Alon [A℄ who, with eigenvaluearguments in
reased the bound to (2 � �)=n; and by B. Chor and M. Gereb [CG℄ who proved(3� �)=n: It is interesting that the three approa
hes (all arrived at independently) have essen-tially the same point of departure (though not all in the same language). To date no boundbetter than the rather trivial 1=n has been obtained by what 
ould be 
onsidered a purely
ombinatorial argument. We should also mention here that for very small p (up to 2�n=2) thebest possible results on the max norm are available. Frankl [Fr℄ solved the problem using theKruskal-Katona Theorem. We do not see how to extend this to larger p: For the more restri
ted
lass of f 0s 
orresponding to interse
ting families of subsets (in the language of game theory,symmetri
 games), an equivalent version of the problem of minimizing the maximum in
uen
ehad been raised earlier (as the �rst 
ase of a more general question) by Daykin and Frankl [DF℄,who also observed the 1=n lower bound.We now turn to the proof.First we de�ne a set of n fun
tions on Cn whose range is f�1; 0; 1g. The i-th of those(1 � i � n) is denoted by f i and is de�ned byf i(T ) := f(T )� f(T � fig)where � stands for symmetri
 di�eren
e, or equivalently in terms of binary ve
tors the mod 2sum whi
h is the same, of 
ourse. The shorthand T � i is used below.Return to the Fourier expansion of f :f =XS �SuS :The expansion of f i is written as: f i =XS �iSuS :To evaluate the �iS we write:�iS =< f i; uS >= 2�nXT f i(T )uS(T ) =2�nX(f(T )� f(T � i))(�1)jSTT j =2�nX f(T )((�1)jSTT j � (�1)jST(T�i)j):6



Now if i 62 S; the expression in the last bra
kets vanishes, and so does �iS . On the otherhand if i 2 S; then the term in the bra
kets be
omes 2(�1)jSTT j and �iS = 2�S :Parseval's Theorem now gives the eu
lidean norm of f i.kf ik22 = 4Xi2S �2S :Now we want to relate this to in
uen
e. Let �i denote the in
uen
e of the i�th variable.From the de�nition it follows that this is the same as the fra
tion of sets S not 
ontaining ifor whi
h f(S) 6= f(SSfig). Whenever this happens both f i(S) and f i(SS i) are in f�1; 1g.Consequently �i = kf ik22. In other words�i = If (xi) = 4Xi2S �2S :Summing this over all 1 � i � n we obtain:X�i = 4X jSj�2SThese equations suggest the following approa
h. Assume for a 
ontradi
tion, that the �iare small. Sin
e X�2S = kfk22 = pis given this 
an only happen if P�2S 
omes mainly from sets S of small 
ardinality. Ourgoal is to show this is impossible. This is a
hieved by proving su
h a result for the fun
tionsf i. The point, to some extent, is that the f i are assumed to have relatively small support,whi
h should prevent their Fourier transforms from being 
on
entrated on very small sets. Theimplementation of this idea is based on some elegant inequalities of Be
kner [B℄ whi
h we nowdes
ribe.As we have already indi
ated, an important feature of Be
kner's method is the use ofestimates for f in various Lp norms. The two point spa
e X 
onsists of the two real numbers�1; 1 and is equipped with the uniform probability distribution. Noti
e that Cn = Xn both assets and as probability spa
es. Consider the linear spa
e of real fun
tions de�ned on X. Everyfun
tion on X is the restri
tion of a linear fun
tion, say, h(x) = a+ bx.Introdu
e the linear operator T1 whi
h maps h(x) into the fun
tion a+ �bx. It may appearmysterious at this time that su
h an operator should be relevant, but this will hopefully be
lari�ed later on. We think of T1 as operating on Lp fun
tions and 
arrying them to L2fun
tions.Lemma 3.2: The operator T1 from Lp to L2 has norm 1, for p = 1 + �2.The se
ond of Be
kner's lemmas deals with the produ
t of operators of the type 
onsideredin the previous lemma.
7



Lemma 3.3: For i = 1; 2 let (Xi; �i) and (Yi; �i) be normed measure spa
es and let Ti be anoperator from Lp(Xi) to Lq(Yi) whi
h is an integral operator de�ned by a kernel, i.e.,Tif(y) = ZX f(x)K(x; y)d�i(x):Now let T be the produ
t of these operators, mapping Lp(X1 �X2) to Lq(Y1 � Y2). If both T1and T2 have norm at most 1, then so does T .This last lemma 
an 
learly be applied also to produ
ts of more than two spa
es. In parti
ular,multiplying the two point spa
e by itself n times we arrive at the spa
e Cn. Let us evaluatethe produ
t T of n 
opies of the one-dimensional operators T1:Sin
e the 
hara
ters on Cn span the spa
e of real fun
tions on Cn it 
learly is enough todetermine their images under T . It is not hard to see that uS is 
arried to �jSjuS . So one ni
efeature of the operator T is that the 
hara
ters of Cn form a 
omplete set of its eigenfun
tionsand moreover we know the 
orresponding eigenvalues.Now we are in a position to (partly) demystify the 
onne
tion between Be
kner's work andour problems. As we explained before, our goal would be rea
hed if we 
ould prove theoremssaying that it is impossible for most of the L2 norm of � to be 
on
entrated on those �S withsmall jSj. In other words we look for upper bounds on sums su
h asXjSj�b�2Sfor some bound b.Unfortunately, sums of this kind are not too 
onvenient to work with. Alternatively, onemay try and look at sums of the form XwS�2S ;where w is an appropriately 
hosen weight fun
tion. Ideally, w should be 1 on sets S of 
ardi-nality at most b and 0 on larger sets. However, even a weight fun
tion whi
h only approximatesthis behavior may enable us to obtain some interesting estimates. For f = P�SuS we knowthat Tf is given by: Tf =X �jSj�SuS :Denoting �2 by Æ we have: kTfk22 =X ÆjSj�2S :This yields an estimate for sums as dis
ussed earlier, with weight fun
tion wS = ÆjSj.The other ni
e feature (for us) of Be
kner's results is that sin
e we are dealing with fun
tionsinto f�1; 0; 1g, it is very easy to 
al
ulate their Lp norms exa
tly.We apply Be
kner's lemmas to our problem and arrive at the following fa
t whi
h is a keyto all that follows. 8



Lemma 3.4 : Let g be a fun
tion from Cn into f�1; 0; 1g (for example the 
hara
teristi
fun
tion of a set). Let t be the probability that g 6= 0 and letg =X�SuSbe the Fourier expansion of g. Then, t 21+Æ �X ÆjSj�2Sfor every 0 � Æ � 1:We apply this Lemma with g = f i. The probability that f i 6= 0 is exa
ly �i, and so� 21+Æi �X ÆjSj(�iS)2:Summing this over 1 � i � n; we haveX� 21+Æi �X ÆjSjjSj�2S :Now ignoring the portion of the sum 
ontributed by the sets S of 
ardinality ex
eeding b (aparameter whi
h we shortly sele
t), we obtain:X� 21+Æi � Æb XjSj�b jSj�2S :We also keep in mind that p =X�2S = �;whi
h 
omes from �; =< f; u; > and the fa
t that u; is identi
ally one. So alsoX� 21+Æi � Æb(XjSj�b�2S � p2):At the same time, sin
e X�i = 4X jSj�2Swe also have X�i � b XjSj>b�2S :Now we 
ombine these inequalities to obtain:Æ�bX� 21+Æi + b�1X�i �X�2S � p2(3:4:1) = p� p2 � p=2:Denote P�2i by �2=n where we assume(3:4:2) � < p log n40 :9



>From Cau
hy{S
hwartz we have: X�i < �:Sin
e 21+Æ < 2 we 
an use the monotoni
ity of r�th power averages (e.g. [HLP p. 26℄) toestimate: X� 21+Æi � � 21+Æn� 1�Æ1+Æ :Choose b to be 4�=p. The se
ond term in (3.4.1) 
annot ex
eed p=4 and so we remain with:Æ� 4�p � 21+Æn� 1�Æ1+Æ � p4 :It is now a routine matter to 
he
k that for Æ = 1=2; � as in (3.4.2), any p � 1=2 and for largeenough n, this inequality fails. This 
ontradi
tion proves our theorem.By repeated use of this theorem we arrive at the existen
e of a small set of variables whi
hdominates the fun
tion f .Corollary 3.5: Let f be a boolean fun
tion on n variables, let p = �(1) be the probabilitythat f = 1 and let ! = !(n) be any fun
tion tending to in�nity with n: Then there is a set ofnlog n!(n) = o(n) variables S whose in
uen
e towards one is p�o(1): This bound is tight, ex
eptfor the ! term.4 Consequen
es for random walk on the 
ube.The present method provides new information on the speed of 
onvergen
e of random walkson the 
ube. We just give some indi
ation of what we 
an say in this vein, leaving details andmore 
omprehensive statements to the full paper. For simpli
ity (mainly to ensure ergodi
ity)we 
onsider walks whi
h on a given step move to any of the n neighbors of the 
urrent vertexv with probability 1=2n and otherwise remain at v. Write f (t) for the distribution after t stepsof su
h a walk with initial distribution f = f (0); and U for the limiting (uniform) distribution.We will be interested in 
onvergen
e in the sense of L2; rather than the more usual L1: Thatis, we would like to know how slowly kf (t) �Uk2 
an tend to zero given various restri
tions onthe initial distribution f = f (0): (Of 
ourse, kf �Uk22 = kfk22� 2�2n; and we often �nd it more
onvenient to deal with kfk22:)When f = fF is the uniform distribution on some F � Cn; this question is very 
lose tothe 
onsiderations of se
tion 3. For example, if the Fourier 
oeÆ
ients of 1F are �S ; then it iseasily seen that kf (t)k22 = jF j�2X(1� jSjn )2t�2S ;implying XjSj�k�2S � (1� k=n)�2tjF j2kf (t)k22:Thus upper bounds on kf (t)k2 give upper bounds on \initial segments" of P�2S as neededearlier. This, in fa
t, was our starting point, though as it turned out the results on randomwalks were eventually obtained only through the above atta
k on the Fourier 
oeÆ
ients.10



The most natural problem for su
h "semiuniform" distributions fF is to estimate how slowlya fun
tion t = t(n;m) 
an grow if it satis�es(4:1) kf (t)F k2 = (1 + o(1))2�nfor every m�subset F of Cn: Intuitively, this 
onvergen
e should be slower the more 
on
en-trated F is, and it is natural to expe
t the worst F (for given m) to be something like a ball orsub
ube. For example, letting B(n;m) (resp. C(n;m)) denote the �rst m binary n�ve
tors inthe lexi
ographi
 (resp. reverse lexi
ographi
) order (i.e., identifying a set with its 
hara
teristi
ve
tor, S <L T if jSj < jT j or [jSj = jT j and max(S � T ) 2 T ℄; while S <RL T if jSj < jT j or[jSj = jT j and min(S � T ) 2 S℄); we haveTheorem 4.1: Suppose m = m(n) is at least 2n�d; with d = o((n= log n)1=2); and let g = g(0)be the uniform distribution on C(n;m): Suppose further that t = t(m) is su
h thatkg(t)k2 = (1 + o(1))2�n:Then the same is true with g repla
ed by fF for any F of size m; and in fa
t for any su
h F;f (t)F � 2�ng(t) � 2�n < (1 + o(1)) ln 4:Remark 4.2: Theorem 4.1 holds for any initial f satisfying kfk2 � (m=2n)1=2 (i.e. the L2-normof fF when jF j = m):Remark 4.3: For m as in the Theorem, the 
ondition on t amounts to t = [(1 + �)=2℄n ln dwith � = !( 1log d ):Again 
onsidering f = fF we have the following natural interpretation for kf (t)k22: Denoteby 	s(F ) the probability that a walk starting from a randomly (uniformly) 
hosen point of Fis again in F after the s�th step.Proposition 4.4: For F and f as above,kf (t)k22 = 	2t(F )=(2njF j):Given n;m and s, one may ask for (but surely not re
eive) the maximum of 	s(F ) as F rangesover m�subsets F of Cn: More realisti
ally, one may hope to give bounds on this maximumwhi
h are of the 
orre
t order of magnitude. (Note that these questions are more general thanthat of the rate of growth of t for (4.1).) As above, one expe
ts that balls and sub
ubes (theusual suspe
ts) should 
ome 
lose to maximizing 	s: For example, it might be true that forevery F of size m 	s(F ) = O(maxf	s(B(n;m));	s(C(n;m))g):We 
an in fa
t show this for various ranges of the parameters (some of whi
h, for example, willbe evident from Theorem 4.3), but are apparently far from showing it in general. Although itis probably too mu
h to expe
t that one of these two values always is the maximum, this is atleast true at the outset: 11



Proposition 4.5: For s = 1; 2 and for every n and mmaxf	s(F ) : jF j = m;F � Cng = 	s(C(n;m)):(For s = 1 this is essentially the edge-isoperimetri
 inequality. For s = 2 it is a little harder,but still elementary.) It is not true that C(n;m) is best for all s: (It's instru
tive to 
onsider,for instan
e, the 
omparison between B(n; n+1) and C(n; n+1) as s grows.) What does seempossible (though for now this is little more than a guess) is that for a given n and m; C(n;m) is(roughly?) optimal for s up to a 
ertain point, after whi
h something like B(n;m) takes over.5 Distribution of Hamming distan
esA fundamental problem in Dis
rete Mathemati
s is: Given a family of binary n�ve
tors F ofa given 
ardinality, what 
an be said about the distribution of Hamming distan
es betweenpairs of ve
tors in F ? In su
h generality the question is, of 
ourse, quite hopeless (The wholetheory of error 
orre
ting 
odes revolves around the more limited question of how large 
an theminimum distan
e be made.) Still, one may fruitfully study portions of the problem.The observation whi
h 
onne
ts this problem with harmoni
 analysis is that if f = 1F ; the
hara
teristi
 fun
tion of the family F , then the distribution of distan
es in F 
an be easilydetermined from f � f , the 
onvolution of f with itself. Letting g := f � f , the frequen
y withwhi
h the ve
tor S appears as the mod 2 sum of pairs of ve
tors in F is given by g(S). (Theinformation en
oded in the 
onvolution g; is of 
ourse far more detailed then the distributionof distan
es.) This is a good point of view for a number of results in error 
orre
ting 
odes (see[MS℄, the standard text in this �eld), for instan
e Ma
Willams' formula for weight distributionsof dual 
odes, or the inequalities underlying the Linear Programming bound. This issue will beelaborated on in the later version of this arti
le.We denote by dj = dj(F ), the number of ordered pairs of ve
tors (=sets) in F whoseHamming distan
e (=size of their symmetri
 di�eren
e) equals j. As we mentioned above thisis the same as the sum of g(S) over all sets S of 
ardinality j. We also de�ne �dj as the numberof ordered pairs X 2 F; Y 62 F whose distan
e is j; and set d�b :=Pj�b dj ; and �d�b =Pj�b �dj :Obviously, dj(F ) + �dj(F ) =  nj!jF j:We are interested in a question whi
h is at the other extreme from that studied in 
odingtheory, namely we want to understand how densely pa
ked F 
an be. Spe
i�
ally, given thedimension n; the 
ardinality m = jF j and a bound b < n we want to determine (or estimate)D(m;n; b) := max d�b(F );where, again, the maximum is over all families F of m binary n�ve
tors. The 
ase b = 1 isagain 
overed by the edge isoperimetri
 inequality, but even for b = 2 the question is open andan exa
t solution appears to be hard. Parts of this se
tion deal with D while in others we study�D(m;n; b) := min �d�b: This may seem strange, as the exa
t determination of D and �D are12



equivalent questions (sin
e their sum is known.) However, in most ranges of the parameters weonly aim at asymptoti
 results, whi
h are only of interest for the smaller of the two quantities.We give here only a partial a

ount of our results on this problem. It is a problem whi
hfor di�erent ranges of the (three) parameters exhibits di�erent optimal behavior. The resultsdes
ribed here have been 
hosen to 
onvey, a

ording to our 
urrent understanding, some ofthe 
hara
teristi
 behavior of the quantity D(m;n; b):A large portion of the extremal theory of �nite sets is devoted to proving various inequal-ities for whi
h the extreme 
ases are well-de�ned. Most typi
ally one shows the extremity offamilies su
h as 
ubes (e.g. for the edge isoperimetri
 problem), Hamming balls (for the vertexisoperimetri
 problem), Proje
tive Spa
es and various substru
tures of them. This is the 
asewith many of the fundamental theorems in this area, for instan
e the Erd�os{Ko{Rado andKruskal{Katona Theorems. (Good sour
es for this subje
t are [Bo℄ and [Fra℄.) It has oftenproved more diÆ
ult to obtain good estimates in 
ases where there do not appear to be naturalguesses as to extreme 
ases. We 
onsider one of the more appealing aspe
ts of the present workto be the fa
t that we do have some su

ess in this dire
tion.We start with the following easy observations on D(m;n; b) :- For �xed n and b; and m small enough the optimum for D is attained by making F a subsetof a Hamming ball of the least possible radius.- When jF j = 2n�1; the optimum is attained by a sub
ube of dimension n � 1: Uniquenessdepends on the parity of b : for odd b the 
ube is the only optimum, while for even b theset of all ve
tors of even Hamming weight is also optimal.- It 
learly suÆ
es to 
onsider the rangem � 2n�1:We show an upper bound onD = D(m;n; b);whi
h is 
lose to optimal when m is 
lose enough to this upper bound.In other words, for �xed n and b if m is small enough the optimal family is a ball in whi
hno distan
e ex
eeds b. When m is at its maximum 2n�1 the 
ube is the best family, and nearthe upper bound 
ubes are known to be at least 
lose to optimal.Remark 5.1: The near optimality just mentioned is established by 
omparing our lower boundwith the 
orresponding quantity for F a 
ube of the appropriate dimension. The question againarises as to whi
h are the optimal families. It would be very interesting to de
ide whether thereexist extreme families whi
h are essentially di�erent from both 
ubes and Hamming balls. Atthis stage we 
annot even show that the optimal family is always a "weighted majority" family(i.e., the interse
tion of the 
ube and a halfspa
e.) See [HLL℄ for a 
ase where su
h a result is(easily) established in a 
losely related situation. A standard 
ombinatorial argument impliesthat there is no loss of generality in assuming F to be a shifted ideal. (See [F℄ for a survey ofshifting.)The more substantial result of this se
tion is a lower bound for �D when n; b are �xed and mis large enough. This lower bound is shown to be near-optimal by a 
omparison with the 
ase13



where F is a 
ube. This is more interesting than the third of the previously mentioned results,as in this range �D = o(D):Our �rst observation is that a result of Kleitman [K℄ settles the problem for small m = jF j.Proposition 5.2: If m � Xj� b2  nj!then D(m;n; b) =  jF j2 !and F is optimal i� it is 
ontained in a Hamming ball of radius b=2:To pro
eed with our next two results we �rst develop a formula for dk = dk(F ) in terms ofthe Fourier 
oeÆ
ients of f = 1F : Let f =P�SuS ; then:dk(F ) = 2nX�2SPk(jSj)where Pk is the k�th Kraou
huk polynomial, (e.g. [MS℄) given by:Pk(x) =Xj (�1)j xj! n� xk � j!:This formula readily supplies an answer to our problem when jF j = 2n�1: Sum the expressionfor dk over k � b to derive a formula for d�b of the form PwjSj�2S : But PS 6=; �2S equals p� p2(where p = jF j=2n) by Parseval. Given p (and hen
e �;;) the maximum of d�b = Pj�b dj isattained by making all the �S vanish ex
ept when wjSj is maximal. It turns out that wk islargest only for k = 1 if b is odd, and for k = 1; n when b is even.Theorem 5.3: D(2n�1; n; b) = 2n�1Xj�b n� 1j !For odd b this is attained only by the (n� 1)�dimensional 
ube. For even b the same holds alsofor the set of ve
tors of even Hamming weight.The third observation is quanti�ed as:Proposition 5.4: Let p := m=2n: If b log 1p = o(n);then, D(m;n; b) = (1� o(1))mXj�b nj!14



A more interesting result is that in the range 
onsidered in the previous proposition the
ube is within a 
onstant fa
tor away of a lower bound for �D: Following are some remarks onthe proof (whi
h is omitted.) The previous expression for �dj may be summed to yield�d�b =XS �2SQb(jSj):Where Qb(x) is a polynomial of degree b: By analyzing its behavior and employing Lemma 3.4mu
h in the same way it was used to prove Theorem 3.1 we derive�d�b = 
((log 1p) nb� 1!p):Where the 
 expression refers to some spe
i�
 absolute 
onstant, for example 1=2: Even valuesof b turn out to 
reate some extra 
ompli
ation. Standard estimates for F a 
ube prove the
omplementary inequality inTheorem 5.5: Under the assumptions of the previous proposition�D(m;n; b) = �(m( nb!�  logmb !)):The existen
e of densely pa
ked families of sets 
an also be studied using the eigenvaluemethod. Consider the graph whose verti
es are all binary strings of length n where two stringsare adja
ent, if their Hamming distan
e does not ex
eed b. We are studying the edge isoperi-metri
 inequality for this graph. Again the eigenvalues of this graph may be 
omputed usingKraou
huk Polynomials (see [MS℄).While the eigenvalue te
hnique is in some 
ases quite powerful, it yields most of the timeestimates mu
h inferior to those given by the present approa
h. To give just one 
on
reteexample, suppose jF j = 2n=n and b = n(1=2 � 1= log n): (Appearan
es notwithstanding, this
hoi
e is not at all arbitrary: any "de
ent" upper bound on d�b(F ) for su
h values would givethe results on in
uen
e des
ribed earlier.) In this 
ase the trivial upper boundd�b(F ) � jF jXk�b nk!and the a
tual value for a sub
ube, viz. jF jPk�b �log jF jk �; di�er by a fa
tor of about n. Thebound given by the eigenvalue method di�ers from the trivial bound by a fa
tor of about log2 n(this is not "de
ent"), whereas our approa
h gets about half way to the 
ube, beating the trivialbound by a fa
tor of about pn. (We still don't know the answer in this range, but believe thelower bound to be 
lose to, if not equal to, the truth.)6 A
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s. 15
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