
0-8493-8524-5/97/$0.00+$.50

1997 by CRC Press LLC

19 POLYTOPE SKELETONS AND PATHSGil Kalai
INTRODUCTIONThe k-dimensional skeleton of a d-polytope P is the set of all fa
es of the polytopeof dimension at most k. The 1-skeleton of P is 
alled the graph of P and denotedby G(P ). G(P ) 
an be regarded as an abstra
t graph whose verti
es are the verti
esof P , with two verti
es adja
ent if they form the endpoints of an edge of P .In this 
hapter, we will des
ribe results and problems 
on
erning graphs andskeletons of polytopes. In Se
tion 19.1 we brie
y des
ribe the situation for 3-polytopes. In Se
tion 19.2 we 
onsider general properties of polytopal graphs|subgraphs and indu
ed subgraphs, 
onne
tivity and separation, expansion, andother properties. In Se
tion 19.3 we dis
uss problems related to diameters of poly-topal graphs in 
onne
tion with the simplex algorithm and the Hirs
h 
onje
ture.The short Se
tion 19.4 is devoted to polytopal digraphs. Se
tion 19.5 is devoted toskeletons of polytopes, 
onne
tivity, 
ollapsibility and shellability, empty fa
es andpolytopes with \few verti
es," and the re
onstru
tion of polytopes from their low-dimensional skeletons; �nally we 
onsider what 
an be said about the 
olle
tionsof all k-fa
es of a d-polytope, �rst for k = d� 1 and then when k is �xed and d islarge 
ompared to k.19.1 THREE-DIMENSIONAL POLYTOPESGLOSSARYConvex polytopes and their fa
es (and, in parti
ular their verti
es, edges, and fa
ets)are de�ned in Chapter 15 of this Handbook.A graph is d-polytopal if it is the graph of some d-polytope.The following standard graph-theoreti
 
on
epts are used: subgraphs, indu
ed sub-graphs, the 
omplete graph Kn on n verti
es, 
y
les, trees, a spanning tree ofa graph, valen
e (or degree) of a vertex in a graph, planar graphs, d-
onne
tedgraphs, 
oloring of a graph, subdivision of a graph, and Hamiltonian graphs.We brie
y dis
uss results on 3-polytopes. Some of the following theorems arethe starting points of mu
h resear
h, sometimes of an entire theory. Only in a few
ases are there high-dimensional analogues, and this remains an interesting goal forfurther resear
h.THEOREM 19.1.1 Whitney [104℄ (1932)Let G be the graph of a 3-polytope P . Then the graphs of fa
es of P are pre
iselythe indu
ed 
y
les in G that do not separate G.331



332 G. KalaiTHEOREM 19.1.2 Steinitz [96℄ (1916)A graph G is a graph of a 3-polytope if and only if G is planar and 3-
onne
ted.Steinitz's theorem is the �rst of several theorems that des
ribe the tame behav-ior of 3-polytopes. These theorems fail already in dimension four; see Chapter 15.The theory of planar graphs is a wide and ri
h theory. Let us quote here thefundamental theorem of Kuratowski.THEOREM 19.1.3 Kuratowski ([71, 98℄)A graph G is planar if and only if G does not 
ontain a subdivision of K5 or K3;3.THEOREM 19.1.4 Lipton and Tarjan [78℄ (1979), in a stronger form givenby Miller [83℄ (1986)The graph of every 3-polytope with n verti
es 
an be separated, by 2p2n verti
esforming a 
ir
uit in the graph, into 
onne
ted 
omponents of size at most 2n=3.It is worth mentioning that the Koebe 
ir
le pa
king theorem gives a newapproa
h to both the Steinitz and Lipton-Tarjan theorems. (See [108, 88℄).Euler's formula V � E + F = 2 has many appli
ations 
on
erning graphs of3-polytopes; in higher dimensions, our knowledge of fa
e numbers of polytopes (seeChapter 17) applies to the study of their graphs and skeletons. Simple appli
ationsof Euler's theorem are:THEOREM 19.1.5Every 3-polytopal graph has a vertex of valen
e at most 5. (Equivalently, every3-polytope has a fa
e with at most �ve sides.)THEOREM 19.1.6Every 3-polytope has either a trivalent vertex or a triangular fa
e.A deeper appli
ation of Euler's theorem is:THEOREM 19.1.7 Kotzig [70℄ (1955)Every 3-polytope has two adja
ent verti
es the sum of whose valen
es is at most 13.For a simple 3-polytope P , let pk = pk(P ) be the number of k-sized fa
es of P .THEOREM 19.1.8 Eberhard [29℄ (1891)For every �nite sequen
e (pk) of nonnegative integers with Pk�3(6 � k)pk = 12,there exists a simple 3-polytope P with pk(P ) = pk for every k 6= 6.Eberhard's theorem is the starting point of a large number of results and prob-lems, see. e.g., [51, 46, 40℄. While no high-dimensional dire
t analogues are knownor even 
onje
tured, the results and problems on fa
et-forming polytopes and non-fa
ets mentioned below seem related.THEOREM 19.1.9 Motzkin [85℄ (1964)The graph of a simple 3-polytope whose fa
ets have 0 (mod 3) verti
es has, alltogether, an even number of edges.THEOREM 19.1.10 Barnette [10℄ (1966)Every 3-polytopal graph 
ontains a spanning tree of maximal valen
e 3.



Polytope skeletons and paths 333We will now des
ribe some results and a 
onje
ture on 
olorability and Hamil-tonian 
ir
uits.THEOREM 19.1.11 Four Color Theorem: Appel and Haken [4, 5, 92℄(1977)The graph of every 3-polytope is 4-
olorable.THEOREM 19.1.12 Tutte [99℄ (1956)4-
onne
ted planar graphs are Hamiltonian.Tait 
onje
tured in 1880, and Tutte disproved in 1946, that the graph of everysimple 3-polytope is Hamiltonian. This started a ri
h theory of trivalent planargraphs without large paths.CONJECTURE 19.1.13 BarnetteEvery graph of a simple 3-polytope whose fa
ets have an even number of verti
es isHamiltonian.Finally, there are several exa
t and asymptoti
 formulas for the numbers ofdistin
t graphs of 3-polytopes. A remarkable enumeration theory was developed byTutte and was further developed by several authors. We will quote one result.THEOREM 19.1.14 Tutte [100℄ (1962)The number of rooted simpli
ial 3-polytopes with v verti
es is2(4v � 11)!(3v � 7)!(v � 2)! :Tutte's theory provides also eÆ
ient algorithms to generate random planargraphs of various types.PROBLEM 19.1.15How does a random 3-polytopal graph look like?Motivation to study this problem (and high-dimensional extensions) 
omes alsofrom physi
s (spe
i�
ally, \quantum gravity"). See [1, 3, 23℄. One surprising prop-erty of random planar maps of various kinds is that the expe
ted number of verti
esof distan
e at most r from a given vertex behaves like r4. (Compared to r2 for theplanar grid.)19.2 GRAPHS OF d-POLYTOPES|GENERALITIESGLOSSARYFor a graph G, TG denotes any subdivision of G, i.e., any graph obtained fromG by repla
ing the edges of G by paths with disjoint interiors.A d-polytope P is simpli
ial if all its proper fa
es are simpli
es. P is simple ifevery vertex belongs to d edges or, equivalently, if the polar of P is simpli
ial.P is 
ubi
al if all its proper fa
es are 
ubes.



334 G. KalaiA simpli
ial polytope P is sta
ked if it is obtained by the repeated operation ofgluing a simplex along a fa
et.For the de�nition of the 
y
li
 polytope C(d; n), see Chapter 15.For two graphs G and H (
onsidered as having disjoint sets V and V 0 of verti
es),G+H denotes the graph on V [ V 0 that 
ontains all edges of G and H togetherwith all edges of the form fv; v0g for v 2 V and v0 2 V 0.A graph G is d-
onne
ted if G remains 
onne
ted after the deletion of any set ofat most d� 1 verti
es.An empty simplex of a polytope P is a set S of verti
es su
h that S does notform a fa
e but every proper subset of S forms a fa
e.A graph G whose verti
es are embedded in Rd is rigid if every small perturbationof the verti
es of G that does not 
hange the distan
e of adja
ent verti
es in G isindu
ed by an aÆne rigid motion of Rd. G is generi
ally d-rigid if it is rigidwith respe
t to \almost all" embeddings of its verti
es into Rd. (Generi
 rigidityis thus a graph theoreti
 property, but no des
ription of it in pure 
ombinatorialterms is known for d > 2; 
f. Chapter 59.)A set A of verti
es of a graph G is totally separated by a set B of verti
es, if Aand B are disjoint and every path between two distin
t verti
es in A meets B.A graph G is an �-expander if, for every set A of at most half the verti
es of G,there are at least � � jAj verti
es not in A that are adja
ent to verti
es in A.Neighborly polytopes and (0; 1)-polytopes are de�ned in Chapter 15.The polar dual P� of a polytope P is de�ned in Chapter 15.SUBGRAPHS AND INDUCED SUBGRAPHSTHEOREM 19.2.1 Gr�unbaum [35℄ (1965)Every d-polytopal graph 
ontains a TKd+1.THEOREM 19.2.2 Kalai [53℄(1987)The graph of a simpli
ial d-polytope P 
ontains a TKd+2 if and only if P is notsta
ked.One important di�eren
e between the situation for d = 3 and for d > 3 isthat Kn, for every n > 4, is the graph of a 4-dimensional polytope (e.g., a 
y
li
polytope). Simple manipulations on the 
y
li
 4-polytope with n verti
es show:PROPOSITION 19.2.3 Perles (unpublished)(i) Every graph G is a spanning subgraph of the graph of a 4-polytope.(ii) For every graph G, G+Kn is a d-polytopal graph for some n and some d.This proposition extends easily to higher-dimensional skeletons in pla
e ofgraphs. It is not known what the minimal dimension is for whi
h G + Kn is d-polytopal, nor even whether G +Kn (for some n = n(G)) 
an be realized in somebounded dimension uniformly for all graphs G.



Polytope skeletons and paths 335CONNECTIVITY AND SEPARATIONTHEOREM 19.2.4 Balinski [8℄(1961)The graph of a d-polytope is d-
onne
ted.A set S of d verti
es that separates P must form an empty simplex; in this
ase, P 
an be obtained by gluing two polytopes along a simplex fa
et of ea
h.THEOREM 19.2.5 Larman and Mani[73℄ (1970)Let G be the graph of a d-polytope. Let e = b(d + 1)=3
. Then for every twodisjoint sequen
es (v1; v2; : : : ; ve) and (w1; w2; : : : we) of verti
es of G, there are evertex-disjoint paths 
onne
ting vi to wi, i = 1; 2; : : : ; e.PROBLEM 19.2.6 LarmanIs the last theorem true for e = bd=2
?THEOREM 19.2.7 Cau
hy, Dehn, Alexandrov, Whiteley, ...(i) For, d = 3: Cau
hy's theorem. If P is a simpli
ial d-polytope, d � 3, thenG(P ) (with its embedding in Rd) is rigid.(ii) Whiteley's theorem. For a general d-polytope P , let G0 be a graph (embedded inRd) obtained from G(P ) by triangulating the 2-fa
es of P without introdu
ingnew verti
es. Then G0 is rigid.COROLLARY 19.2.8For a simpli
ial d-polytope P , G(P ) is generi
ally d-rigid. For a general d-polytopeP and a graph G0 (
onsidered as an abstra
t graph) as in the previous theorem, G0is generi
ally d-rigid.The main 
ombinatorial appli
ation of the above theorem is the Lower BoundTheorem (see Chapter 17) and its extension to general polytopes.Note that Corollary 19.2.8 
an be regarded also as a strong form of Balin-ski's theorem. It is well known and easy to prove that a generi
 d-rigid graphis d-
onne
ted. Therefore, for simpli
ial (or even 2-simpli
ial) polytopes Corol-lary 19.2.8 implies dire
tly that G(P ) is d-
onne
ted.For general polytopes we 
an derive Balinski's theorem as follows. Suppose tothe 
ontrary that the graph G of a general d-polytope P is not d-
onne
ted andtherefore its verti
es 
an be separated into two parts (say, red verti
es and blueverti
es) by deleting a set A of d�1 verti
es. It is easy to see that every 2-fa
e of P
an be triangulated without introdu
ing a blue-red edge. Therefore, the resultingtriangulation is not (d�1)-
onne
ted and hen
e it is not generi
ally d-rigid. This
ontradi
ts the assertion of Corollary 19.2.8.Let �(n; d) = fd�1(C(d; n)) be the number of fa
ets of a 
y
li
 d-polytope withn verti
es, whi
h, by the Upper Bound Theorem, is the maximal number of fa
etspossible for a d-polytope with n verti
es.THEOREM 19.2.9 Klee [63℄ (1964)The number of verti
es of a d-polytope that 
an be totally separated by n verti
es isat most �(n; d).Klee also showed by 
onsidering 
y
li
 polytopes with simpli
es sta
ked to ea
h



336 G. Kalaiof their fa
ets that this bound is sharp . It follows that there are graphs of simpli
iald-polytopes whi
h are not graphs of (d � 1)-polytopes. (After realizing that the
omplete graphs are 4-polytopal a naive thought would be that every d-polytopalgraph is 4-polytopal.)EXPANSIONExpansion properties for the graph of the d-dimensional 
ube are known and im-portant in various areas of 
ombinatori
s. By dire
t 
ombinatorial methods, one
an obtain expansion properties of duals to 
y
li
 polytopes. There are a few pos-itive results and several interesting 
onje
tures on expansion properties of graphsof large families of polytopes.THEOREM 19.2.10 Kalai [56℄(1992)Graphs of duals to neighborly d-polytopes with n fa
ets are �-expanders for � =O(n�4).This result implies that the diameter of graphs of duals to neighborly d-polytopeswith n fa
ets is O(d � n4 � logn).CONJECTURE 19.2.11 Mihail and VaziraniGraphs of (0; 1)-polytopes P have the following expansion property: For every setA of at most half the verti
es of P , the number of edges joining verti
es in A toverti
es not in A is at least jAj.The Mihail and Vazirani 
onje
ture is from Feder and Mihail [30℄; Re
ent ref-eren
e: Kaibel [52℄It is also 
onje
tured that graphs of polytopes 
annot have very good expansionproperties:CONJECTURE 19.2.12 Graphs of polytopes are not very good expanders,[56℄Let d be �xed. The graph of every simple d-polytope with n verti
es 
an be separatedinto two parts, ea
h having at least n=3 verti
es, by removing O(n1�1=(d�1)) verti
es.It is known that there are dual graphs to triangulations of S3 whi
h 
annot beseparated even by O(n= logn) verti
es [84℄. Graphs of dual to 
y
li
 2k-polytopeswith n verti
es when n is large looks somewhat like graphs of grids in Zk and, inparti
ular, we 
annot �nd for them a separator of size o(n1�1=k).CONJECTURE 19.2.13 Expansion properties of random polytopes, [56℄A random simple d-polytope with n fa
ets is an O(1=(n� d))-expander.This 
onje
ture is vaguely stated sin
e there are various models for randompolytopes. There are models based on geometri
 notion on randomness. For exam-ple 
onsider polytopes (
ontaining the origin) whi
h are determined by n randomhyperplanes that are tangent to the unit sphere. There is mu
h re
ent interest inrandom gaussian perturbations of a �xed simple polytope [95℄. We 
an also 
onsidera random 
ombinatorial type.



Polytope skeletons and paths 337CONJECTURE 19.2.14 There are only a \few" graphs of polytopesThe number of distin
t (isomorphism types) of graphs of simple d-polytopes with nverti
es is at most Cnd , where Cd is a 
onstant depending on d.It is even possible that the same 
onstant applies for all dimensions and thatthe 
onje
ture holds even for graphs of general polytopes. This 
onje
ture is ofinterest also for dual graphs of triangulations of spheres. Conje
ture 19.2.12 (andeven a mu
h weaker seperation property) would imply Conje
ture 19.2.14.OTHER PROPERTIESCONJECTURE 19.2.15 BarnetteEvery graph of a simple d-polytope, d � 4, is Hamiltonian.THEOREM 19.2.16 (1978)For a simple d-polytope P , G(P ) is 2-
olorable if and only if G(P�) is d-
olorable.This theorem was proved in an equivalent form for d = 4 by Goodman andOnishi [34℄. (For d = 3 it is a 
lassi
al theorem by Ore.) For the general 
ase,see Joswig [48℄. This theorem is related to seeking two-dimensional analogs ofHamiltonian 
y
les in skeletons of polytopes and manifolds, see [94℄.19.3 DIAMETERS OF POLYTOPAL GRAPHSGLOSSARYA d-polyhedron is the interse
tion of a �nite number of halfspa
es in Rd.�(d; n) denotes the maximal diameter of the graphs of d-dimensional polyhedra Pwith n fa
ets.�b(d; n) denotes the maximal diameter of the graphs of d-polytopes with n verti
es.Given a d-polyhedron P and a linear fun
tional � on Rd, we denote by G!(P ) thedire
ted graph obtained from G(P ) by dire
ting an edge fv; ug from v to u if�(v) � �(u). v 2 P is a top vertex if � attains its maximum value in P on v.Let H(d; n) be the maximum over all d-polyhedra with n fa
ets and all linearfun
tionals on Rd of the maximum length of a minimal monotone path from anyvertex to a top vertex.Let M(d; n) be the maximal number of verti
es in a monotone path over all d-polyhedra with n fa
ets and all linear fun
tionals on Rd.For the notions of simpli
ial 
omplex, polyhedral 
omplex, pure simpli
ial 
omplex,and the boundary 
omplex of a polytope, see Chapter 17.Given a pure (d�1)-dimensional simpli
ial (or polyhedral) 
omplex K, the dualgraph G�(K) of K is the graph whose verti
es are the fa
ets ((d�1)-fa
es) ofK, with two fa
ets F; F 0 adja
ent if dim (F \ F 0) = d� 2.



338 G. KalaiA pure simpli
ial 
omplex K is vertex-de
omposable if there is a vertex v of Ksu
h that lk(v) = fSnfvg j S 2 K; v 2 Sg and ast(v) = fS j S 2 K; v =2 Sg areboth vertex-de
omposable. (The 
omplex K = f;g 
onsisting of the empty fa
ealone is vertex-de
omposable.)It is a long-outstanding open problem to determine the behavior of the fun
tion�(d; n). In 1957, Hirs
h 
onje
tured that �(d; n) � n � d. Klee and Walkup [67℄showed that the Hirs
h 
onje
ture is false for unbounded polyhedra. The Hirs
h
onje
ture for bounded polyhedra is still open. The spe
ial 
ase asserting that�b(d; 2d) = d is 
alled the d-step 
onje
ture, and it was shown by Klee andWalkup to imply that �b(d; n) � n � d. Another equivalent formulation is thatbetween any pair of verti
es v and w of a polytope P there is a nonrevisiting path,i.e., a path v = v1; v2; :::; vm = w su
h that for every fa
et F of P , if vi; vj 2 F fori < j then vk 2 F for every k; i � k � j.THEOREM 19.3.1 Klee and Walkup (1967)�(d; n) � n� d+minfbd=4
; b(n� d)=4
g:THEOREM 19.3.2 Holt and Klee [43, 44, 45℄ (1998), Fritzs
he and Holt[33℄(2000)For n > d � 8 �b(d; n) � n� d:THEOREM 19.3.3 Barnette[13℄ (1974)�(d; n) � 23 � (n� d+ 5=2) � 2d�3:THEOREM 19.3.4 Kalai and Kleitman [60℄ (1992)�(d; n) � n � �logn+ dd � � nlog d+1:The major open problem in this area is:PROBLEM 19.3.5 Is there a polynomial upper bound for �(d; n)? Is therea linear upper bound for �(d; n)?Some spe
ial 
lasses of polytopes are known to satisfy the Hirs
h bound or tohave upper bounds for their diameters that are polynomial in d and n.THEOREM 19.3.6 Provan and Billera [91℄ (1980)Let G be the dual graph that 
orresponds to a vertex-de
omposable (d�1)-dimensionalsimpli
ial 
omplex with n verti
es. Then the diameter of G is at most n� d.It is known that this theorem does not imply the Hirs
h 
onje
ture (for poly-topes) sin
e there are simpli
ial polytopes whose boundary 
omplexes are notvertex-de
omposable. Yet, su
h examples are not so easy to 
ome by.THEOREM 19.3.7 Naddef [86℄ (1989)The graph of every (0; 1) d-polytope has diameter at most d.Balinski [9℄ proved the Hirs
h bound for dual transportation polytopes, Dyerand Frieze [28℄ showed a polynomial upper bound for unimodular polyhedra, Kalai



Polytope skeletons and paths 339[57℄ observed that if the ratio between the number of fa
ets and the dimension isbounded above for the polytope and all its fa
es then the diameter is bounded aboveby a polynomial in the dimension, Kleins
hmidt and Onn [68℄ proved extensions ofNaddef's results to integral polytopes, and Deza and Onn [27℄ found upper boundsfor the diameter in terms of latti
e points in the polytope.The value of �(d; n) is a lower bound for the number of iterations needed forDantzig's simplex algorithm for linear programming with any pivot rule. However,it is still an open problem to �nd pivot rules where ea
h pivot step 
an be 
omputedwith a polynomial number of arithmeti
 operations in d and n su
h that the numberof pivot steps needed 
omes 
lose to the upper bounds for �(d; n) given above. SeeChapter 44.The problem of routing in graphs of polytopes, namely �nding a path betweentwo verti
es is an interesting 
omputational problem.PROBLEM 19.3.8 Find an eÆ
ient routing algorithm for 
onvex polytopesUsing linear programming it is possible to �nd a path in a polytope P betweentwo verti
es that obeys the upper bounds given above su
h that the number of 
allsto the linear programming subroutine is roughly the number of edges of the path.Finding a routing algorithm for polytopes with a \small" number of arithmeti
operations as a fun
tion of d and n is an interesting 
hallenge. The subexponentialsimplex type algorithms (see Chapter 44) yield subexponential routing algorithm,but improvement for routing beyond what is known for linear programming ispossible.The upper bounds for �(d; n) mentioned above apply even to H(d; n). Kleeand Minty 
onsidered a 
ertain geometri
 realization of the d-
ube to show thatTHEOREM 19.3.9 Klee and Minty [66℄ (1972)M(d; 2d) � 2d.Re
ent far-rea
hing extensions of the Klee-Minty 
onstru
tion were found byAmenta and Ziegler[2℄ . It is not known for d > 3 and n � d + 3 what is thepre
ise upper bound forM(d; n) and does it 
oin
ide with the maximum number ofverti
es of a d-polytope with n fa
ets given by the upper bound theorem (Chapter17). See, Pfei
e [90℄.19.4 POLYTOPAL DIGRAPHSGiven a d-polytope P and a linear obje
tive fun
tion � su
h that � is not
onstant on edges, dire
t every edge of G(P ) towards the vertex with the highervalue of the obje
tive fun
tion. A dire
ted graph obtained in this way is 
alled apolytopal digraph.The following basi
 result is fundamental for the simplex algorithm and alsohas many appli
ations for the 
ombinatorial theory of polytopes.THEOREM 19.4.1 Folklore, see, e.g., [105℄A polytopal digraph has one sink (and one sour
e). Morover, every indu
ed sub-graphs on verti
es of any fa
e F of the polytope has one sink (and one sour
e).



340 G. KalaiAn a
y
li
 orientation of G(P ) with the property that every fa
e has a uniquesink is 
alled an abstra
t obje
tive fun
tion. Joswig, Kaibel and K�orner [49℄showed that an a
y
li
 orientation for whi
h every 2-dimensional fa
e has a uniquesink is already an abstra
t obje
tive fun
tion.The h-ve
tor of a simpli
ial polytope P has a simple and important interpreta-tion in terms of the dire
ted graph that 
orresponds to the polar of P . The numberhk(P ) is the number of verti
es v of P� of outdegree k. (Re
all that every vertexin a simple polytope has exa
tly d neighboring verti
es.) Swit
hing from � to ��,one gets the Dehn-Sommerville relations hk = hd�k (in
luding the Euler relationfor k = 0); see Chapter 17.Studying polytopal digraphs and digraphs obtained by abstra
t obje
tive fun
-tions is very interesting in the three dimensional 
ase and in high dimensions.THEOREM 19.4.2 Mihalisin and Klee [82℄(2000)Suppose that K is an orientation of a 3-polytopal graph G. Then the digraph K is3-polytopal if and only if it is a
y
li
, has a unique sour
e and a unique sink, andadmits three independent monotone paths from the sour
e to the sink.Mihalisin and Klee write in their arti
le \we hope that the present arti
le willopen the door to a broader study of polytopal digraphs".19.5 SKELETONS OF POLYTOPESGLOSSARYA pure polyhedral 
omplexK is strongly 
onne
ted if its dual graph is 
onne
ted.A shelling order of the fa
ets of a polyhedral (d�1)-dimensional sphere is anordering of the set of fa
ets F1; F2; : : : ; Fn so that the simpli
ial 
omplex Kispanned by F1 [ F2 [ � � � [ Fi is a simpli
ial ball for every i < n. A polyhedral
omplex is shellable if there exists a shelling order of its fa
ets.A simpli
ial polytope is extendably shellable if any way to start a shelling 
anbe 
ontinued to a shelling.An elementary 
ollapse on a simpli
ial 
omplex is the deletion of two fa
es F andG so that F is maximal and G is a 
odimension-1 fa
e of F that is not in
ludedin any other maximal fa
e. A polyhedral 
omplex is 
ollapsible if it 
an beredu
ed to the void 
omplex by repeated appli
ations of elementary 
ollapses.A d-dimensional polytope P is fa
et-forming if there is a (d+1)-dimensional poly-tope Q su
h that all fa
ets of Q are 
ombinatorially isomorphi
 to P . If no su
hQ exists, P is 
alled a nonfa
et.A rational polytope is a polytope whose verti
es have rational 
oordinates. (Notevery polytope is 
ombinatorially isomorphi
 to a rational polytope; see Chap-ter 15.)A d-polytope P is k-simpli
ial if all its fa
es of dimension at most k are simpli
es.P is k-simple if its polar dual P� is k-simpli
ial.Zonotopes are de�ned in Chapters 15 and 17.



Polytope skeletons and paths 341Let K be a polyhedral 
omplex. An empty simplex S of K is a minimal nonfa
eof K, i.e., a subset S of the verti
es of K with S itself not in K, but every propersubset of S in K.Let K be a polyhedral 
omplex and let U be a subset of its verti
es. The indu
edsub
omplex of K on U , denoted by K[U ℄, is the set of all fa
es in K whoseverti
es belong to U . An empty fa
e of K is an indu
ed polyhedral sub
omplexof K that is homeomorphi
 to a polyhedral sphere. An empty 2-dimensionalfa
e is 
alled an empty polygon. An empty pyramid of K is an indu
edsub
omplex of K that 
onsists of all the proper fa
es of a pyramid over a fa
eof K.CONNECTIVITY AND SUBCOMPLEXESTHEOREM 19.5.1 Gr�unbaum [35℄ (1965)The i-skeleton of every d-polytope 
ontains a subdivision of skeli(�d), the i-skeletonof a d-simplex.THEOREM 19.5.2 Folklore(i) For i > 0, skeli(P ) is strongly 
onne
ted.(ii) For every fa
e F , let Ui(F ) be the set of all i-fa
es of P 
ontaining F . Thenif i > dimF , Ui(F ) is strongly 
onne
ted.Part (ii) follows at on
e from the fa
t that the fa
es of P 
ontaining F 
or-respond to fa
es of the quotient polytope P=F . However, properties (i) and (ii)together are surprisingly strong, and all the known upper bounds for diameters ofgraphs of polytopes rely only on properties (i) and (ii) for the dual polytope.THEOREM 19.5.3 van Kampen and Flores [101, 32, 106℄(1935)For i � bd=2
, skeli(�d+1) is not embeddable in Sd�1 (and hen
e not in the bound-ary 
omplex of any d-polytope).(This extends the fa
t that K5 is not planar.)CONJECTURE 19.5.4 Lo
kebergFor every partition of d = d1 + d2 + � � � dk and two verti
es v and w of P , thereare k disjoint paths between v and w su
h that the i th path is a path of di-fa
es inwhi
h any two 
onse
utive fa
es have (di�1)-dimensional interse
tion.SHELLABILITY AND COLLAPSIBILITYTHEOREM 19.5.5 Bruggesser and Mani [22℄(1970)Boundary 
omplexes of polytopes are shellable.The proof of Bruggesser and Mani is based on starting with a point near the
enter of a fa
et and moving from this point to in�nity, and ba
k from the other
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tion, keeping tra
k of the order in whi
h fa
ets are seen. This proves a strongerform of shellability, in whi
h ea
h Ki is the 
omplex spanned by all the fa
ets that
an be seen from a parti
ular point in Rd. It follows from shellability thatTHEOREM 19.5.6Polytopes are 
ollapsible.THEOREM 19.5.7 Ziegler [107℄ (1992)There are d-polytopes, d � 4, whose boundary 
omplexes are not extendably shellable.THEOREM 19.5.8 There are triangulations of the (d�1)-sphere whi
h arenot shellable.Li
korish [77℄ produ
ed expli
it examples of nonshellable triangulations of S3.His result was that a triangulation 
ontaining a suÆ
iently 
ompli
ated knotted tri-angle was not shellable. Ha
himori and Ziegler [42℄ produ
ed simple examples andshowed that a triangulation 
ontaining any knotted triangle is not \
onstru
tible",
onstru
tibility being a stri
tly weaker notion than shellability. For more on shella-bility, see [25℄ [19℄.FACET-FORMING POLYTOPES AND SMALL LOW-DIMENSIONAL FACESTHEOREM 19.5.9 Perles and Shephard [89℄(1967)Let P be a d-polytope su
h that the maximum number of k-fa
es of P on any (d�2)-sphere in the skeleton of P is at most (d � 1� k)=(d + 1� k)fk(P ). Then P is anonfa
et.An example of a nonfa
et whi
h is simple was found by Barnette [11℄. . Someof the proofs of Perles and Shaphard uses metri
 properties of polytopes and for afew of the results alternatives proofs using shellability were found by Barnette [11℄.THEOREM 19.5.10 S
hulte [93℄ (1985)The 
ubo
tahedron and the i
osidode
ahedron are nonfa
ets.PROBLEM 19.5.11Is the i
osahedron fa
et-forming?For all other regular polytopes the situation is known. The simpli
es and 
ubesin any dimension and the 3-dimensional o
tahedron are fa
et-forming. All otherregular polytopes with the ex
eption of the i
osahedron are known to be nonfa
ets.It is very interesting to �nd what 
an be said on metri
al properties of fa
ets(or low dimensional fa
es) of a 
onvex polytope.THEOREM 19.5.12 Barany (unpublished)There exist � > 0 su
h that every d-polytope, d > 2, has a fa
et F su
h that thereis no ball B1 of radius R and a ball B2 of radius (1 + �)R su
h that B1 � F � B2.The stronger statement where balls are repla
ed by elipses is open.Next, we try to understand if it is possible for all the k-fa
es of a d-polytope
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 to a given polytope P . The following 
onje
ture asserts that if dis large with respe
t to k, this 
an happen only if P is either a simplex or a 
ube.CONJECTURE 19.5.13 KalaiFor every k there is a d(k) su
h that every d-polytope with d > d(k) has a k-fa
ethat is either a simplex or 
ombinatorially isomorphi
 to a k-dimensional 
ube.Re
ently, Julian Pfei
e showed based on the Wytho� 
onstru
tion (see Chapter18) that d(k) > (2k � 1)(k � 1), for k � 3.For simple polytopes, it follows from the next theorem that if d > 
k2 thenevery d-polytope has a k-fa
e F su
h that fr(F ) � fr(Ck). (Here, Ck denotes thek-dimensional 
ube.)THEOREM 19.5.14 Nikulin [87℄ (1981)The average number of r-dimensional fa
es of a k-dimensional fa
e of a simpled-dimensional polytope is at most�d� rd� k� � ���bd=2
r �+�b(d+ 1)=2
r �����bd=2
k �+�b(d+ 1)=2
k ��� :Nikulin's theorem appeared in his study of re
e
tion groups in hyperboli
spa
es. The existen
e of re
e
tion groups of 
ertain types implies some 
ombina-torial 
onditions on their fundamental regions (whi
h are polytopes) and Vinberg,Nikulin, Khovanski [102, 87, 62℄ and others showed that in high dimensions these
ombinatorial 
onditions lead to a 
ontradi
tion. There are still many open prob-lems in this dire
tion. In parti
ular, to narrow the gap between the dimensionsabove whi
h those re
e
tion groups 
annot exists and the dimensions for whi
hsu
h groups 
an be 
onstru
ted.THEOREM 19.5.15 Kalai [55℄ (1989)Every d-polytope for d � 5 has a 2-fa
e with at most 4 verti
es.THEOREM 19.5.16 Meisinger, Kalai and Kleins
hmidt [80℄ (2000)Every rational d-polytope for d � 9 has a 3-fa
e with at most 150 verti
es.The last two theorems and the next one are proved using the linear inequalitiesfor 
ag numbers that are known via interse
tion homology of tori
 varieties; seeChapter 17. One 
an also study, in a similar fashion, quotients of polytopes.CONJECTURE 19.5.17 PerlesFor every k there is a d0(k) su
h that every d-polytope with d > d0(k) has a k-dimensional quotient that is a simplex.As was mentioned in the �rst se
tion, d0(2) = 3. The 24-
ell, whi
h is a regular4-polytope all whose fa
es are o
tahedra, shows that d0(3) > 4.THEOREM 19.5.18 Meisinger, Kalai and Kleins
hmidt [80℄ (2000)Every d-polytope with d � 9 has a 3-dimensional quotient that is a simplex.PROBLEM 19.5.19For whi
h values of k and r are there d-polytopes other than the d-simplex that are
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ial and r-simple?It is known that this 
an happen only when k+r � d. There are in�nite familiesof (d�2)-simpli
ial and 2-simple polytopes, and some examples of (d�3)-simpli
ialand 3-simple d-polytopes.Con
erning this problem Peter M
Mullen re
ently noted that the polytopesrst, dis
ussed in Coxeter's 
lassi
 book on regular polytopes [24℄ in Se
tions 11.8,11.x, are (r+2)-simpli
ial d� r� 2-simple, where d = r+ s+ t+1. These Gosset-Elte polytopes arise by the so-
alled Wytho� 
onstru
tion from the �nite re
e
tiongroups (see Chapter 18); we obtain a �nite polytope whenever the re
e
tion groupgenerated by the Coxeter diagram with r; s; t nodes on the three arms are �nite,that is, when 1=(r + 1) + 1=(s+ 1) + 1=(t+ 1) > 1:The largest ex
eptional example, 241, is related to the Weyl group E8. The Gosset-Elte polytope 241, is a 4-simple 4-simpli
ial 8-polytope with 2160 verti
es. Arethere 5-simpli
ial 5-simple 10-polytopes?THEOREM 19.5.20For d > 2, there is no 
ubi
al d-polytope P whose dual is also 
ubi
al.I am not aware of a referen
e for this result but it 
an easily be proved byshowing a 
overing map from the standard 
ubi
al 
omplex realizing Rd�1 into K.We talked about �nding very spe
ial polytopes as \subobje
ts" (fa
es, quo-tients) of arbitrary polytopes. What about realizing arbitrary polytopes as \sub-obje
ts" of very spe
ial polytopes? There is an old 
onje
ture that every polytope
an be realized as a subpolytope (namely the 
onvex hull of a subset of the verti
es)of a sta
ked polytope. Perles and Sturmfels asked if every simlpi
ial d-polytope 
anbe realized as the quotient of some neighborly even-dimensional polytope. (Re
allthat a 2m-polytope is neighborly if every m verti
es are the verti
es of a (m � 1)-dimensional fa
e.) Kortenkamp [69℄ proved that this is the 
ase for d-polytopeswith at most d + 4 verti
es. For general polytopes \neighborly polytopes" shouldbe repla
ed here by \weakly-neighborly" polytopes, introdu
ed by Bayer [15℄, whi
hare de�ned by the property that every set of k verti
es is 
ontained in a fa
e ofdimension at most 2k � 1. The only theorem of this 
avour I am aware of is byBillera and Sarangarajan [17℄ who proved that every 0-1 polytope is a fa
e of atravelling salesman polytope.RECONSTRUCTIONTHEOREM 19.5.21 An extension of Whitney's theorem, [36℄d-polytopes are determined by their (d�2)-skeletons.THEOREM 19.5.22 Perles (1973) (unpublished)Simpli
ial d-polytopes are determined by their bd=2
-skeletons.This follows from the following theorem (here, ast(F; P ) is the 
omplex formedby the fa
es of P that are disjoint to all verti
es in F ).THEOREM 19.5.23 Perles (1973)
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ial d-polytope.(i) If F is a k-fa
e of P , then skeld�k�2(ast(F; P )) is 
ontra
tible inskeld�k�1(ast(F; P )).(ii) If F is an empty k-simplex, then ast(F; P ) is homotopi
ally equivalent toSd�k; hen
e, skeld�k�2(ast(F; P )) is not 
ontra
tible in skeld�k�1(ast(F; P )).An extension of Perles' theorem for manifolds with a vanishing middle homologywas proved by Dan
is [26℄.THEOREM 19.5.24 Blind and Mani [21℄ (1987)Simple polytopes are determined by their graphs.Blind and Mani des
ribed their theorem in a dual form and 
onsidered (d� 1)-dimensional \puzzles" whose pie
es are simpli
es and we wish to solve the puzzlebased on the \lo
al" information: whi
h two simpli
es share a fa
et. Joswig ex-tended their result to more genaral puzzles where the pie
es are general (d � 1)-dimensional polytopes and the way every two pie
es whi
h share a fa
et are 
on-ne
ted is also pres
ribed. A simple proof is given in [54℄. This proofs also showsthat k-dimensional skeletons of simpli
ial polytopes are also determined by their\puzzle". Combined with Perles' theorem it follows that:THEOREM 19.5.25 Kalai and Perles (1988)Simpli
ial d-polytopes are determined by the in
iden
e relations between i- and(i+ 1)-fa
es for every i > bd=2
.CONJECTURE 19.5.26 Haase and ZieglerLet G be a graph of a simple 4-polytope. Let H be an indu
ed, non-separating,3-regular, 3-
onne
ted planar subgraph of G. Then H is the graph of a fa
et of P .Haase and Ziegler [41℄ showed that this is not the 
ase if H is not planar. Theirproof tou
hes on the issue of embedding knots in skelatons of 4-polytopes.PROBLEM 19.5.27 Are simpli
ial spheres determined by the in
iden
erelation between fa
ets and sub-fa
ets?THEOREM 19.5.28 Bj�orner, Edelman, and Ziegler [20℄ (1990)Zonotopes are determined by their graphs.THEOREM 19.5.29 Babson, Fins
hi and Fukuda [7℄ (2001)Duals of 
ubi
al zonotopes are determined by their graphs.In all instan
es of the above theorems ex
ept the single 
ase of the Blind-Mani theorem, the proofs give re
onstru
tion algorithms that are polynomial inthe data. It is an open question if a polynomial algorithm exists to determine asimple polytope from its graph. A polynomial \
erti�
ate" for re
onstru
tion wasre
ently found by Joswig, Kaibel and K�orner [49℄.An interesting problem was whether there is an e-dimensional polytope otherthan the d-
ube with the same graph as the d-
ube?THEOREM 19.5.30 Joswig and Ziegler [50℄ (2000)



346 G. KalaiFor every d � e � 4 there is an e-dimensional 
ubi
al polytopes with 2d verti
eswhose be=2
� 1-skeleton is 
ombinatorially isomorphi
 to the be=2
� 1-skeleton ofa d-dimensional 
ube.Earlier Babson, Billera, and Chan [6℄ found su
h a 
onstru
tion for 
ubi
alspheres.Another issue of re
onstru
tion for polytopes that was studied extensively is thefollowing: In whi
h 
ases does the 
ombinatorial stru
ture of a polytope determineits geometri
 stru
ture (up to proje
tive transformations)? Su
h polytopes are
alled proje
tively unique, and the major unsolved problem is:PROBLEM 19.5.31Are there only �nitely many proje
tively unique polytopes in ea
h dimension?M
Mullen [79℄ 
onstru
ted proje
tively unique d-polytopes with 3d=3 verti
es.EMPTY FACES AND POLYTOPES WITH FEW VERTICESTHEOREM 19.5.32 Perles (unpublished manus
ript) (1970)Let f(d; k; b) be the number of 
ombinatorial types of k-skeletons of d-polytopes withd+ b+ 1 verti
es. Then, for �xed b and k, f(d; k; b) is bounded.This follows fromTHEOREM 19.5.33 Perles (1970)The number of empty i-pyramids for d-polytopes with d + b verti
es is bounded bya fun
tion of i and b.For another proof of this theorem see [58℄.For a d-polytope P , let ei(P ) denote the number of empty i-simpli
es of P .PROBLEM 19.5.34Chara
terize the sequen
e of numbers (e1(P ); e2(P ); : : : ; ed(P )) arising from sim-pli
ial d-polytopes and from general d-polytopes.The following theoremmotivated by 
ommutative-algebrai
 problems 
on�rmeda 
onje
ture by Kleins
hmidt, Kalai and Lee.THEOREM 19.5.35 Migliore and Nagel, [81℄ (2002)For all simpli
ial d-polytopes with pres
ribed h-ve
tor h = (h0; h1; : : : ; hd), thenumber of i-dimensional empty simpli
es is maximized by the Billera-Lee polytopesPBL(h).PBL(h) is the polytope 
onstru
ted by Billera and Lee [16℄ (see Chapter 17) intheir proof of the suÆ
ien
y part of the g-theorem. Migliore and Nagel proved thatfor a pres
ribed f -ve
tor, the Billera-Lee polytopes maximizes even more generalparameters that arise in 
ommutative algebra: The sum of the i-th Betti numbersof indu
ed sub
omplexes on j verti
es for every i and j. (The 
ase j = i+2 redu
esto 
ounting missing fa
es.) It is quite possible that the theorem of Migliore andNagel extends to general simpli
ial spheres with pres
ribed h-ve
tor and to generalpolytopes with pres
ribed (tori
) h-ve
tor. (However, it is not yet known in these
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ases that the h-ve
tors are always those of Billera-Lee polytopes, see Chapter 17.)19.6 CONCLUDING REMARKS AND EXTENSIONS TOMORE GENERAL OBJECTSThe reader who 
ompares this 
hapter with other 
hapters on 
onvex polytopesmay noti
e the sporadi
 nature of the results and problems des
ribed here. In-deed, it seems that our main limits in understanding the 
ombinatorial stru
ture ofpolytopes still lie in our ability to raise the right questions. Another feature that
omes to mind (and is not unique to this area) is the la
k of examples, methods of
onstru
ting them, and means of 
lassifying them.We have 
onsidered mainly properties of general polytopes and of simple orsimpli
ial polytopes. There are many 
lasses of polytopes that are either of intrinsi
interest from the 
ombinatorial theory of polytopes, or that arise in various other�elds, for whi
h the problems des
ribed in this 
hapter are interesting.Most of the results of this 
hapter extend to mu
h more general obje
ts than
onvex polytopes. Finding 
ombinatorial settings for whi
h these results hold isan interesting and fruitful area. On the other hand, the results des
ribed here arenot suÆ
ient to distinguish polytopes from larger 
lasses of polyhedral spheres, and�nding deli
ate 
ombinatorial properties that distinguish polytopes is an importantarea of resear
h. Few of the results on skeletons of polytopes extend to skeletons ofother 
onvex bodies [74, 75, 76℄, and relating the 
ombinatorial theory of polytopeswith other aspe
ts of 
onvexity is a great 
hallenge.19.7 SOURCES AND RELATED MATERIALFURTHER READINGGr�unbaum [39℄ is a survey on polytopal graphs and many results and further refer-en
es 
an be found there). More material on the topi
 of this 
hapter and furtherrelevant referen
es 
an also be found in [36℄, [108℄, [18℄, [65℄, and [14℄. Martini's
hapter in [18℄ is on the regularity properties of polytopes (a topi
 not 
overedhere; 
f. Chapter 16), and 
ontains further referen
es on fa
et-forming polytopesand nonfa
ets. The original papers on fa
et-forming polytopes and nonfa
ets 
on-tain many more results, and des
ribe relations to questions on tiling spa
es withpolyhedra. Other 
hapters of [18℄ are also relevant to the topi
 of this se
tion.RELATED CHAPTERSChapter 15: Basi
 properties of 
onvex polytopesChapter 17: Fa
e numbers of polytopes and 
omplexesChapter 44: Linear programming in low dimensionsChapters 5,16,18,20,45 and 59 are also related to some parts of this 
hapter.
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