
Algebrai
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sHebrew University of Jerusalem, Jerusalem, IsraelDe
ember 30, 2001Abstra
tAlgebrai
 shifting is a 
orresponden
e whi
h asso
iates to a sim-pli
ial 
omplex K another simpli
ial 
omplex �(K) of a spe
ial type.In fa
t, there are two main variants based on symmetri
 algebra andexterior algebra, respe
tively. The 
onstru
tion is algebrai
 and is
losely related to \Gr�obner bases" and spe
i�
ally to \generi
 initialideals" in 
ommutative algebra.Algebrai
 shifting preserves various 
ombinatorial and topologi
alproperties of K while others disappear. For example, �(K) has thesame Betti numbers as K while the ring stru
ture on 
ohomology isdestroyed as �(K) is always a wedge of spheres. One of the important
hallenges is to deepen the relation between algebrai
 shifting and thebasi
 notions and 
onstru
tions of algebrai
 topology. Some importantprogress in this dire
tion was a
hieved by Duval.Algebrai
 shifting also preserves the property that K is Cohen-Ma
aulay. At the forefront of our knowledge in this dire
tion is afar-rea
hing extension of this fa
t a
hieved by Bayer, Charalambousand Popes
u (symmetri
 shifting) and Aramova and Herzog (exteriorshifting). In a di�erent 
ontext extensions to Bu
hsbaum 
omplexeshave been made by S
henzel and by Novik (available only for sym-metri
 shifting). These results apply to triangulations of manifoldsand have interesting 
ombinatorial 
onsequen
es. Among the 
hal-lenges whi
h remain are: To understand algebrai
 shifting of simpli-
ial spheres and simpli
ial manifolds, to �nd relations between shiftingand embeddability and to identify interse
tion homology groups viaalgebrai
 shifting. 1



We will also des
ribe the relation of algebrai
 shifting to frame-work rigidity, the 
onne
tion with the original notion of \
ombina-torial shifting" whi
h goes ba
k to Erd�os, Ko and Rado and somepossible appli
ations to extremal 
ombinatori
s.
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1 Introdu
tion and Ba
kground1.1 Introdu
tionAlgebrai
 shifting is a 
orresponden
e whi
h asso
iates to a simpli
ial 
om-plex K another simpli
ial 
omplex �(K) of a spe
ial type. It was introdu
edin Kalai [55, 58℄ (see also Bj�orner and Kalai [16, 17℄). There are two mainvariants of algebrai
 shifting. The original one was based on exterior algebrawhile a variation based on symmetri
 algebra was 
onsidered in [61℄. The
onstru
tions are algebrai
 and 
losely related to \Gr�obner bases" and spe
if-i
ally to \generi
 initial ideals" in 
ommutative algebra [38℄. �(K) belongsto a spe
ial 
lass of simpli
ial 
omplexes 
alled \shifted 
omplexes" (
loselyrelated to \Borel-�xed ideals").We asso
iate to a simpli
ial 
omplex K the exterior fa
e algebra V(K),and with it the exterior shifting of K denoted by �ext(K). The symmetri
shifting of K denoted by �symm(K) is based on the Stanley-Reisner ringR(K). When the type of shifting is 
lear from the 
ontext or when we aredis
ussing properties that apply to both versions, we omit the supers
riptsext and symm.Algebrai
 shifting preserves various 
ombinatorial and topologi
al prop-erties of K while others disappear. Thus, for example �(K) has the sameBetti numbers as those of K while the ring 
ohomology of �(K) is alwaystrivial as �(K) is always a wedge of spheres. If K has the Cohen-Ma
aulayproperty then so does �(K) and if every two r-fa
es of K have nonemptyinterse
tion then the same is true for �ext(K).The main appli
ation of algebrai
 shifting is the study of fa
e numbersof various 
lasses of simpli
ial 
omplexes. However, in this paper I primarilydis
uss algebrai
 shifting for its own sake. I will also present various openproblems.The basi
 problem is as follows:Problem 1. Find interesting relations between topologi
al and 
ombinatorialproperties of the 
omplex K, 
ommutative-algebrai
 properties of the alge-bras R(K) and V(K) and 
ombinatorial properties of the shifted 
omplexes�symm(K) and �ext(K). Extra
t 
ombinatorial 
onsequen
es.In the �rst part of the paper (Se
tions 2-3) we will dis
uss some basi
properties of algebrai
 shifting and will 
on
entrate on its relation to simpli-
ial homology. We will also brie
y mention the 
onne
tion between frame-work rigidity and (symmetri
) shifting of graphs. The se
ond part (Se
tions5



4-5) des
ribes 
onne
tions to �ner homologi
al properties of simpli
ial 
om-plexes and their links. The Cohen-Ma
aulay property will play a 
entralrole. The third part (Se
tions 6-7) is devoted to 
ombinatorial propertiesand appli
ations and to some extensions and variations.1.2 Comments on the early literatureIn Eisenbud's book [38℄ the reader will �nd a histori
al des
ription and ref-eren
es 
on
erning initial ideals, Gr�obner basis and generi
 initial ideals and,in parti
ular, referen
es to works of Hartshorne (1966), Grauert (1972) andGalligo (1994). Let me mention in parti
ular the seminal works by Bayer andStillman from 1987 (see, for example, [11℄). Green [48℄ is a re
ent in
uentialpaper 
on
erning generi
 initial ideals.Fa
e rings and the appli
ation of 
ommutative algebra to 
ombinatori
swere pioneered by Stanley [71℄ in 1975. For a dis
ussion of 
onne
tions be-tween 
ommutative algebra and 
ombinatori
s see Stanley [76℄, Hibi [52℄ andBurns and Herzog [24℄. I should also mention the important early papers byHo
hester [53℄, in 1972, in whi
h 
ombinatori
s was applied in 
ommutativealgebra, and by Reisner [70℄.Appli
ations of exterior and polynomial algebras in extremal 
ombina-tori
s whi
h were introdu
ed by Lov�asz [65℄ in 1977, are also 
losely relatedto the mathemati
s of this paper.Of 
ourse, algebrai
 shifting is related to the 
lassi
al notion of \
ombi-natorial shifting" due to Erd�os, Ko and Rado [41℄ and later in full generalityby Kleitman (see the survey arti
le by Frankl [44℄). The 
ombinatori
s ofKruskal-Katona and Ma
aulay's theorems are also relevant (see [40℄).1.3 Simpli
ial 
omplexesAn (abstra
t) simpli
ial 
omplex K is a 
olle
tion of �nite sets with theproperty that S 2 K and R � S implies that R 2 K.Let K be a �nite simpli
ial 
omplex. A set S 2 K where jSj = k + 1 is
alled a k-fa
e of K. 0-fa
es of K are 
alled verti
es. Denote by fk(K) thenumber of k-fa
es in K. The ve
tor f(K) = (f�1(K); f0(K); f1(K); : : : ) is
alled the f -ve
tor of K.Simpli
ial 
omplexes are basi
 
ombinatorial obje
ts and also arise ingeometry and topology. A geometri
 realization K of a simpli
ial 
omplex K6



is a 
olle
tion of Eu
lidean simpli
es su
h that for every r-fa
e of K there isan asso
iated r-dimensional simplex S, so that for every S; T 2 KS \ T = S \ T :Given a geometri
 realizationK of K de�ne jKj = [fS : S 2 Kg. As a topo-logi
al spa
e jKj does not depend (up to a homeomorphism) on the spe
i�
geometri
 realization K. A simpli
ial 
omplex K is 
alled a triangulationof a topologi
al spa
e X if jKj is homeomorphi
 to X. Various topologi
alinvariants of X were de�ned and studied via triangulations of X.Let K be a simpli
ial 
omplex and S be a fa
e of K. The link of S in K,denoted by lk(S;K) is de�ned bylk(S;K) = fTnS : T 2 K; S � Tg:The link of the empty set is K itself. Links of non-empty fa
es of K will be
alled proper links.For an ex
ellent des
ription of simpli
ial 
omplexes and simpli
ial homol-ogy the reader is referred to Munkers' book [68℄.1.4 Shifted 
omplexesA 
olle
tion A of k-sets of positive integers (or any ordered set) is shiftedif whenever S 2 A and R is obtained from S by repla
ing an element witha smaller element, then R belongs to A. For example: If f2; 5; 11g 2 Athen f1; 5; 9g must also be in A. We will write S <p T if S 6= T andS 
an be obtained from T by su

essively repla
ing elements with smallerelements. In other words, if S = fs1; s2; : : : ; skg< (the subs
ript < indi
atesthat s1 < s2 < � � � < sk) and T = ft1; tt; : : : ; tkg< then S �p T if si � ti forevery i, 1 � i � k.A simpli
ial 
omplex K whose verti
es are positive integers is shifted ifthe set of r-fa
es of K is shifted for every r. Algebrai
 shifting assigns ashifted simpli
ial 
omplex �(K) to every simpli
ial 
omplex K. �(K) hasthe same f -ve
tor as K.
7



2 The de�nition of algebrai
 shifting, basi
properties and basi
 problems2.1 Exterior shiftingFrom herein k will be a �xed �eld of 
oeÆ
ients. The lexi
ographi
 orderingon �nite k-subsets of N is de�ned by S <L T if and only if min(S�T ) 2 S.(S�T is the symmetri
 di�eren
e between S and T .) In other words, ifS = fs1; s2; : : : ; skg< and T = ft1; tt; : : : ; tkg< then S <L T if for some j,1 � j � k, we have: si = ti for i < j and sj < tj. Thus,f1; 2g <L f1; 3g <L f1; 4g <L � � � <L f2; 3g <L f2; 4g <L � � � <L f3; 4g <L � � �Let K be a 
olle
tion of k-subsets of [n℄ = f1; 2; :::; ng. In this se
tion wewill de�ne the algebrai
 shifting operation K ! �(K) and dis
uss some ofits basi
 properties. For a general set system K denote by Kk the 
olle
tionof k-sets in K, and de�ne �(K) = [�(Ki).Let X = (xij)1�i�n;1�j�n be an n by n matrix. Let X^k be the k-th
ompound matrix of X, i.e, the �nk� by �nk� matrix of k by k minors of X.Assume that the rows and 
olumns of X^k are ordered lexi
ographi
ally.Given a 
olle
tion K of k-subsets of [n℄ with jKj = m, let M(K) be them by �nk� submatrix of X^k whose rows 
orrespond to the k-sets in K. Now
hoose a basis of 
olumns for the 
olumn-spa
e of M(K) in the greedy way:by simply taking those 
olumns whi
h are not spanned by previous 
olumnsin the lexi
ographi
 ordering. De�ne �X(K) as the family of sets whi
h arethe indi
es of the 
hosen 
olumns. �(K) = �X(K) for a generi
 matrix X,i.e., when (xij)1�i;j�n are n2 variables.Remark: We 
an repla
e the lexi
ographi
 order <L in this de�nitionwith any \term order", namely a linear extension of the partial order <p.We will rarely 
onsider other term orders.We now des
ribe two other ways to de�ne algebrai
 shifting. Let E be ann-dimensional ve
tor spa
e over k with a standard basis e= (e1; e2; :::; en).Let Vk E be the k-th exterior produ
t over E and let VE be the entireexterior algebra over E. Let f = (f1; f2; � � � fn) be a basis of E, given byfi =P xijej. Let (fS : S � [n℄) be the 
orresponding basis of VE.An equivalent way to de�ne shifting is as follows: For a subspa
e I ofVk(E) 
onsider the quotient spa
e A = Vk(E)=I. For m 2 Vk(E) let em be8



its image in A. De�ne�X(I) = fS : efS =2 spanf efR : R <L Sgg: (2.1)Starting with a familyK 
onsider I = spanfeS : S =2 Kg and then �X(I)
oin
ides with �X(K) as de�ned above.For a simpli
ial 
omplex K denoteI(K) = spanfeS : S =2 Kgand ^(K) =^E=I(K) (2.2)as above. V(K) is 
alled the exterior algebra of K. It is a graded quotientsalgebra of VE whi
h is the exterior analog of the Stanley-Reisner ring.In order to obtain �(K) one must 
hoose X to be a generi
 matrix. Forthis repla
e k with the �eld of rational fun
tions with n2 variables k(xij; 1 �i; j � n) and let fi =P xijej.Finally, let M be a subspa
e of Vk(K). For ea
h m 2 M express m =PS �SfS, let i(m) = minfS : �S 6= 0g and de�ne �X(M) = fi(m) : m 2Mg. For a 
olle
tion K of k-subsets of n let M(K) = spanfeS : S 2Kg and then �X(K) as de�ned in the previous paragraphs 
oin
ides with�X(M(K)). (Re
all that a Gr�obner basis for M is a set of elements mj inM su
h that i(mj) gives every set in �(M) pre
isely on
e.)The equivalen
e of the de�nitions 
an easily be shown. Note that fS =PXSTeT , where XST is the k by k minor of X with rows and 
olumns
orresponding to the elements of S and T respe
tively. Thus, the se
ondde�nition is a dire
t translation of the �rst to the language of exterior algebra.To see the equivalen
e of the �rst and third de�nitions note that a 
olumn iin a matrix M is linearly dependent on the previous 
olumns if and only ifthere is no linear 
ombination of the rows in M whose �rst nonzero elementis in the i-th pla
e.2.2 Symmetri
 shiftingLet K be a simpli
ial 
omplex and let R(K) be its Stanley-Reisner ring (fa
ering). R(K) = R[x1; x2; : : : ; xn℄=I; (2.3)9



where I is the ideal spanned by monomials xi1 �xi2 � � �xir where fi1; i2; : : : ; irg =2K. Here R will be the �eld of 
oeÆ
ients k.Consider now y1; y2 : : : ; yn whi
h are n generi
 linear 
ombinations ofx1; x2 : : : xn. All monomials in the yi's span the ring R(K) and we will now
onstru
t the basis GIN(K) of monomials in the new variables in a greedyway w.r.t. the lexi
ographi
 order. Thus a monomial m belongs to GIN(K)if and only if its image em in R(K) is not a linear 
ombination of (images of)monomials whi
h are lexi
ographi
ally smaller.Re
all that The lexi
ographi
 order m1 <L m2 is de�ned as follows: Ifthe variable with the smallest index whi
h appears with a di�erent exponentin the two monomials appears with a larger exponent in m1. Thus,y21 <L y1y2 <L y1y3 <L � � � <L y1yn <L y22 <L : : : :GIN(K) is the dire
t analog to the shifting operation des
ribed for theexterior algebra. However the 
ombinatorial information in GIN(K) is re-dundant as a result of the following property: If m is a monomial in GIN(K)of degree i � d then the monomials y1m; y2m; : : : yim belong to GIN(K).The symmetri
 shifting of K denoted by �symm(K) is a simpli
ial 
omplexobtained from GIN(K) as follows:For every monomialm of degree r in GIN(K) whi
h does not involve thevariables y1; : : : yr�1 , write m = yi1 � yi2 � � � yir , where i1 � i2 � � � � � ir, andasso
iate the set S(m) = fi1 � r + 1; i2 � r + 2 : : : ; irg to the monomial m.�symm(K) = [fS(m) : m 2 GIN(K)g: (2.4)Note thatGIN(K) and �symm(K) 
arry pre
isely the same 
ombinatorialinformation. GIN(K) is essentially equivalent to the notion of generi
 initialideal (ex
ept that it is a 
olle
tion of monomials rather than an ideal). Insome 
ases, (e.g. when K is Cohen-Ma
aulay or a manifold) it is easierto explain the 
ombinatorial properties of �symm(K) in terms of GIN(K).However, the translation is straightforward.2.3 Exterior shifting and symmetri
 shiftingProblem 2. 1. What is the relation between the exterior fa
e algebra and theStanley-Reisner ring?2. What is the relation between exterior shifting and symmetri
 shifting?10



Most of the general theorems we 
an prove for one of these operations areeither true or 
onje
tured to be true for the other operation. (Even in 
aseswhere we 
an prove the results for both types of shifting the proofs may bevery di�erent.) The re
ent paper by Eisenbud, Popes
u and Yuzvinsky [39℄is relevant to these questions.A 
ase in whi
h the out
omes of the two operations di�er is K3;3 - the
omplete bipartite graph with two 
olor 
lasses of size three. The symmetri
shifting �symm(K3;3) 
ontains all edges lexi
ographi
ally smaller than f2; 6gwhile �ext(K3;3) 
ontains all edges lexi
ographi
ally smaller than f2; 5g and,in addition, the edge f3; 4g.There is a further explanation of this example: The presen
e of f2; 3gin �(G) is equivalent to the property that the graph 
ontains a 
y
le or, inalgebrai
 terms, to the existen
e of a linear 
ombinationm of the edges whoseboundary vanishes. The boundary operation in question is di�ers for exteriorand symmetri
 shifting. In the 
ase of exterior shifting, the boundary of theedge fi; jg (that 
orresponds to ei^ej) is �jei��iej. In the 
ase of symmetri
shifting, the boundary of the edge fi; jg is (�i� �j)ei + (�j � �i)ej. In both
ases (�1; �2; : : : �n) is a generi
 ve
tor of 
oeÆ
ients.In the 
ase of a single boundary operation these two boundaries are equiv-alent to the usual boundary.The presen
e of f3; 4g is equivalent to the existen
e of a linear 
ombi-nation of edges whi
h simultaneously vanishes for two independent generi
boundary operations. This di�ers in the exterior and symmetri
 
ase. (Inthe symmetri
 
ase this is equivalent to the existen
e of a non-zero stress fora generi
 embedding of the graph in R3 .)Let K1 and K2 be simpli
ial 
omplexes on the vertex set [n℄. We saythat K2 is lexi
ographi
ally smaller than or equal to K1, denoted by K2 �LK1, if for every r > 0 the lexi
ographi
ally �rst r-fa
e in the symmetri
di�eren
e between K1 and K2 belongs to K2. Note that for K = K3;3,�symm(K) is lexi
ographi
ally smaller than �ext(K) as the �rst edge (w.r.t.the lexi
ographi
 order) in their symmetri
 di�eren
e is f2; 6g 2 �symm(K).Problem 3. Is it always the 
ase that �symm(K) �L �ext(K)?We will now mention three properties of exterior shifting whi
h may alsoapply for symmetri
 shifting.Problem 4. Is �symm(K;k) shifted when the 
hara
teristi
 p of the �eld k of
oeÆ
ients is not zero? 11



For exterior shifting, if K itself is shifted then �ext< (K) is shifted withrespe
t to every term order.Problem 5. Let K be a shifted 
omplex. Is �symm< (K) shifted with respe
tto every term order?We will show (in Se
tion 6) that if A � �[n℄k � is interse
ting, namely everytwo sets in A have nonempty interse
tion, then �ext(A) is interse
ting aswell.Problem 6. Let K be an interse
ting family of k-sets. Is �symm(K) alsointerse
ting?Goresky and Ma
Pherson proposed (in a private 
ommuni
ation) thatKoszul duality may shed light on the relation between exterior and symmetri
fa
e rings and the asso
iated shifting operations.2.4 An exampleConsider the boundary 
omplex K of an o
tahedron. If we number theverti
es of the o
tahedron by f1; 2; � � � ; 6g the 2-fa
es are given by 123, 126,135, 234, 156, 246, 345 and 456. (Here, 123 stands for f1; 2; 3g.)K is pure and therefore its 1-skeleton 
onsists of all the edges in
luded inthese triangles. These are all the possible �62� edges ex
ept for 14, 25 and 36.What is �(K)? We will reveal the identity of �(K) step-by-step and wewill use several properties of algebrai
 shifting (written with a spe
ial font)whi
h we are going to dis
uss in various pla
es of this paper.� The algebrai
 shifting of K also 
onsists of 8 triangles. The �rsttwo triangles in the partial order are 123 and 124 whi
h must be in-
luded. Next we have 125 and 134 whi
h are not 
omparable. 125is smaller (w.r.t. <p) than all the other triangles but four 123, 124,134 and 234. Sin
e we must have 8 triangles altogether 125 must bein
luded. (Note that so far we have only used the fa
ts that�(K) is shifted and has the same number of triangles as K.)� The triangle 134 is smaller than all the other triangles ex
ept those ofthe form 12x. The �rst six of these in
lude 127 whi
h 
annot be in�(K) sin
e �(K) is a simpli
ial 
omplex. So 134 2 �(K) as well. Asimilar argument applies to 135. If 135 62 �(K) then �(K) must bein
luded in the simpli
ial 
omplex spanned by the triangles of the form12



12x together with 134 and 234. Again there are not enough triangles ofthis type. (Here we used that �(K) is a simpli
ial 
omplex.)� We will see below (Se
tion 3) that �(K) has the same Betti numbersas K. and that �2(�(K)) is the number of triangles in �(K)whi
h do not 
ontain '1'. Sin
e �2(K) = 1 and 234 is the �rsttriangle not 
ontaining 1 it must be in
luded in �(K), and all othertriangles in �(K) must 
ontain 1. From this we 
an 
on
lude that theshifted 
omplex also 
ontains 126. We would not have enough trianglesif this were not the 
ase. (Alternatively, we 
an use the fa
t that sin
eK is Cohen Ma
aulay, �(K) is pure (see Se
tion 4) and thereforein
ludes a triangle 
ontaining '6' sin
e 126 is the �rst su
h triangle itmust be in
luded in the shifted 
omplex.)� It is left to de
ide whether 136 or 145 is in
luded in �(K).We will see below that sin
e K is Cohen Ma
aulay �(K) is aswell and that this means that �(K) is a pure simpli
ial 
omplex.It is therefore left to de
ide whi
h of the edges 45 or 36 belongs to �(K).The answer is 36. It follows that the triangle 136 is in
luded in �(K).What we need is the following fa
t: If G is a planar graph then�(G) does not 
ontain 45 (equivalently, �(G) does not 
ontaina 
omplete graph on 5 verti
es.)We do not have good 
on
eptual explanation for this last propertyneither 
an we prove higher dimension analogs (see Se
tion 5.2 ). Itis equivalent to the fa
t that when you shift a maximal planar graphG, 36 is in
luded in the shifted graph. For symmetri
 shifting it isequivalent to the fa
t that maximal planar graphs are generi
ally rigidwhen embedded in spa
e (see Se
tion 2.7). (This follows, from theCau
hy-Dehn-Alexandrov rigidity theorem for polyhedra.)To sum, �(K) (for both exterior and symmetri
 shifting) 
onsist of thepure simpli
ial 
omplex whose maximal fa
es are: 123, 124, 125, 126, 134,135, 136 and 234.2.5 Basi
 properties of algebrai
 shiftingWe will now list some basi
 properties of the operation K ! �(K).13



Theorem 2.1. Let A be a family of r-subsets of [n℄.1. jAj = j�(A)j.2. �(A) is shifted (see [16, 60℄).3. If A0 is 
ombinatorially isomorphi
 to A then �(A) = �(A0) (see[16, 60℄).4. If A is a shifted family then �(A) = A [60℄.5. For every nonsingular matrix X; �X(�(A)) = �(A) (this follows from4). It is possible that �(�X(A)) 6= �(A).6. �(A) depends only on the 
hara
teristi
s of k.The following Theorem relates shifting to several operations on familiesof sets.For a family A of k-sets the shadow of A, �(A), is a family of (k� 1)-setsde�ned by �(A) = fR : jRj = k � 1; R � S 2 Ag:De�ne a 
one over A as a family of (k+1)-sets of the form fS[fwg : S 2 Ag,where w =2 S for any S 2 A.Theorem 2.2. Let A be a family of k-subsets of [n℄.6. �(�(A)) � �(�(A)) [55℄.7. If L � A then �(L) � �(A).8. �(Cone(A)) = Cone(�(A)):Properties 1,4,6,7 and 8 hold for �X(K) for every non-singular matrixX. Properties 2 and 3 rely on the generi
ity of X.For 
ertain appli
ations it is enough to assume that X is in a generalposition whi
h means that all minors of the form X[r℄;R are not singular forevery r and R, with jRj = r.Property 5 is intriguing, and it leads to the following question:Problem 7. 1. What 
an be said about a family of shifted 
omplexes whi
h
omprise the set of �X(K) for some �xed simpli
ial 
omplex K (when Xvaries)?2. For whi
h simpli
ial 
omplexes K is it the 
ase that if �X(K) is shiftedthen �X(K) = �(K)?2.6 How to shift?Problem 8. Is there a deterministi
 polynomial algorithm or at least a LasVegas polynomial algorithm for determining �(K)?14



A randomized algorithm is 
alled Monte Carlo when it depends on someinternal randomization and produ
es the right answer with a probabilitylarger then 1 � � but may give a wrong answer otherwise. (By repeatingthe algorithm the probability of failure 
an be redu
ed to whatever level isdesired.) A Las Vegas algorithm is a superior type of randomized algorithmsin
e it never produ
es a wrong answer. It produ
es the right answer withprobability > 1� � but may fail to give any answer with probability < �.There is a simple Monte Carlo algorithm for �nding �(K): Choose theentries of the matrix M at random from a large �eld with the 
orre
t 
har-a
teristi
s. If a non-shifted 
omplex is obtained then this is not the 
orre
tanswer. But it is possible (with low probability) that you will obtain anin
orre
t shifted 
omplex.2.7 Shifting of graphs and framework rigidityConsider a graph G =< V;E > with n verti
es and e edges. An embeddingof G into Rd is a map � : V ! Rd . Assume that V = [n℄ and put xi = �(i).An embedding � is rigid if any perturbation of the embedded verti
eswhi
h preserves all distan
es between adja
ent verti
es is indu
ed by a rigidmotion of Rd . The embedding is in�nitesimally rigid if every assignmentof velo
ity ve
tors vi 2 Rd to the verti
es, whi
h satis�es < vi � vj; xi �xj >= 0 whenever i; j are adja
ent verti
es, must satisfy the same relationfor every two verti
es. The graph G is generi
ally d-rigid if it is rigid foralmost all embeddings in Rd or equivalently if it is in�nitesimally rigid forall embeddings into Rd .G is generi
ally d-rigid if and only if fd; ng 2 �symm(G). No determin-isti
 (or even Las Vegas) polynomial algorithm for determining if a graphis generi
ally d-rigid is known for d > 2. fd; ng 2 �ext(G) is a related butdi�erent property of graphs 
alled \hyper
onne
tivity", [56℄.It is worth mentioning that shifted graphs are 
alled threshold graphsand they have been studied extensively [66℄.2.8 Finer and 
oarser invariantsStart with a simpli
ial 
omplex K and its exterior fa
e algebra VK. (Thefollowing applies to the symmetri
 
ase as well.) For a generi
 n by n matrixwe 
an 
onsider the following invariants of K.1. The ring V(K). 15



2. The symmetri
 matroid M(K) determined by ^(K).3. The ranks of shifted families of sets in the matroid M(K).4. �(K).5. The f -ve
tor of K (or equivalently the Hilbert series of V(K)).We will elaborate on the new items 2 and 3.The symmetri
 matroid M(K) is a matroid de�ned on subsets of [n℄ sothat the rank of a 
olle
tion of subsets S1; S2; : : : Su is the dimension of theve
tor spa
e spanned by efS1 ; efS2; : : : efSu in V(K). This matroid is invariantunder permutations of [n℄. It seems to yield very �ne yet quite intra
tableinformation on K.If we restri
t our attention to the ranks of shifted families of sets inthis matroid we loose some information but are still able to determine theout
ome of shifting with respe
t to any term order. This seems to be moretra
table and yet to 
arry mu
h information on K and its fa
e algebra.2.9 Shifting subspa
es and de
ompositions of G(Vk V;m)The de�nition of algebrai
 shifting 
an be applied to an arbitrary subspa
eof Vk V . Given an m-dimensional subspa
e M of Vk(V ), 
onsider the familyof subsets �X(M). There are two 
ases of parti
ular interest: in one X isthe identity matrix while in the other X is a generi
 matrix. For a ve
torspa
e W let G(V;m) denote the spa
e of m-dimensional subspa
es of W .De�ne two de
ompositionsD and E ofG(Vk V;m) as follows: For a familyF of k�subsets of [n℄ su
h that jFj = m, let UF be the set of m-dimensionalsubspa
es M of Vk V that satisfy �I(M) = F . Let D be the de
ompositionof G(Vk V;m) into the sets UF . The parts of D are indexed by k-uniformhypergraphs with m-edges. For k = 1, D is simply the standard S
hubertde
omposition of G(V;m). More generally, D is the S
hubert de
ompositionof G(Vk V;m) with respe
t to the standard basis feS : S 2 �[n℄k �g ordered bythe lexi
ographi
 ordering on �[n℄k �.Similarly, for a shifted family F � �[n℄k �,jFj = m, let WF be the setof m-dimensional subspa
es M of Vk V su
h that �X(M) = F . E is thede
omposition of G(Vk V;m) into the sets WF . In this 
ase, the parts of Eare indexed by shifted k-uniform hypergraphs with m edges.Note that GL(V ) a
ts on ea
h of the parts of the de
omposition E . Fork = 1, E 
onsists of only one part, i.e. the entire G(V;m). (It 
orresponds to[m℄ the only shifted family of singeltones of sizem.) If a generi
 matrixX 
an16



be found with entries in the �eld k itself (e.g. for the �elds of real or 
omplexnumbers), then E 
an be regarded as the de
omposition of G(Vk V;m) givenby the orbits of the 
ells in D under the a
tion of GL(V ).2.10 How many de
omposable elements are there?Suppose now that V is a ve
tor spa
e over a �eld with q elements and U is anm-dimensional subspa
e of Vk V . Let f(U) be the number of de
omposableelements in U or, in other words, the number of k-dimensional subspa
es Wof V su
h that fW 2 U . (Here, fW is the exterior produ
t of ve
tors in abasis of W .)Problem 9. 1. Show that f(U) does not de
rease under shifting.2. Show that given m, f(U) is a maximum when U is spanned by aninitial set of m basis ve
tors with respe
t to the reverse lexi
ographi
 order.3 Algebrai
 shifting and homology3.1 Simpli
ial homology and 
ohomologyLet K be a simpli
ial 
omplex and let Hk(K) and Hk(K) be respe
tively thek-th (redu
ed) homology group and the k-th (redu
ed) 
ohomology group ofK with 
oeÆ
ients in the �eld k. Hk(K) and Hk(K) are k-ve
tor spa
es ofthe same dimension. This dimension is 
alled the k-th Betti number of Kand is denoted by �k(K). The 
ohomology of K has the following simpleexpression in terms of the exterior fa
e algebra V(K). Let f = e1 + e2 +� � �+ en. De�ne Zk(K) = fx 2 k̂ (K) : f ^ x = 0g; (3.1)Bk(K) = f ^ k�1̂(K) (3.2)and Hk(K) = Zk(K)=Bk(K): (3.3)In other words, Hk(K) is the k-th 
ohomology of the 
hain 
omplexC�(K) = (V(K); Æ), where the 
oboundary Æ is given by Æ(m) = f ^m.
17



3.2 The homotopy type of shifted 
omplexesShifted simpli
ial 
omplexes are homotopi
ally quite simple. They are alwayshomotopi
ally equivalent to a wedge of spheres (possibly of di�erent dimen-sions). It follows that the homology has no torsion and that the 
ohomologyring is trivial. These properties hold for a larger 
lass of simpli
ial 
omplexesthat we will now de�ne.A simpli
ial 
omplex L is a near 
one (with apex '1') if for every S 2 Land i > 1; i 2 S, (Snfig[f1g) 2 L. Near 
ones are homotopi
ally equivalentto wedge of spheres. For a simpli
ial 
omplex L on the vertex set [n℄, de�nebi�1(L) =: jfS 2 L : jSj = i; S [ f1g =2 Lgj: (3.4)Lemma 3.1 ([16℄). Let L be a near 
one. Then:(1) bi(L) = �i(L).(2) L is homotopi
ally equivalent to the wedge of spheres: bi(L) i-dimensionalspheres, i � 0.3.3 Shifting preserves the Betti numberA fundamental property of algebrai
 shifting [16℄ is:Theorem 3.2. �k(K) = �k(�(K)); for every k � 0: (3.5)The proof of Theorem 3.2 given in Bj�orner and Kalai [16℄ 
onsists of a
ombinatorial way to read �k(K) from �(K):�i(K) = bi(�(K)): (3.6)The assertion of Theorem 3.2 
an also be proven for symmetri
 shifting.The relation �i(K) = bi(�(K)) holds whenever all entries of f1 are non-zero. �(K) is a near 
one if f1 is generi
.3.4 Weighted 
oboundariesWe will mention just one 
omponent of the proof of Theorem 3.2. Let f =a1e1 + � � �anen be an arbitrary ve
tor in E and 
onsider the 
hain 
omplexC�f (K) = (V(K); Æf ) where the 
oboundary Æf is given by Æf(m) = f ^ m.18



If all the ai's are non-zero then the dimensions of the 
ohomology groupsof C�(K) and C�f (K) are the same. This 
an be seen by the 
hain mapD : C�(K)! C�f (K), de�ned by the relation D(eeS) =Qfai : i 2 SgeeS. Theproof of theorem 3.2 uses weighted 
ohomology a

ording to the �rst basiselement f1 of the generi
 basis used in the de�nition of algebrai
 shifting.The fa
t that symmetri
 shifting preserves the Betti numbers of a 
omplexK is related to the following way for expressing them: Let Ri(K) the partof the Stanley-Reisner ring spanned by monomials of degree i. ConsiderbRi(K) = Ri(K)=span < y1; : : : ; yi�1 > and de�ne Æ : bRi(K) ! bRi+1(K)by Æ(m) = yi+1m. Note that Æ(Æ(m)) = 0. This is an unusual 
oboundaryoperation whi
h expresses the usual Betti numbers.3.5 Some problems3.5.1 Non-generi
 shiftingLet K be a triangulation of a topologi
al spa
e X. Suppose that K has nverti
es and 
onsider �M (K) where M is an n by n matrix. When M is theidentity matrix, then �M (K) = K; when M is generi
, �M (K) is a wedgeof spheres with the same Betti numbers as K and in addition the links of allfa
es are a wedge of spheres. What happens in between these two extreme
ases? What 
an be said about the homotopy type and topologi
al propertiesof the \intermediate" simpli
ial 
omplexes �M(K)?Problem 10. � (1) What 
an be said about the 
omplexes �M (K) whereM varies over all n by n matri
es.� (2) What 
an be said about the topologi
al spa
es of the form j�M(K)jwhere K varies over all triangulations of a spa
e X and M varies overall matri
es?� (3) What 
an be said about the homotopy type of topologi
al spa
esof the form �M (K) where K varies over all triangulations of a givenhomotopi
 type and M varies over all matri
es?� (4) Given a group G, what 
an be said about the groups �(�M(K))where K varies over all simpli
ial 
omplexes with �(K) = G and Mvaries over all matri
es?Note that the four parts of this problem 
orrespond to some (pre-)orderrelations de�ned on simpli
ial 
omplexes, (triangulable) topologi
al spa
es,19



homotopy 
lasses of topologi
al spa
es and �nitely generated groups. Forexample, for two topologi
al spa
es X and Y we will say that X � Y if forsome triangulation of X and some matrix M , �M(X) is homeomorphi
 toY . The smallest elements in these orders are respe
tively: shifted simpli
ial
omplexes, sequentially Cohen-Ma
aulay spa
es (see Se
tion 4.5), wedges ofspheres and free groups. What 
an be said about these order relations?3.5.2 Relative homologyArt Duval [31℄ proved that exterior algebrai
 shifting "in
reases relative ho-mology", that is �i(�(K);�(L)) � �i(K;L): (3.7)whereK and L are simpli
ial 
omplexes and � is the redu
ed relative Bettinumber. Re
ently, Tim R�omer found a simple proof and various extensionsfor this result.Problem 11 (Bj�orner). For whi
h K, L, and i is (3.7) an equality?Duval [32℄ also studied algebrai
 shifting and spe
tral sequen
es.3.5.3 Produ
tsFor two simpli
ial 
omplexes K and L, let K � L denote their join. Assume(possibly after renaming the verti
es) that V (K) and V (L) are disjoint andde�ne K � L = fS [R : S 2 K and R 2 Lg:Problem 12. Show that �(K � L) = �(�(K) ��(L)).It is true that �X(K � L) = �(K) � �(L): For a matrix X whi
h haszeros for entries (u; v) where u 2 V (K) and v 2 V (L) and generi
 entriesotherwise. Hen
e �(�X(K � L)) = �(�(K) ��(L)).3.5.4 Mayer-VietorisProblem 13. Given two 
omplexes K and L �nd the possible relations be-tween �(K);�(L), �(K [ L) and �(K \ L).If C and D are simpli
ial 
omplexes on disjoint sets of verti
es, thenit seems true and possibly not diÆ
ult to demonstrate that �(C [ D) =�(C) t�(D). 20



The (unusual) operation KtL is de�ned indu
tively as follows: If K andL are 0-dimensional, then K t L is their disjoint union andK t L = 1 � (lk(1; K) t lk(1; L)) [ ast(1; K) t ast(1; L):Here, for a fa
e S of a simpli
ial 
omplex K, the anti-star ast(S;K) =: fR 2K : R \ S = ;g:3.5.5 Further relations to algebrai
 topologyThe Dolt-Thom 
onstru
tion of a topologi
al spa
e X is a new topologi
alspa
e Y = DT (X) whi
h satis�es �i(Y ) = Hi(X) for i = 1; 2; : : : . If Kis a simpli
ial 
omplex des
ribing X, DT (X) 
an be des
ribed as the union[M�M(X) over all matri
es.Problem 14. Find 
onne
tions between algebrai
 shifting and other 
onstru
-tions in algebrai
 topology su
h as 
omplexes of di�erential forms de�nedon a simpli
ial 
omplex, minimal models (due to Sullivan and others), theDolt-Thom 
onstru
tion, et
. Can algebrai
 shifting be de�ned for singularhomology or de-Rahm homology rather than simpli
ial homology?Problem 15. Is there a useful notion of algebrai
 shifting of maps betweensimpli
ial 
omplexes? Is algebrai
 shifting a fun
tor of any kind?Problem 16. Can algebrai
 shifting be axiomatized?3.5.6 Duality and 
omplementationLet K be a simpli
ial 
omplex and let Kdual be its Alexander dual (alsoknown as the blo
ker of K). Thus,Kdual = fS � V (K) : (V (K)nS) =2 Kg:It is not hard to show that�(Kdual) = (�(K))dual:For a family A � �[n℄k � let A be the 
omplement of the family, namelyA = �[n℄k �nA. �(A) does not in general determine �(A).Problem 17. Given �(A), what 
an be said about �(A)?21



Note that �(K) determines the algebrai
 shifting of A with respe
t tothe reverse lexi
ographi
 order. More generally, let < be a total ordering of�[n℄k � whi
h extends the partial order and let <0 be the reverse order to <obtained by 1) reversing the order relation and 2) reversing the role of i andn� i. Then by shifting the 
omplement of A with respe
t to <0 and repla
ingi by n� i the 
omplement of shifting A with respe
t to < is obtained.3.5.7 Bary
entri
 and other subdivisionsThe next problem is related to the dis
ussion in Se
tions 4 and 5.Problem 18. 1. Let K be a subdivision of another 
omplex L. What is therelation between �(K) and �(L)?In parti
ular, it would be useful to �nd a shifting theoreti
 interpretationfor Stanley's lo
al h-ve
tor theory [75℄.2. What 
an be said about �(b(K)) where b(K) is the bary
entri
 sub-division of K?4 Around Cohen-Ma
aulay4.1 Shifting preserves the Cohen-Ma
aulay propertyWe have seen that algebrai
 shifting seems to \forget" all the homotopi-
al information 
on
erning a spa
e K ex
ept the Betti numbers themselves.However, other important topologi
al properties are preserved under shifting.Problem 19. Understand how various topologi
al properties of a simpli
ial
omplex are manifested in terms of the shifted 
omplex. In parti
ular, whi
htopologi
al properties are preserved under shifting?One su
h property is the Cohen-Ma
aulay property whi
h originated in
ommutative algebra. A pure d-dimensional simpli
ial 
omplex K is Cohen-Ma
aulay if for every fa
e S of K (in
luding the empty fa
e), Hi(lk(S;K)) =0 when i < dim lk(S;K).Theorem 4.1. If K is Cohen-Ma
aulay then so is �(K).The Cohen Ma
aulay property has a simple des
ription in terms ofGIN(K).Let K be a (d� 1)-dimensional simpli
ial 
omplex and 
onsider the set B ofmonomials m in the variables yd+1; yd+2 : : : in GIN(K). B is a �nite shifted22



ordered ideal of monomials in the variables yd+1; yd+2; : : : , and GIN(K) isdetermined from B by the rule:GIN(K) = fm �m0 : m 2 B; m0 is an arbitrary monomial in y1; : : : ydg(4.1)Relation 4.1 
hara
terizes Cohen-Ma
aulay simpli
ial 
omplexes, it fol-lows easily from the ring-theoreti
 de�nition for Cohen-Ma
aulayness [76℄.4.2 The theorems of Bayer, Charalambous & Popes
uand Aramova & HerzogOne 
an ask whi
h data on the Betti numbers of 
omplexes and their links(or indu
ed sub
omplexes) is preserved under shifting. (Note that unlikeCohen-Ma
aulayness, whi
h is a topologi
al property these 
onditions are notusually topologi
ally invariant.) The re
ent results by Bayer, Charalambous& Popes
u and by Aramova & Herzog go a long way in this dire
tion.Theorem 4.2. Let K be a simpli
ial 
omplex. Assume that�k(lk(T;K)) = 0;whenever jT j = t < j and i � k � i + (j � jT j). Then also�k(lk(T;�(K)) = 0;whenever jT j = t < j and i � k � i + (j � jT j), and the quantityXjSj=j �i(lk(S;K))is preserved under shifting.This theorem follows from a theorem of Bayer, Charalambous and Popes
u(BCP) for symmetri
 shifting. To derive it from BCP's theorem one has torely also on a theorem by Aramova, Herzog and Hibi [7℄ whi
h asserts thatthe generi
 initial ideal and the symmetri
 shifted ideal have the same gradedBetti numbers. Theorem 4.2 was proved by Aramova and Herzog (AH) forexterior shifting. (Aramova and Herzog also presented another proof for thesymmetri
 
ase.) 23



Remark: The original formulations and (the only known) proofs arering-theoreti
 and will not be dis
ussed in this paper. The relations between
ertain ring-theoreti
 properties between the 
lassi
al fa
e rings and theirexterior analogs is one of the interesting aspe
ts of these results. To movefrom the original formulation to the one presented here one must rely onAlexander duality and Ho
hester's theorem [76℄, p. 60.A 
omplex K is d-Leray if the Betti numbers of K and all its links vanishat and above dimension d. Theorem 4.2 implies many of the earlier appli
a-tions of shifting:� Shifting preserves Betti numbers.� Shifting preserves the Cohen-Ma
aulay property.� Shifting preserve the d-Leray property.� The property that K and all links of verti
es of K are a
y
li
 is pre-served under shifting. (It follows that �(K) is a double 
one.)Remark: It is not hard to see (although it has been overlooked for along time) that the 
lass of d-Leray 
omplexes (for some d) with 
omplete(d � 1)-dimensional skeletons is pre
isely the Alexander dual of the 
lassof Cohen-Ma
aulay 
omplexes. This observation implies that the fa
t thatshifting preserves the Leray property easily follows from the fa
t that shift-ing preserves the Cohen-Ma
aulay property. Moreover, it shows that the
hara
terization of fa
e numbers of d-Leray 
omplexes follows from the 
or-responding 
hara
terization for Cohen-Ma
aulay 
omplexes.4.3 Iterated 
ohomology groupsIterated 
ohomology groups are de�ned by su

essively applying r generi
weighted 
oboundary operators. There are several variations and the readeris referred to Duval and Rose [27℄ whi
h introdu
es one su
h variation anddes
ribes appli
ations for non-pure shellability.Let K be a simpli
ial 
omplex with n verti
es and let V(K) be its fa
ealgebra as de�ned in the previous se
tion. Let f=(f1; f2; � � � ; fn) be a �xedbasis, with 
oeÆ
ient matrix X, in general position in E. De�ne f[r℄ =f1 ^ f2^; � � � ;^fr and Fr = spanff1; f2; � � � ; frg. De�ne the r-th iterated
ohomology group of K, Hk[r℄(K), as follows:24



Hk[r℄(K) = Zk[r℄(K)=Bk[r℄(K); (4.2)where Zk[r℄ = fm 2 k̂ (K) : f1 ^ f2 ^ � � � ^ fr(m) = 0g; (4.3)and Bk[r℄ = spanfFr ^ k�1̂(K)g: (4.4)Problem 20. Find relations between iterated homology groups and more stan-dard notions of algebrai
 topology and/or 
ommutative algebra and, in par-ti
ular, lo
al 
ohomology.Problem 21. Can the theorems of Bayer, Charalambous & Popes
u andAramova & Herzog be further extended by repla
ing Betti numbers withthe dimensions of 
ertain iterated homology groups?Theorem 4.3.dimHk[r℄(K) = jfS 2 �(K) : S \ [r℄ = ;; S [ [r℄ =2 �(K)gj: (4.5)Proof: De�ne Ark = fS � [n℄ : jSj = k + 1; [r℄ \ S 6= ;g. First note thatBk[r℄(K) = eFr ^ Vk�1(K) = spanf efS : S 2 Arkg. Sin
e Ark is initial w.r.t.the lexi
ographi
 ordering <L, it follows that f efS : S 2 �(K) \ Arkg is abasis of Bk[r℄(K) = spanf efS : S 2 Arkg.Now, let S1; :::; Su be the sets in �k(K)nArk ordered lexi
ographi
ally andlet Ut = span(Bk[r℄(K) [ ffS1 � � � fStg):Let It = ef[r℄^Ut. Thus, I0 = f0g and It+1 = span(It [ ef[r℄^ efSt+1). It followsthat It+1 = It i� [r℄ [ St+1 =2 Vk+r(K). Therefore,dimZk[r℄(K)� dimBk[r℄(K) = jfS 2 �k(K) : S \ [r℄ = ;; S [ [r℄ =2 �(K)gj:Corollary 4.4. If �(K) is shifted thenHk[r℄(K) = Hk[r℄(�(K)): (4.6)Proof: This follows from the fa
t that �(D) = D for a shifted family D.25



4.4 Collapsing and ShellingLet K be a (d�1)-dimensional simpli
ial 
omplex. A fa
e S in K is free if itis in
luded in a unique maximal fa
e M . If jSj = k and jM j = m we say thatS is of type (k;m). A (k; l)-
ollapse step is the deletion from K of a free fa
eof type (k; l) and all fa
es 
ontaining it. K is 
ollapsible if it 
an be redu
edto the void 
omplex by a sequen
e of (i; i�1)-
ollapse steps. A (k; d)-
ollapsestep is 
alled a shelling step of type k. K is shellable if it 
an be redu
edto the void 
omplex by su

essive appli
ations of shelling steps. Collapsible
omplexes are a
y
li
 while shellable 
omplexes are Cohen-Ma
aulay. It wasproved by Bruggeser and Mani that the boundary 
omplex of every simpli
ialpolytope is shellable.Theorem 4.5. Let K;K 0 be simpli
ial 
omplexes su
h that K 0 is obtainedfrom K by a 
ollapse step of type (i; d) for some i. Then the in
lusionmap indu
es an isomorphism between Ha[b℄(K) and Ha[b℄(K 0) for every a; b;a+ b < d.(The proof is similar to the proof of Theorem 5.4 in [55℄.)Theorem 4.6. If K 0 is obtained from K by a 
ollapse step of type (k; r) then�(K 0) is obtained from �(K) by a 
ollapse step of the same type.Corollary 4.7. Let K be a shellable (d� 1)-dimensional simpli
ial 
omplex.Then Hk�1[d� k℄(K) = 0 for every k � 0.The e�e
t of 
ollapsing and shelling on iterated homology groups was
ru
ial for some of my earlier proofs whi
h used algebrai
 shifting. To showthat Cohen-Ma
aulay is preserved under exterior shifting I needed to showvanishing of the same iterated 
ohomology groups that appear in the Corol-lary 4.7 but in a di�erent way: �rst, show that they are preserved undersubdivisions, then prove a nerve theorem using a Mayer-Vietoris long exa
tsequen
e and �nally use the nerve theorem on good 
overs of the subdivided
omplex.4.5 Sequential Cohen-Ma
aulaynessBj�orner and Wa
hs [19, 20℄ de�ned shellability for non-pure 
omplexes andStanley [76℄, p. 87 des
ribed the 
ommutative algebra 
ontent of this notionand de�ned the notion of sequentially Cohen-Ma
aulay rings and 
omplexes.26



All shifted simpli
ial 
omplexes are (non-pure) shellable and hen
e sequen-tially Cohen-Ma
aulay. Duval and Rose [27℄ showed that 
ertain 
ombina-torial invariants of (non-pure) shellable simpli
ial 
omplexes are preservedunder shifting and have simple interpretation in terms of 
ertain iterated ho-mology groups. Duval [29℄ studied algebrai
 shifting for sequentially Cohen-Ma
aulay 
omplexes and showed how 
ertain homologi
al invariants of theirfa
e-rings are preserved under shifting.4.6 Combinatorial de
ompositionWhile 
ollapsible simpli
ial 
omplexes are a
y
li
, the 
onverse is far frombeing true. Is there a natural 
ombinatorial property su
h as 
ollapsibilitythat all a
y
li
 
omplexes satisfy? Note that 
ollapsing K yields a mat
hingbetween k-fa
es (the free fa
es) and k + 1-fa
es (the maximal fa
es). It isnot diÆ
ult to show that su
h a mapping exists for arbitrary a
y
li
 (or evenQ -a
y
li
) 
omplex. Following is a very general 
onje
ture in this spirit.Let D be a shifted simpli
ial 
omplex. An elementary 
ollapse step D!D0 = Dn[F;G℄ is shifting preserving if D0 is shifted. A shifting preserving
ollapse of D is a 
ollapsing of D to the void 
omplex via shifting preservingelementary 
ollapse steps.Conje
ture 22. 1. Let K be a simpli
ial 
omplex su
h that �(K) = D.Let D = [F1; G1℄ [ [F2; G2℄ [ � � � [ [Ft; Gt℄ be the representation of D as aunion of intervals given by a shifting preserving 
ollapse of D. Then thereis a de
omposition of K into disjoint intervals of the form K = [A1; B1℄ [[A2; B2℄ [ � � � [ [At; Bt℄ su
h that dimAi = dimFi and dimBi = dimGi.2. Moreover, it is possible to �nd su
h a de
omposition su
h that [[Ai; Bi)is a simpli
ial 
omplex and, more generally, su
h that the union of [Ai; Bi℄ n Topj([Ai; Bi℄)is a simpli
ial 
omplex for every j. Here for an interval I of fa
es, Topj(I) isthe sets in the highest j-levels.This 
onje
ture extends earlier theorems by the author, by Stanley andby Duval, (see [28℄) and various earlier 
onje
tures in
luding a de
omposition
onje
ture for Cohen-Ma
aulay 
omplexes formulated by Garsia and Stanley[76℄, p.85. Duval and Zhang [34℄ used iterated homology groups to �nd a verygeneral de
omposition theorem whi
h is not as strong as the 
onje
tured one.Another notion of de
omposability is given by 
ombinatorial Morse theory[42, 43℄. 27



5 Beyond the Cohen-Ma
aulay property5.1 Polytopes, spheres and Gorenstein� 
omplexesThe only shifted 
omplex whi
h is a triangulated sphere (or even a manifoldwithout boundary) is the boundary of a simplex. While being a triangulatedsphere is not preserved under shifting, 
an we still say something aboutshifting of triangulated spheres? We will 
onsider the more general 
lass ofGorenstein� 
omplexes.A pure d-dimensional simpli
ial 
omplexK is Gorenstein� if for every fa
eS of K (in
luding the empty fa
e), Hi(lk(S;K)) = 0 when i < dim lk(S;K)and dimHi(lk(S;K)) = 1 when i = dim lk(S;K). Being a Gorenstein� 
om-plex manifests a profound duality relation for the fa
e ring ([76℄).Conje
ture 23. Let K be a (d�1)-dimensional Gorenstein� 
omplex. Let Hkbe the set of monomials in GIN(K) in the variables yd+1; yd+2; : : : . Thenthe map m! yd�2kd+1 �m (5.1)is a bije
tion between Hk and Hd�k.Conje
ture 23 is known for simpli
ial polytopes where it follows from thehard-Lefs
hetz theorem for tori
 varieties. It implies that the 
hara
teriza-tion of f -ve
tors of simpli
ial polytopes (the g-theorem) applies to arbitraryGorenstein� 
omplexes. But it will give more than a 
omplete des
ription off -ve
tors (or Hilbert series) of Gorenstein� 
omplexes. In addition, it willprobably yield a 
omplete des
ription of their generi
 initial ideals.For a (d � 1)-dimensional Gorenstein� simpli
ial 
omplex K let U(K)be the set of all monomials in GIN(K) whi
h involves only the variablesyd+2; yd+3; : : : . Assuming Conje
ture 23, U = U(K) is a shifted ideal ofmonomials of degree at most [d=2℄ in the variables yd+2; yd+3; : : : and theshifted 
omplex (or GIN(K)) of K is determined by U(K). (Sin
e K isCohen-Ma
aulay the set B of monomials in yd+1; yd+2; : : : in GIN(K) de-termines GIN(K) (relation (4.1)). Conje
ture 23 implies that U determinesB.)On the other hand for every shifted ideal of monomials U of degree atmost [d=2℄ in the variables yd+2; yd+3; : : : , a simpli
ial (d � 1)-sphere S(U)(
alled a squeezed sphere) was 
onstru
ted in [59℄.Problem 24. Show that U(S(U)) = U .28



The fa
t that squeezed (d� 1)-dimensional spheres are the boundary ofd-balls with the same [d=2℄-skeleton may help to settle this problem.Regarding fa
e numbers we believe that there is no di�eren
e betweensimpli
ial spheres and simpli
ial polytopes. However, this 
annot be the 
asefor the shifted 
omplex simply be
ause there are far too many 
hoi
es for U .Problem 25. If K is the boundary 
omplex of a simpli
ial d-polytope, thenwhat more 
an be said about �(K) (or equivalently about U(K))? Is it truethat representability as a simpli
ial polytope is preserved under squeezing?Namely if K is polytopal, is S(U(K)) polytopal as well?Note that although shifting does not preserve the Gorenstein� property,we 
an derive (assuming that our 
onje
tured pi
ture is true) another shifting-like operation whi
h asso
iates to every Gorenstein� 
omplex K a new su
h
omplex K 0 = S(U(K)). This new 
omplex is always a simpli
ial sphere andGIN(K) = GIN(K 0). It would be interesting to understand this operationon the ring-theoreti
 level.5.2 Shifting and EmbeddabilityWe will des
ribe now a shifted simpli
ial 
omplex whi
h will play a 
ru
ialrole in this se
tion. Let �(d; n) be the pure (d � 1)-dimensional 
omplexwhose set of verti
es is [n℄ = f1; 2; : : : ; ng and whose maximal fa
es are setsS � [n℄; jSj = d whi
h satisfy k =2 S ) [k + 1; d� k + 2℄ � S. Let �(d) bethe union of �(d; n) for all n. Note that �(d; n) is the restri
tion of �(d) tothe �rst n verti
es.De�ne GIN(d) to be the inverse image of �(d) under the operation thattransform GIN to �symm. GIN(d) is the shifted order ideal of monomials iny1; y2; : : : whi
h does not 
ontain the monomials yd�2i+1d+1 yid+2; i = 0; 1; : : : .Theorem 5.1. [61℄ If K is the boundary 
omplex of a simpli
ial polytopethen �symm(K) � �(d) or equivalently GIN(K) � GIN(d).Let C(d; n) be the boundary 
omplex of the 
y
li
 d-dimensional polytopewith n verti
es.Proposition 5.2. �(d; n) = �symm(C(d; n)) (5.2)This result probably holds also for exterior shifting. The relation�(K) � �(d) (5.3)29



is referred to as the shifting-theoreti
 upper bound relation sin
e it immedi-ately implies (although it is mu
h stronger) the upper bound theorem for fa
enumbers of simpli
ial spheres and related stronger 
ombinatorial results. See[61, 63℄.Problem 26. Understand the s
ope of the shifting-theoreti
 upper boundrelation.A proof of the shifting-theoreti
 upper bound relation for simpli
ial spheresor for Gorenstein� 
omplexes will lead to a 
omplete des
ription of theirshifted 
omplexes (and hen
e their f -ve
tors) be
ause of the following sim-ple 
ombinatorial result.Proposition 5.3. The assertion of the shifting-theoreti
 upper bound theo-rem for a Gorenstein� 
omplex K is equivalent to the assertion of Conje
ture23 for K.The next 
onje
ture links the shifting-theoreti
 upper bound relation toembeddability.Conje
ture 27. Let K be a simpli
ial 
omplex with n verti
es su
h that jKj
an be embedded in Sd�1. Then �(K) � �(d). Equivalently, �(K) doesnot 
ontain any of the sets Td�1 : : : T[d=2℄ whereTd�j = fk + 2; k + 3; : : : ; d� k; d� k + 2; : : : ; d+ 2g: (5.4)Equivalently, GIN(K) does not 
ontain any of the monomialsyd�2i+1d+1 yid+2; i = 0; 1; : : : : (5.5)Conje
ture 27 was stated independently by Sarkaria and by me. Sarkariaproposed in order to prove it, to relate the Van-Kempen obstru
tions toembeddability [79℄ for a 
omplex to those for the shifted 
omplex.Conje
ture 28. Let X be a 2r-dimensional simpli
ial 
omplex. If �2r+2r , the r-dimensional skeleton of a (2r+2)-dimensional simplex, 
annot be embeddedin X then it 
annot be embedded in �(K) for every triangulation K of X.One diÆ
ulty that we fa
e in trying to relate shifting with embeddabilityis that there is a di�eren
e between the role of the graphs K5 and K3;3. For agraph G not to 
ontain a topologi
al K5 is preserved under shifting but thisis not the 
ase for K3;3. It appears that we need a 
oarser obstru
tion forembeddability (for graphs into R2 and generally for r-dimensional 
omplexesinto R2r ) whi
h will be non-trivial for K5 and trivial for K3;3.30



Conje
ture 29. Let K be a pure (d� 1)-dimensional simpli
ial 
omplex. As-sume that for every fa
e S 2 K (in
luding the empty fa
e) with dimlk(S;K) =2r, �2r+2r 
annot be embedded into lk(S;K): (5.6)Then �(K) � �(d).We will 
ome ba
k to related problems in Se
tion 5.6 below. Note thatrelation (5.6) for r = 0 asserts that every fa
e of K of dimension d � 2 isin
luded in at most two maximal fa
es.5.3 Can we tra
e interse
tion homology?Interse
tion homology [46, 47℄ is de�ned for strati�ed pseudomanifolds (wewill only 
onsider triangulated pseudomanifolds) based on numeri
al sequen
e(p2; p3 : : : ) 
alled perversity.Problem 30. Find an interpretation of interse
tion 
ohomology of a pseudo-manifold K in terms of the fa
e rings of K and in terms of algebrai
 shifting.There are several reasons to think that su
h a des
ription is feasible: Thebehavior of interse
tion homology under forming of a 
one and under suspen-sion is simple (see [22℄). The various interse
tion homology groups redu
e tothe usual homology for manifolds and, as we shall see, in this 
ase the Bettinumbers manifest themselves in many di�erent ways in the shifted 
omplex.Finally, there is a 
ertain similarity between iterated homology groups of thetype dis
ussed above and interse
tion homology: If instead of restri
ting the
y
les and boundaries a

ording to the manner in whi
h they interse
t thelow-dimensional strata, we 
onsider similar algebrai
-restri
tions (namely, werepla
e the geometri
 strata by some generi
 subspa
es of the exterior fa
ealgebra) then we obtain similar obje
ts to the iterated homology groups.5.4 Bu
hsbaum's 
omplexes and manifoldsA simpli
ial 
omplex K is Bu
hsbaum if for every vertex v; link(v;K) isCohen-Ma
aulay. (For the 
ommutative algebra de�nition of Bu
hsbaumrings see [76, 24℄. There are, in fa
t, several 
lasses of rings whi
h for Stanley-Reisner rings 
oin
ide with Stanley-Reisner rings arising from Bu
hsbaum
omplexes.) In parti
ular, all triangulations of manifolds are Bu
hsbaum.Bu
hsbaum 
omplexes form a natural extension of Cohen-Ma
aulay 
om-plexes and while the property of being Bu
hsbaum is not preserved under31



shifting mu
h 
an be said about shifting of Bu
hsbaum 
omplexes. Theseresults are available 
urrently for symmetri
 shifting only (and only for 
har-a
teristi
 0).The following important properties of GIN(K) for a Bu
hsbaum 
omplexK were proved by Novik [69℄.Theorem 5.4 (Novik). Let K be a Bu
hsbaum 
omplex.� For i � d , if m is a monomial in fyi+1; : : : ; yng and my2i =2 GIN(K)then also myi =2 GIN(K). Let Bi be the set of these monomials m.� if m 2 Bi then m is a monomial in fyd+1; : : : ; yng� The number of monomials in Bi of degree r, r < i is �r�1i�1��r�1(K)Remark: Unlike the 
ase of Cohen-Ma
aulay 
omplexes, Theorem 5.4does not 
hara
terize Bu
hsbaum 
omplexes. It would be interesting to un-derstand the ring theoreti
 properties whi
h 
orrespond to the properties ofGIN(K) des
ribed in Theorem 5.4 and espe
ially the following:Problem 31. 1. Consider fa
e rings of (d�1)-dimensional simpli
ial 
omplexes(or more general quotient rings of the ring of polynomials with n variables).In whi
h 
ases do we have the property that for a monomial m whi
h doesnot involve y1; : : : yi, my2i =2 GIN(K) implies myi =2 GIN(K)?2. What 
an be said about rings or 
omplexes where, for every i � d andm as above, myt+1i =2 GIN(K) implies myti =2 GIN(K)? (Note that for t = 0this is equivalent to the Cohen-Ma
aulay property and for t = 1 this followsfrom the Bu
hsbaum property.)Problem 32. (Stated vaguely.) Is there a way to identify every appearan
eof �i in Bi?Isabella Novik made some progress in this dire
tion.Problem 33. 1. Prove the assertion derived from Theorem 5.4 for symmetri
shifting of Bu
hsbaum 
omplexes for exterior shifting.2. Is being a Bu
hsbaum 
omplex 
an be des
ribed via the exterior fa
ealgebra?
32



5.5 Conje
tures 
on
erning simpli
ial manifoldsWe start with the following problem:Problem 34. Given a triangulation K of a manifold with boundary what arethe relations between �(K) and �(�K)?There are some far-rea
hing 
onje
tures 
on
erning the algebrai
 shiftingof triangulations of manifolds with and without boundary. These 
an befound in [69℄, Conje
tures 7.1 and 7.5(i). (The reader is referred to [69℄ formore details.)One of the motivating problem is the following:Problem 35. Understand Poin
ar�e duality for manifolds in terms of fa
e-ringsand algebrai
 shifting.In response, Conje
ture 37 below, proposes a beautiful 
onne
tion be-tween Poin
ar�e duality and the Dehn-Somerville relations via a far-rea
hingextension of the tori
 hard-Lefs
hetz theorem.Let me now des
ribe these 
onje
tures in some details. The �rst 
onje
-ture sharpen Theorem 5.4.Conje
ture 36. Let K be a (d� 1)-dimensional triangulated manifold. Con-sider the set Ak of monomials m of degree k in GIN(K) in the variablesyd+2; yd+3; : : : yn su
h that myd+1 =2 GIN(K). ThenjArj = �dk��k�1(K): (5.7)Let Hr denote the monomials of degree r in GIN(K) in the variablesyd+1; yd+2; : : : ; yn whi
h are not in
luded in Ar. Now 
onsider the 
ase thatK is a manifold without boundary. It follows from Theorem 5.4 (whi
h relieson the fa
t that K is Bu
hsbaum) 
ombined with 
ombinatorial relations onthe Hilbert polynomial derived from the fa
t that K is a manifold (the Dehn-Sommerville relations) together with Poin
ar�e-duality that jHrj = jHd�rj.The following is a far rea
hing extension of Conje
ture 23:Conje
ture 37. 1. [Shifting-theoreti
 Poin
ar�e duality℄ Let K be a (d � 1)-dimensional simpli
ial manifold without boundary. For k < d=2 the mapm! myd�2kd+1 (5.8)is a bije
tion between Hk and Hd�k.2. For an arbitrary (d� 1)-dimensional simpli
ial manifold K the set ofmonomials m � yd�2kd+1 for m 2 Hk 
ontains Hd�k.33



In parti
ular, when d�1 = 2r, Conje
tures 36, 37 imply that the numberof monomials in GIN(K) of degree r + 1 in the variables yd+2; yd+3; : : : ispre
isely �2r+1r � � �r(K).It follows from Conje
ture 37 that if K is a simpli
ial (d�1)-dimensionalmanifold then the monomials yd�2i+1d+1 yid+2; i = 0; 1; : : : do not belong toGIN(K) with one ex
eption only: the monomial yr+1d+2 when d� 1 = 2r. Foran even-dimensional simpli
ial manifold K, if the middle Betti number of Kvanishes then yr+1d+2 =2 GIN(K) and K satis�es the shifting-theoreti
 upperbound relation.5.6 PseudomanifoldsWe will now 
onsider larger 
lasses of pseudomanifolds. A Witt spa
e is onein whi
h for every link of a proper fa
e, the middle perversity interse
tionhomology vanishes. Towards the 
onne
tion proposed in Se
tion 5.3 we makethe following 
onje
ture:Conje
ture 38. Let K be a triangulation of a Witt spa
e of dimension 2r.1.Let Ar+1 be the set of monomials m in GIN(K) of degree r + 1 in thevariables yd+2; yd+3; : : : . ThenjAr+1j = �2r + 1r � � dim IHr(K): (5.9)2. K satis�es the shifting-theoreti
 Poin
ar�e duality.3. If dim IHr(K) = 0 then K satis�es the shifting-theoreti
 upper boundrelation.However, it appears that these relations go beyond Witt spa
es.Problem 39. (1) Let K be a (d � 1)-dimensional pseudomanifold with theproperty that for every proper 2r-dimensional link K 0,yr+12r+3 =2 GIN(K 0): (5.10)Then the shifting-theoreti
 Poin
ar�e duality is satis�ed!(2) If, in addition, K is odd-dimensional or if 
ondition (5.10) holdsalso for K itself then K satis�es the shifting-theoreti
 upper bound relation,namely, GIN(K) � GIN(d).The 
lass of pseudomanifolds whi
h satisfy 
ondition (5.10) for all properlinks appears to be an interesting extension of the 
lass of manifolds. By our34




onje
tures this 
lass 
ontains the 
lass of triangulations of Witt spa
es andthe 
lass of pseudomanifolds whi
h satisfy relation (5.6) for all proper linksof fa
es.6 Appli
ations and Conne
tions with Com-binatori
s6.1 f-ve
torsThe main appli
ation of algebrai
 shifting is in the study of f -ve
tors of
lasses of simpli
ial 
omplexes. For a survey (from 1989) the reader is referredto [17℄. For a more re
ent survey of the 'state of the art' 
on
erning f -ve
torssee [14℄. Most of the results des
ribed in this paper were a

ompanied byappli
ations to f -ve
tors in the original papers. I will not dis
uss theseappli
ations in this paper.6.2 Combinatorial ShiftingIn their seminal paper [41℄ Erd�os, Ko and Rado des
ribed an operation on�nite set systems whi
h is now 
alled shifting. (In this paper we will use thename \
ombinatorial shifting" (or: CS) to distinguish this operation fromalgebrai
 shifting.) The reader is referred to Frankl's survey arti
le [44℄.For a family A of k-subsets of [n℄ and two integers i; j, 1 � i < j � nde�ne a family Cij(A) = fCij(S) : S 2 Ag as follows: Cij(S) = S if eitheri 2 S or j =2 S. If i =2 S and j 2 S 
onsider R = S [ fignj. If R 2 A thenCij(S) = S but if R =2 A then Cij(S) = R.Every family A 
an be transformed into a shifted family �C(A) by su

es-sive appli
ations of the operations A ! Cij(A). �C(A) depends, of 
ourse,not only on A but also on the order in whi
h the operations Cij(A) wereapplied.Problem 40. What are the relations between algebrai
 and 
ombinatorialshifting?Proposition 6.1. Let A be a family of r-subsets of [n℄. Let B = Cij(A)then for a generi
 n by n matrix X, the set of 
olumns in the matrix MX(A)indexed by sets in B is linearly independent.35



However, it is not always possible to realize �(A) by applying 
ombi-natorial shifting. For example, starting with the 10 triangles of the trian-gulation of the proje
tive spa
e with 6 verti
es, (mod 0) algebrai
 shiftingyields �(A) = fS 2 [6℄ : 1 2 Sg. However, f2; 3; 4g 2 �
(A) for every
ombinatorial shifting of A.6.3 Appli
ability of shiftingThere are (roughly) four types of behaviors in the appli
ation of shifting tothe study of a 
ombinatorial (or topologi
al) property:� The property is preserved under shifting and the situation for shiftedfamilies (
omplexes) is simple.Examples are:1. What are the possible f -ve
tors of simpli
ial 
omplexes?2. What is the maximal size of an interse
ting family of subsets in �[n℄k �?3. What are the possible f -ve
tors of simpli
ial 
omplexes with pres
ribedBetti numbers?For the �rst two examples 
ombinatorial as well as algebrai
 shifting 
anbe used (at present only exterior shifting works for the se
ond example). Thethird example requires algebrai
 shifting.� The property is preserved under shifting but the situation for shiftedfamilies (
omplexes) is 
ompli
ated.For example: What is the maximum size of a family of k-subsets of [n℄su
h that there are no t sets in the family whi
h are pairwise disjoint? Itis not diÆ
ult to show that this property is preserved under shifting (eitheralgebrai
 or 
ombinatorial). The situation for shifted families is still an openquestion.� Showing that the property is preserved under shifting is hard but thesituation for shifted families (
omplexes) is simple.Following is an example of su
h a property: Chvatal 
onje
tured thatwhen kr � (k � 1)n every family A � �[n℄k � with more than �n�1k�1� must
ontain r sets whose interse
tion is empty while the interse
tion of ea
h r�1of the sets is not empty. (For r = 2 this is the theorem of Erd�os, Ko and36



Rado.) The hard part seems to show that shifting preserves the property.(For r = 2 this was the motivation for 
ombinatorial shifting.)(Embeddability questions that were 
onsidered above also fall into this
ategory.)� The property is not preserved under shifting although shifting may stillbe useful.Two su
h examples from 
ombinatori
s, the Tur�an problem and the Erdos-Rado sun
ower 
onje
ture will be dis
ussed below. (We 
onsidered severalexamples earlier, su
h as Bu
hsbaum and Gorenstein 
omplexes.)6.4 Interse
ting familiesInterse
ting families are of great interest in extremal 
ombinatori
s. In thisse
tion we will show that if K is an interse
ting uniform set system then�(K) is as well.Let K � �[n℄k � and L � �[n℄l �. De�ne K ^ L = fS [ T : S 2 K; T 2L; S \ T = ;g.Theorem 6.2. �(K) ^�(L) � �(K ^ L).Proof: Let m1 2 M(K), m2 2 M(L) with i(m1) = S, i(m2) = Tand S \ T = ;. Note that M(K ^ L) = M(K) ^ M(L). Now, m1 =fS +Pf�RfR : R <L Sg, m2 = fT +Pf�RfR : R <L Tg and thereforem1 ^ m2 = fS[T +Pf�R�R0fR[R0 : R <L S;R0 <L T;R \ R0 = ;g. Thus,i(m1 ^m2) = S [ T .Corollary 6.3. If K is interse
ting then �(K) is as well.Remarks: 1. If K has the property that among every t members of Kthere are two with interse
tion of 
ardinality of at least m, then the sameproperty holds for �(K). A similar proof applies.2. Note that the proof did not rely on the term order being used. In thisrespe
t shifting preserves interse
ting families in a very strong sense.3. The maximal number of sets in an interse
ting family of subsets of sizek from [n℄ is �n�1k�1� when n � 2k. This is also the maximal number of k-setswhi
h do not support a (k � 1)-dimensional 
y
le. Is there any 
onne
tion?We do not know of any for general hypergraphs. For H not to support a37



(k� 1)-dimensional 
y
le is equivalent to the property that all sets in �(H)
ontains '1'. This is false in general for interse
ting families.It appears, however, that 
ompletely balan
ed (that is k-
olorable) in-terse
ting k-uniform hypergraphs indeed do not support k-dimensional ho-mology and that this follows from an extension of algebrai
 shifting to the
ompletely balan
ed 
ase.6.5 Extremal 
ombinatori
s: the sun
ower 
onje
tureI had high hopes for appli
ations of algebrai
 shifting in extremal 
ombina-tori
s. So far, there is no real eviden
e to justify them.A 
olle
tion of sets is 
alled a Delta System or a sun
ower if every elementthat is 
ontained in at leasy two of them is 
ontained in all of them.Problem 41 (Erd�os and Rado Delta System Conje
ture). There exists a 
on-stant Cr depending on r su
h that every 
olle
tion F of k-sets without aDelta System of size r has at most Ckr members.We will only 
onsider the important 
ase r = 3. Consider the simpli
ial
omplex K spanned by family F of k-sets without a Delta System of sizethree. Re
all that K is 
ompletely balan
ed if we 
an 
olor its verti
es withk 
olors su
h that the verti
es of every maximal fa
e represent all the 
olors.It is easy to see that K 
ontains a 
ompletely balan
ed sub
omplex whi
h
ontains at least (1=e)k k-sets from F . Therefore, there is no loss of generalityfor the Delta System 
onje
ture to assume that K is 
ompletely balan
ed.(This fa
t was pointed out to me by Je� Kahn.)We would have liked to be able to prove the following 
hain of impli
a-tions:1 For every fa
e S 2 K, lk(S;K) does not 
ontain three disjoint sets.2 For every fa
e S 2 K, �ext(lk(S;K)) does not 
ontain three disjointsets3 For every fa
e S 2 K, all maximal sets in �ext(lk(S;K)) 
ontain either'1' or '2'.4 The monomials efS, where S ranges over all k-subsets of [2k℄, is a span-ning set for Vd(K). 38



The �rst property is a reformulation of the fa
t that the family 
ontainsno Delta System of size three. The impli
ation of 2 from 1 follows from theresults of the previous se
tion. While 2 does not imply 3 in general, we expe
tthis impli
ation to hold if the 
omplex K is 
ompletely balan
ed. To proveit algebrai
 shifting for 
ompletely balan
ed 
omplexes should be developed.The move from 3 to 4 has a similar 
avor to that of the general theoremsof Aramova and Herzog. Their methods may apply. However, 3 should stillbe enfor
ed by additional homologi
al properties implied by the Delta System
ondition. Property 4 would imply that C3 � 4e (< 12).6.6 The Tur�an problemThe T�uran problem 
an be formulated as follows: What is the smallestnumber of square free monomials of degree r whi
h span (i.e. the idealgenerated by them 
ontains) all square free monomials of degree t? Or in theususal formulation: what is the minimum size of an r-uniform hypergraphwithout an independent set of t verti
es?The situation for r = 2 is 
ompletely explained by a theorem of Tur�anand the situation for r > 2 is almost entirely not understood. We will mainlybe interested in the 
ase r = 3; t = 4.A shifting theoreti
 approa
h to the (4,3) 
ase of Tur�an's problem wasproposed in [57℄. Sin
e then, re�nements of the 
onje
tures have been for-mulated. A 
omputer was used to test the 
onje
tures for hypergraphs witha few verti
es and for some examples of Kosto
hka and no 
ounter exampleswere found. But overall, there has been no real progress in this dire
tion.6.7 The 
lique 
omplex of a graphThere is a very interesting \shifting"-type question related to Tur�an's theo-rem for graphs. Consider a graph G with n verti
es and the 
omplex of its
omplete subgraphs K(G). (In this 
ase, the ideals used in the de�nitionof the various fa
e rings for K(G) are quadrati
, i.e., they are generated bydegree two polynomials.) Let 
 be the size of the maximal 
omplete subgraphof G.Consider n generi
 degree-one elements f1; : : : f2 and divide them into 
parts A1; A2; : : : ; A
 whose sizes are as equal as possible. Consider the set Uof all monomials efS in V(K(G)) su
h that jS \ Ajj � 1 for every j.Conje
ture 42. U span V(K(G)). 39



This 
onje
ture is a shifting-theoreti
 extension of Tur�an's theorem whi
hasserts that the number of edges in a graph with no 
lique of size 
 + 1 isattained by a 
omplete 
-partite graph where the sizes of the parts are asequal as possible. This 
onje
ture implies a far-rea
hing 
onje
ture by E
k-ho� [36℄ and myself on fa
e numbers of 
lique 
omplexes and has appli
ationsin the study of f -ve
tors of nerves of boxes [36, 37℄. It also seems related to a
onje
ture by Charney and Davis [25℄ on 
lique 
omplexes that are spheres.See also [76℄, p. 103.6.8 Are there more drasti
 forms of algebrai
 shifting?A drasti
 shifting operation is one whi
h maps every simpli
ial 
omplex to aneven more restri
ted 
lass of 
omplexes than the shifted 
omplexes while stillpreserving some useful 
ombinatorial properties. Exterior shifting is neverdrasti
 as it �xes all shifted 
omplexes. As already mentioned it is not knownwhether symmetri
 shifting, with respe
t to the reverse lexi
ographi
 order,�xes all shifted 
omplexes. In 
ombinatorial appli
ations, shifting is oftennot the end of the road and some drasti
 algebrai
 shifting operations maybe helpful.The Kruskal-Katona theorem asserts that every simpli
ial 
omplex hasthe same f -ve
tor as a 
ompressed simpli
ial 
omplex, namely a simpli
ial
omplex whose r fa
es are initial with respe
t to the reverse lexi
ographi
order.Problem 43. Find a drasti
 form of algebrai
 shifting whi
h proves the Kruskal-Katona theorem.There are many simple proofs of the Kruskal-Katona theorem but analgebrai
 proof may have further appli
ations. The same problem may beasked in the symmetri
 
ase for Ma
aulay's theorem.The re
ent remarkable proofs by Alswede and Kh
haterian [2, 3℄ of Frankl's
onje
ture regarding the Erd�os-Ko-Rado problem 
an be regarded as the ap-pli
ation of a drasti
 form of 
ombinatorial shifting. I feel that the 
ombi-natorial 
ontent of these proofs 
an be useful in further understanding thestru
ture of shifted 
omplexes (or equivalently of generi
 initial ideals). Itwould be of interest to �nd an algebrai
 proof whi
h might be relevant tothe following related, and yet unsolved, problem.Problem 44 (Erd�os). What is the maximal size of a family of k-subsets of [n℄whi
h do not 
ontain a mat
hing of size r?40



(A mat
hing is a family of pairwise disjoint sets.)6.9 Eigenvalues of lapla
ians, expansion of the dualgraphs and shiftingThe basi
 idea behind my paper [61℄ was the following: Use algebrai
 shiftingto dedu
e expansion properties of the dual graph of simpli
ial polytopesand spheres and dedu
e upper bounds on the diameters of su
h graphs. Atpresent, this idea only works for neighborly polytopes. It is possible thatexpansion properties on the dual graph of �(K) imply expansion propertieson the dual graph of K (this is related to shifting Meyer-Vietoris).In a re
ent paper, Duval and Reiner [33℄ studied the eigenvalues of lapla-
ians of shifted 
omplexes. The 
lass of shifted simpli
ial 
omplexes is oneof only a handful of 
lasses of 
omplexes with integral Lapla
ian spe
tra.Let s be the Lapla
ian eigenvalues of a shifted family of k-sets. Consideralso d, the generalized degree sequen
e (number of k-sets ea
h vertex is amember of), and let T means to take the partition 
onjugate (transpose theFerrers diagram of the partition). Duval and Reiner showed that s = dT .(For graphs this result was proved in the sixties by Kelmans and by others.)Duval and Reiner further 
onje
ture that for an arbitrary k-family, s ismajorized by dT . A natural question that arises is the following:Problem 45 (Duval and Reiner). Find the e�e
t of shifting on eigenvalues oflapla
ians.In a di�erent dire
tion note that if G is a tree with n verti
es then �(G)is always the same: star whose edges 
ontain the vertex '1'. Labelled trees
an, of 
ourse, be enumerated and some weighted extensions to d-dimensional
omplexesK on n verti
es (so that �(K) is the pure simpli
ial 
omplex whosed-fa
es are all sets 
ontaining '1') are also known [54℄. Is it possible to �ndan appropriate weighted enumeration for the 
lass of simpli
ial 
omplexes Kwith a pres
ribed �(K)?7 ExtensionsIn this se
tion we will 
onsider several extensions of algebrai
 shifting. The�rst three subse
tions deal with areas in whi
h algebrai
 shifting has not keptup with advan
es 
on
erning f -ve
tors of simpli
ial 
omplexes.41



7.1 SymmetryProblem 46. Find an appropriate notion of shifting for simpli
ial 
omplexeswith a group a
tion.The study of fa
e rings has signi�
ant 
onsequen
es for fa
e numbers ofCohen-Ma
aulay 
omplexes with symmetry (see [1℄ and [76℄. p.119). How-ever, we are not aware of any useful notion of algebrai
 shifting in this 
ontext.Problem 47. Chara
terize f -ve
tors of simpli
ial 
omplexes with a free Zp a
-tion. More generally 
hara
terize f ve
tors of su
h 
omplexes with pres
ribedBetti numbers. Alternatively, 
onsider general Zp a
tions and 
hara
terizethe pair of f-ve
tors obtained by the 
omplex and by the fa
es �xed by thea
tion.In this 
ontext it is worth mentioning an old-standing problem in algebrai
topology whi
h asserts that if we have a free a
tion of Znp on a manifold Mthen the sum of Betti numbers for that manifold must be at least 2n (thesum of Betti numbers of an n-dimensional torus). Some related results wereproven using 
ommutative algebra 
onsiderations.7.2 Balan
ed and 
ompletely balan
ed 
omplexesAn additional area in whi
h algebrai
 shifting has not kept with f -ve
tortheory is balan
ed and 
ompletely balan
ed 
omplexes [72℄. It may be feasibleto 
lose the gap.Problem 48. Extend algebrai
 shifting to balan
ed and 
ompletely balan
edfamilies. Chara
terize pairs of fa
e numbers and Betti numbers for su
h
omplexes.7.3 Shifting more general 
omplexesIn several 
ases the 
ombinatorial 
onsequen
es of algebrai
 shifting havemu
h greater generality than for simpli
ial 
omplexes. Bjorner and Kalai [18℄have shown that the 
hara
terization of fa
e numbers of simpli
ial 
omplexeswith pres
ribed Betti numbers applies to polyhedral 
omplexes and in fa
teven in mu
h greater generality. Mu
h of the pi
ture 
on
erning the upperand lower bound theorems and the g-theorem also extends to large 
lasses of
omplexes. The 
ase of 
ubi
al 
omplexes is of parti
ular interest.42



Problem 49. 1. Extend the de�nitions of fa
e algebras and algebrai
 shiftingto polyhedral (and more general) 
omplexes.2. Find analogs to the de�nitions of fa
e algebras and algebrai
 shiftingfor 
ubi
al 
omplexes.7.4 Other 
ombinatorial obje
tsTogether with H�el�ene Bar
elo we 
onsidered the possibility of applying some-thing similar to algebrai
 shifting to other 
ombinatorial obje
ts. The generalframework is as follows: We have a 
lass P of 
ombinatorial obje
ts de�nedon an underlying set (whi
h is usually taken to be the set [n℄ = f1; 2; : : : ; ng).Thus, P 
an be the set of subsets of [n℄, or the set of permutations on [n℄, orthe set of labelled trees with vertex set [n℄, et
. We need an algebra whi
his generated as an algebra by n variables x1; x2 : : : ; xn and as a ve
tor spa
ehas a basis (depending on the variables x1; x2; : : : ; xn) in one-to-one 
orre-sponden
e with the elements of P. Algebrai
 shifting is based on studyingGrobner basis w.r.t. a new set of variables y1; y2; : : : yn obtained from thexi's by a generi
 linear transformation.Thus we 
an use free Lie algebras (or rather their \square-free" part), oralternatively the Orlik-Solomon algebra, to \shift" families of permutations.And we 
an try to use the 
ohomology ring of the variety of 
ags �xed by aunipotent matrix of Jordan de
omposition given by P ` n (see Bar
elo [10℄)to try to shift families of standard tableaux of a given shape.It turned out that extending even the simplest properties of shifting 
anbe quite diÆ
ult.Problem 50. Algebrai
ally shift families of permutations, tableaux, trees andpartitions and �nd 
ombinatorial appli
ations.8 Con
luding RemarksThe relations between 
ommutative algebra, algebrai
 topology and 
ombi-natori
s have been at the heart of 
ombinatorial 
ommutative algebra sin
ethe �rst works by Ri
hard Stanley whi
h established this �eld of resear
h.Algebrai
 shifting appears to be a useful tool for relating topologi
al prop-erties of simpli
ial 
omplexes to 
ommutative algebrai
 properties of their(various) fa
e algebras and for extra
ting 
ombinatorial 
onsequen
es.43



Sin
e the basi
 
onne
tion with simpli
ial homology was �rst observedand applied [16℄, Art Duval has found further 
onne
tions with algebrai
topology [31, 32℄ and further 
ombinatorial appli
ations [28, 34℄. Relating al-gebrai
 shifting and, more generally, the fa
e algebras of simpli
ial 
omplexeswith advan
ed topi
s from algebrai
 topology is one of the main 
hallenges.The re
ent results by Dave Bayer, Hara Charalambous & Sorin Popes
uand by Annette Aramova & J�urgen Herzog appears to give the ultimateextension of the fa
t that Cohen-Ma
aulayness is preserved under shifting(whi
h is equivalent to Reisner's theorem in the symmetri
 
ase). Theseresults have rea
hed the limit of what was anti
ipated in my survey withAnders Bj�orner 
on
erning f -ve
tors and homology [17℄. There are furthersigni�
ant developments 
on
erning shifting (generi
 initial ideals) and 
om-mutative algebra mainly due to Aramova, Herzog, Takayuki Hibi and others[4, 5, 6, 7, 8, 9, 51℄ whi
h have not been properly presented here.In another dire
tion, the work by Peter S
henzel, followed by the re-sults of Isabella Novik [69℄ yielded substantial knowledge on shifting (in thesymmetri
 
ase) for Bu
hsbaum's 
omplexes in
luding simpli
ial manifolds.There is a very beautiful emerging pi
ture of algebrai
 shifting (and fa
e al-gebras) of simpli
ial manifolds without boundary. For simpli
ial spheres andGorenstein� 
omplexes this pi
ture already in
ludes a far-rea
hing extensionof (a generi
 version of) the Hard Lefs
hetz Theorem for tori
 varieties asso
i-ated with simpli
ial polytopes. And further, it appears to extend to simpli
ialmanifolds without boundary giving a deep shifting-theoreti
 interpretation ofPoin
ar�e duality and beyond i.e., to spa
es in whi
h 
ertain obstru
tions forembeddability vanish lo
ally and globally and to Witt spa
es. Proving thatthis pi
ture is the 
orre
t one is the most important open problem in thisarea and perhaps 
an be 
onsidered to be one of the main open problemsin algebrai
 
ombinatori
s. Progress in this dire
tion will reveal profound
onne
tions between 
ommutative algebra and topology.Fa
e algebras and algebrai
 shifting appears to be also tailor-made for
ertain problems in extremal 
ombinatori
s.A
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