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Abstract

We will try to explore, primarily from the complexity-theoretic

point of view, limitations of error-correction and fault-tolerant quan-

tum computation.

We consider stochastic models of quantum computation on n qubits

subject to noise operators that are obtained as products of tiny noise

operators acting on a small number of qubits. We conjecture that

for realistic random noise operators of this kind there will be sub-

stantial dependencies between the noise on individual qubits and, in

addition, we propose that the dependence structure of the noise act-

ing on individual qubits will necessarily depend (systematically) on
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the dependence structure of the qubits themselves. We point out that

the majority function can repair, in the classical case, some forms of

stochastic noise of this kind and conjecture that this healing power

of majority has no quantum analog. The main hypothesis of this pa-

per is that these properties of noise are sufficient to reduce quantum

computation to probabilistic classical computation. Some potentially

relevant mathematical issues and problems will be described. Our line

of thought appears to be related to that of physicists Alicki, Horodecki,

Horodecki and Horodecki [AHHH].

1 Introduction

1.1 Background

The notion of quantum computation is certainly an exciting intellectual and

scientific development. Perhaps the most important result in this field and

certainly a major turning point was Shor’s discovery [S1] of a polynomial

quantum algorithm for factorization. While some people dismiss the whole

idea as a priori too far-fetched and others even regard Shor’s discovery as

an indication that sooner or later a polynomial classical algorithm for fac-

torization will follow, it is fair to say that the scientific community regards

the construction of quantum computers, which are more powerful than ordi-

nary computers, as a serious possibility. Whether computationally superior

quantum computers are possible is an exciting puzzle - from an intellectual,

scientific, and technological point of view.

An early critique of quantum computation concerned the matter of noise

which must exist for quantum systems. The possibility of achieving fault-

tolerant quantum computation (FTQC) was demonstrated by a series of

brilliant papers. Shor showed that quantum error-correction is possible and

with Calderbank [CS] developed this matter further. Shor [S2] also showed
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that quantum computation resilient to polylogarithmically-small noise is pos-

sible and Aharonov and Ben-Or [AB2] and several other groups (Gottesman,

Evslin, Kakade and Preskill; Knill and Laflamme; and Kitaev, see Aharonov

[A1], Preskill [P] and Kitaev [K1]) showed that resilient quantum computa-

tion to a noise that effects a small fraction of qubits is possible. In all these

papers, it was assumed that the noise is “local” ( a tensor product). In other

words, the noise operators on individual qubits (or sometimes several qubits

involved in a quantum gate) are independent.

The purpose of this paper is to try to find models of noise that are damag-

ing to current fault-tolerant quantum algorithms and potentially to quantum

computing in general. Our basic point of view is that of theoretical computer

science. The basic complexity-theoretic question is:

Problem 1.1 Can quantum computing be reduced to classical (probabilistic)

computing for models of noise other than those assumed in current fault-

tolerant algorithms?

I am thus interested in (even hypothetical) models of noise acting on

a system of n qubits where dependence between the noise operators act-

ing on individual qubits is permitted. At this stage, I am mainly trying

to get the problem right, and consider potentially relevant mathematics. I

pose some conjectures that are biased against the hypothesis of fault-tolerant

quantum computing. In the course of this study we will consider some prob-

lems and conjectures of independent interest concerning noise, noise sensi-

tivity, Boolean functions, random walks on groups of operators, and error-

correction.

It is worth mentioning that already Aharonov and Ben-Or have shown

that for certain types of noise, e.g. a sufficiently “strong” noise that is a

tensor product, a quantum algorithm can be (polynomially) simulated by

a classical one. In these cases the noise is sufficiently strong to prevent

entanglements of more than a logarithmic number of qubits.
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Quantum computers works on qubits (say n of them) that are at each

stage in a probabilistic position (state): namely, each of the 2n strings has

some probability which is the (normalized) absolute value of its (complex)

coefficient. These probabilities are described by a unit vector U in C2n

,

and it is convenient to think about the state of the n qubits as expressing

a unitary operator S acting on an initial state. The unitary operator S

expresses the computation carried out by the computer starting with the

initial state. This description (allowing for a measurement at the end of

the computation) is general enough to describe quantum computers. The

position of the computer is subject to noise which is usually described by an

operator T involving the n qubits and their environment. To describe the

state of a quantum computer subject to noise we need more general objects

referred to as density matrices. We represent U by a rank one matrix U∗ ·U
and consider the convex hull of all such matrices. (A density matrix can thus

represent a classical probability distribution on “pure” states.) General noise

needs to be described by a quantum operation which is more general than a

unitary operator.

For background on quantum computing, see Nielsen and Chuang’s book

[NC] and also Dorit Aharonov’s survey paper [A1] and Kitaev’s survey ar-

ticle [K1]. Greg Kuperberg’s emerging book [Ku] is a useful source for the

mathematics of quantum physics,1 and quantum operations in the context

of quantum computers.

For models of noisy quantum computers it is usually assumed that the

probability for a “faulty qubit” or the “rate of noise” is ǫ for some small but

not negligible positive real number ǫ.2 I tend to think of the “amount of

noise” of a noise operator T in terms of the Hilbert-Schmidt norm of (I−T ).

1Kuperberg raises the idea that quantum physics and the related “non-commutative”

probability may have applications to pure mathematics, similar perhaps to the the role of

the “probabilistic method” in various areas of mathematics.
2This refer to the rate of noise per qubit for one cycle time of the computer.
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(A more appropriate norm defines the commonly used “fidelity” measure for

noise.)

1.2 The attack

The best “attack” I can see at present is three folded.

a) Noise operators that deviate a little from the assumption of being tensor

products may kill any form of computations,

and

a’) Noise operators that act infinitesimally on a small number of qubits

may lead to a substantial dependence between the noise operating on

individual qubits.

b) The dependence of the noise operators on individual qubits is related

(systematically) to the dependence of the qubits themselves.

c) Devastating stochastic noise considered in a) and a’) can be healed by

“majority” in the classic case, but cannot be repaired in the quantum

case.

Part a’) appears to be similar to a critique proposed by Alicki, Horodecki,

Horodecki, and Horodecki in [AHHH] and their model appears to be related

also to part b).

1.3 Some notations and relevant classes of operators

I will now describe some classes of operators that will serve us later. In

particular, we will consider two interesting filtrations on the class of all op-

erators. When we talk about “all operators” the first class that comes to

mind is the class of all unitary operators. It is possible to follow most issues

raised in this paper having unitary operators in mind, and, in particular, to
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consider the definitions here as applying to unitary operators. The correct

class of “all operators” is the class of quantum operations.

A quantum operation is a linear map on density matrices which can be

written as

E(ρ) =
∑

k

EkρE∗
k ,

for some operators E1, . . . , Ek such that

∑

k

E∗
kEk = I.

A different way of thinking about quantum operations is to consider just

unitary operators but on a larger space — on our original n qubits and their

environment. We can regard the environment to be represented also by some

additional qubits. These two ways of thinking about quantum operations are

known to be equivalent and the definitions we will give here apply to both

of them.

There are some important classes of operators that we want to consider.

1. L(k) - Operators that are “k-local.” An operator in L(k) can be

expressed as tensor products of (arbitrary) operators acting on disjoint blocks

of qubits each involving at most k qubits.

Operators in L(1) that act independently on qubits are of special impor-

tance.

We denote by L(k)[t] those noise operators in L(k) where the “rate of

noise” is at most t and we continue to use square brackets to denote an

upper bound on the rate of noise for other classes of operators as well.

2. L(k, δ) - Operators that are approximately “k-local.” They have an

δ-approximation by an operator in L(k).

A class of operators is (uniformly) approximately local if for every δ > 0

there is k = k(δ) so that S ∈ L(k, δ).

Remark: Current fault-tolerant quantum computation algorithms resist

(even malicious) noise operators in L(k) when k is a fixed positive integer,
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provided that the rate of noise is sufficiently small. However, classes of

approximately local noise operators can be very damaging for FTQC.

3. M(≤ k) - Noise operators T on n qubits that represent at most

k errors. To make a formal definition we need the expansion in terms of

products of Pauli operators. Operators T , whether they describe the state

of the computer or the noise can be expressed as sums

∑

qvKv

where the Kv is a product of Pauli operators and the vector v indicates which

Pauli operator operates on which qubit. We can thus regard v as a vector

in {0, 1, 2, 3}n. Put |v| = {i : vi 6= 0}. We will refer to Kv as a multi-Pauli

operator of height |v|. Error-correction operators are linear so the expression

of the noise in terms of multi-Pauli operators is important in understanding

error-corrections. The space

M(≤ k)

is the space of operators that can be described as linear combinations of

multi-Pauli operators of height ≤ k.

We will denote by wi the overall weight of multi-Pauli operators of height

i. The quantity

e(T ) =
∑

iwi

can be regarded as a measure for the “amount of error.” Similarly, we can

think about the quantity ek(T ), which is the overall weight for all multi-Pauli

operators acting non-trivially on the kth qubit, as a measure of the “rate of

error” for the kth qubit. (Those measures have the disadvantage of being

base-dependent, but they can still serve us.) We will denote as ǫ-noise noise

operators (or operations) where the rate of noise for every qubit is at most

ǫ.

4. ILS(µ) - Infinitesimally local stochastic operators.
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Operators in ILS(µ) can be expressed as the product of random infinites-

imally local operators, each acting on a small number of qubits, according to

some distribution µ. (When considering noise operators we will discuss later

what the limitation for µ are.) One of the main points of this paper is to

consider noise operators in ILS(µ) rather than in L(k).

1.4 Error-correction

Quantum error-correction is in the heart of FTQC, although FTQC repre-

sents a long and difficult way beyond error-correction.3 Fault-tolerant quan-

tum computing is thus one of the recent splendid meeting points of the theory

of error-correcting codes and the theory of computation. An attack on FTQC

is essentially an attack on the feasibility of quantum error-correction. Com-

putation makes error-correction harder because it tends to amplify errors and

create dependencies among them. A critique of error-correction in the con-

text of quantum computers is relevant to general quantum error-correction,

since quantum computers appear to be an appropriate model for any physical

device that creates entanglements. One important insight concerning fault-

tolerant computation is that it requires a large amount of parallelism. (An

early result of Aharonov and Ben-Or asserts that sequential noise-resilient

quantum computing is not possible.)

It is useful to keep in mind a certain schematic process of quantum error-

correction and we will briefly describe such a process. In this process (see,

e.g., [NC]) an error-correcting code is used so that n′ qubits are encoded

using a larger number of n qubits allowing error-correction. The first step of

“detection” is to measure the noise. The noise is stochastic but measuring it

determines it and this is done without measuring (and thus without affecting)

the signal itself. After this step the “syndrome” of the noise — a certain

multi-Pauli operators on the qubits — is determined. The second step of

3However, note that implementing error-correction requires FTQC
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“correction” corrects the errors by applying the reverse operations to the

faulty qubits. This works well if the noise is in the correction capabilities of

the code.

1.5 The paper

Here is a brief description of the structure of this paper. Section 2 considers

our basic model of noise based on infinitesimally local operations and the

effect of “malicious” noise of this form. Section 3 considers random noise

operators. We first consider scenarios that deviate a little from the assump-

tion of locality which may already lead to devastating forms of noise. Next

we consider infinitesimally local stochastic noise operators. Such operators,

which seem quite realistic, may pose a difficulty to current noise-resilient

algorithms, but it is difficult to see them reducing quantum computing to

classical computing unless the noise “kills” all forms of computation. Sec-

tions 4 and 5 give two suggestions on how to overcome this difficulty. Section

4 proposes to consider models of stochastic infinitesimally local noise that are

in relation to the state of the computer. A systematic dependence between

the noise and the state of the computer has the potential of reducing quan-

tum computation to a classical one. It also has the potential of giving a

coherent noise model which puts noisy quantum computers and noiseless

classic (digital) computers under the same roof. Section 5 studies aspects of

the majority function. The majority function can potentially repair, in the

classic case, forms of noise analogous to those considered in Section 3. This

may be relevant to the type of spontaneous error-correction taking place in

digital computers (in the microscopic level), and possibly have no quantum

analog. This observation provides an explanation for why classical compu-

tation may prevail for the type of noise considered in Section 3. We discuss

also the dichotomy between noise sensitivity and noise stability of Boolean

functions and give an example of noise sensitivity of a certain model of elec-
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tions, where it seems that the noise “conspires” to spoil the outcome. In

Section 6 we will look at FTQC from another angle. Assuming that FTQC

fails and specifically that the noise model proposed in Section 4 is damaging,

we try to understand potential restrictions on the states of the qubits of the

computer. We propose that outside the “neighborhood” of classical physics,

noise is essentially all that is left. Following a summary of the main problems

in Section 7, Section 8 concludes. Sections 9—11 elaborate on some of the

issues discussed in the main body of the paper.

2 Malicious noise

The known noise-resilient quantum algorithms apply when the noise is small,

has the form of a tensor product, and is malicious (supplied by an adversary

in order to foil the computation).

There are two models of computation we can consider. The “pure” model

consists of just the quantum computer. In another model of computation,

referred to as “mixed” or “hybrid,” in addition to the quantum computer

we have a noiseless classic computer running aside. In such a model the

quantum computer can be at the very least a source of random bits for

the classic computer. It follows from results concerning randomization in

computation (e.g., Cohen and Wigderson (1989)) that a small noise (of any

kind) will still allow for randomized (classic) computation based on the n

random qubits supplied by the quantum computer.

It is known that if the noise is in L(1)[ǫ] and ǫ is sufficiently small then

FTQC and error-correction are possible. A basic ingredient in the proof is

the fact that when expanded in terms of multi-Pauli operators the overall

contributions of multi-Pauli operators of height k ≥ ǫn (namely, those which

act non-trivially on k ≥ ǫn qubits) decay exponentially with k. In addition,

the overall contribution of products of Pauli operators that act non trivially

on smaller sets of qubits that cause harm to the error-correcting code is also
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negligible. It is known and can be proved along similar lines that if k is

bounded then ǫ = ǫ(k) > 0 can be found so that error-correction applies for

operators in L(k)[ǫ]. We start this section with the following problem:

Problem 2.1 What is the largest growth rate of k = k(n) so that for some

constant ǫ > 0 quantum error-correction (and FTQC) applies to arbitrary

noise operators in L(k(n))[ǫ] acting on n qubits?

We will now describe our basic model of noise.

(2.1) The noise operator T is obtained by successive applications of noise

operators Ti, i = 1, 2, . . . , m where Ti is δ-close to the identity. Each operator

Ti operates on a bounded small number of qubits. (We can either consider

operators acting on a small number of qubits and their environment, or

consider quantum operations acting on density matrices that correspond to

these qubits.) The total amount of noise is ǫn.

It is important to note that we allow “cancellation,” namely, the amount

of noise for T is a sub-linear function in terms of the amount of noise of

the individual Ti’s. Such a “cancellation” can be expected in the stochastic

models that we consider in the next section. Without cancellation, when the

rate of noise for T is simply the sum of the rates of noise for the Ti’s it can

be shown that up to an exponentially small error T ∈ M(≤ ǫ′n), for every

ǫ′ > ǫ. .

Conjecture 2.2 Malicious noise of this form kills all forms of computation

in the pure model and reduces quantum computation to classical (probabilis-

tic) computation in the mixed model.

Remark: There are several possible interpretations for Conjecture 2.2.

If we allow m to be exponential in n, the noise operator can approximate

any unitary operator. This appears not to enable any form of computation

in the pure model and to leave us with randomized classical algorithms in
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the mixed model. (But it is possible that bounded depth computation will

prevail.) It is more interesting to consider the case where m is polynomial

in n. I would expect a malicious ǫ-noise to be able to kill computation (or

at least to reduce it to bounded-depth computation,) even if generated by a

polynomial-size polylogarithmic-depth circuit.

Conjecture 2.3 Conjecture 2.2 continues to hold even if we insist on the

resulting noise operators to be uniformly approximately local.

We also conjecture that malicious noise can be used to decay “high order”

entanglements:

Problem 2.4 Find a malicious infinitesimally local, approximately local,

noise that forces the state of the quantum computer to be uniformly approxi-

mately local.

Remark: A work of Tsirelson and Vershik [TV] (and also a work by

Benjamini, Kalai, and Schramm [BKS]) suggests that by repeated application

of a noise operator to three qubits a substantial dependence between the noise

operators on individual qubits may result (this appears to move us away from

the tensor product assumption used in error-correction and fault-tolerant

algorithms). Tsirelson and Vershik showed that in a recursive ternary tree,

aggregation of every generic function from the leaves to the root will have

such an effect.

3 Oblivious random noise

3.1 Arbitrary random noise

As we mentioned in the Introduction the presentation of a noise operator

in terms of products of Pauli operators and, even more, in terms of the
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filtration M(≤ k) of the space of noise operators is important for the issue

of error-correction.

We will consider in this section models of noise that are invariant under

permutations of the n qubits. Under this assumption error-correction and

current FTQC prevail if the the noise operator “approximately” (up to an

exponentially small error) belongs to M(≤ k) where k = ǫn, for some specific

small ǫ > 0. When it comes to error-correction the explanation is easy.

Error-correcting codes fail only when the syndrome consists of a relatively

large fraction of all qubits or (in case, say, of the concatenation code) of

rare smaller “bad” subsets of qubits. By the assumption of invariance the

correction will rarely fail. Random models of noise that are invariant under

permutations of qubits will be damaging only if in their multi-Pauli expansion

a large amount of weight on high multi-Pauli operators is present.

We will start with some basic observations and questions. When we think

about the expansion of a random operator in terms of the basis of multi-Pauli

operators we can expect that most of the weight of the coefficients will be on

multi-Pauli operators of heights around 3/4n. The reason is simply because

most multi-Pauli operators are of these heights. (This can be regarded as

a “concentration of measure” argument.) If we assume the noise rate is ǫ

(and here there may be some delicate points on how to measure the amount

of noise), still we can expect the weight of multi-Pauli operators on at least

0.74n qubits to be large (over, ǫ/2, say.) Such a noise is quite far from our

intuitive way of thinking about noise of rate ǫ as it represents events that

with substantial probability corrupt of a majority of all qubits.4 Arbitrary

random noise operators acting on all qubits is probably not something that

4Imre Barany proposed the following analysis which may demonstrate the effect of

dependence. Wars between two neighboring countries erupted in Europe from time to

time. Towards the end of the 19th century dependence caused by a large amount of

treaties between countries led to a long period of peace — followed by a world war,

involving almost all European countries.
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we should worry about, but we ask if similar properties of noise can be found

in more realistic scenarios.

Problem 3.1 1. Let T = T1·T2 · · ·Tm where Ti are random operators in L(2)

(the partitions to blocks are also random). Suppose that each Ti represents

a rate of noise δ, T represents an expected rate of noise ǫ, and m is chosen

accordingly. What will the expansion of T in terms of multi-Pauli operators

look like? (We may think of the case m is logarithmic in n.)

2. The same question as in part 1) except this time suppose that Ti is

a random operator in L(k) and that k grows to infinity very slowly with n.

(Again, we may think of the case where m is logarithmic in n.)

Concerning part 2 of Problem 3.1 the following heuristic argument suggest

that (as n tends to infinity) indeed the multi-Pauli expansion of T will be

heavily concentrated for heights larger than 0.74n: Consider a stochastic

operation Ti in L(k)[ǫ] when k grows slowly to infinity with n and ǫ can

be very small (and even tend to 0 with n). Thus, T is a tensor product of

operators on non-overlapping blocks of size at most k. From the observation

concerning arbitrary random operators it follows that qubits in the same

block will be very correlated. Now, taking products of several such operators

with random partitions to blocks may have the effect of making all qubits

highly correlated.

Finally, consider the following model of noise:

(3.1) The noise operator consists of taking products of random operators

in L(k) where k itself is a random variable whose distribution D(k) is positive

and decay to zero with k.

It appears that the computational power under such a model is that of a

bounded-depth computation where the bound on the depth depends on the

decay behavior of D(k). (Compare, however, Section 5.1 which suggests that

in some scenarios classical computation may prevail.)
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3.2 Infinitesimally local random noise

Let us return now to the model of random products of tiny operators acting

on a bounded number of qubits.

Letting an adversary choose the local noise operator in Conjecture 2.2

is too harsh. Suppose that the tiny (or infinitesimally) local operators are

chosen uniformly at random according to some distribution µ. We will now

discuss the following conjecture:

Conjecture 3.2 Quantum computation subject to (realistic) random noise

of the form described in relation (2.1) above when the qubits on which the

noise is applied are chosen uniformly at random is (polynomially) reducible

to classical (probabilistic) computation.

Following the discussion above, the crucial question is thus whether we

can ignore the contribution of very large products of nontrivial Pauli op-

erators acting on very large sets of qubits (say more than 74%)? Is it the

case that for certain choices of the distribution µ the weight of multi-Pauli

operators acting nontrivially on very large subsets of qubits will be bounded

away from zero? or perhaps be polynomially small but not negligible?

Problem 3.3 Show that for the models described in Conjecture 3.2 for an

appropriate choice of the distribution µ:

(a) The noise operator is approximately local: For every k there is ǫ = ǫ(k)

so that T can be approximated by an operator T1 in L(k).

(b) The contributions of multi-Pauli operators acting non-trivially on k

qubits is bounded away from zero (say, when k ≤ 0.7n).

or

(b’) The contributions of multi-Pauli operators acting non-trivially on k

qubits decay as a power of k, k−β , β > 0, when 1 ≤ k ≤ n.
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Perhaps the best shot for a distribution µ for this problem will be if µ

allows random operators on k qubits with positive probability that may even

decay very fast with k. When k is large, a random noise operator on a block

of k qubits creates a large correlation between these qubits being faulty. The

model of applying successively noise operators on small blocks of qubits is

very close (perhaps even identical) to the model of noise (3.1) of the previous

subsection.

An interesting case of Problem 3.3 is that of random products of tiny

unitary operators. Let W be a class of unitary operators acting on (at most)

pairs of qubits, suppose that W is closed under inversion and suppose that

each operator in W represents a noise δ. The simplest case to consider is

when W consists of two tiny rotations operating on a single qubit and two

tiny rotations in the direction of CNOT operating on two qubits. Let G be

a graph on n vertices (the qubits of the computer). We can assume that G

is the complete graph with loops.

Consider a random product T = T1T2 · · ·Tm of length m of such operators.

Thus each Ti is a random operator from W applied on the qubits of a random

edge of G. (This is a random product with e(G)|W | generators.) Let E(m)

be the expected amount of noise of T . Let m be chosen such that E(m) = ǫn

and let T be the resulting random operator.

When δ is large enough there will be essentially no cancellations and the

behavior will as in the case of local noise operators. Understanding this

model when δ is small (or “intermediate”) is of interest. This model looks

quite close to the Ising model on graphs and its analysis may be feasible.

There are various examples in the literature of how local stochastic oper-

ations may lead to substantial dependencies. Valiant [V] gives an example of

how starting with random independent bits and performing local stochastic

operations we can reach with high probability the majority function. This

result suggests that starting with noise operators acting independently on n

bits we can reach, by local stochastic operations that preserve the marginal
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probabilities of bit-errors, a substantial amount of dependencies.

Remarks: 1. Recall that our principal assumption is the invariance

of the noise model on permutations of qubits. There are various reasons

why this symmetry could be broken (and in a damaging way). A primary

(hypothetic) such reason that we consider in the next section has to do with

the entanglement structure of the “signal,” which may be echoed by the

noise. Another (related) reason for breaking this symmetry has to do with

the structure of the circuit itself and the gates involved in the computation.

The probability distribution on tiny (or infinitesimal) noise operators may

depend on the circuit’s structure and the identity of qubits that belong to

the same gate. Still another reason is related to the hypothetical geometry

of the quantum computer.

2. The possibility of a polynomial decay (in terms of the projection on

M(≥ k) ) rather than an exponential decay is interesting but I am not aware

of any concrete infinitesimally local stochastic noise model that exhibits such

decay. Suppose we did find an example of a noise operator for which the

decay of the coefficients in the expansion to multi-Pauli operators satisfies

a power-law decay with the height. How damaging would this be? Dorit

Aharonov suggested a defense against such power-law decay for the noise

for the mixed model of quantum computers: For every T > 1, an algorithm

on n qubits can be replaced in the mixed model by an algorithm on nT

qubits with the same running time. (This is not known and perhaps even

false in the pure model of quantum computers.) If the number of qubits is

sufficiently large compared to the running time current FTQC will prevail.

This shows that a polynomial-decay in terms of expansion to multi-Pauli

operators of stochastic noise operators does not harm the computational

power of quantum computers. (But it can be practically problematic.)

3. It can be argued that the “tiny” operators used in our model may

not act on qubits which are far apart according to a hypothetical geometry

of the quantum computer, or that they should respect the architecture of
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the computer. Similarly, it can be argued that the blocks considered in the

problems of Section 3.1 should also respect a hypothetical geometry of the

computer. I would expect that under reasonable restrictions of this kind

matters will not change. In any case, the graph G considered above may

reflect the geometry or architecture of the computer.

3.3 Modeling noisy computation

We conclude this section by noting that from the point of view of complex-

ity theory (where it is natural to consider a “pure” quantum computer) it

appears that none of the variations of the basic model of stochastic infinites-

imally local noise considered in this section have the potential to reduce

quantum computation to classical computation without killing all forms of

computation (beyond bounded-depth computation).5

Notice that we have a difficulty with the model. Unlike quantum compu-

tation which is a robust (and quite wonderful) model of computation, giving

what appears to be a clear complexity class, noisy quantum computation is

problematic. It appears to be a difficult task to base a complexity-theoretic

attack on quantum computation on a noise model which affects classical com-

putation as badly as quantum computation and certainly if the noise kills all

forms of computation.

It is hard to base a model of computation on a statement like: “Quantum

computers will have a substantial error rate of at least 10−4 ... unless they

happen to be ordinary computers, in which case they will be essentially noise-

free”. There appears to be a basic difficulty in modeling the noise of quantum

computers, which includes ordinary digital computers as a special case.

In the most abstract setting of finding a unified noise model for noisy

computers with n logical bits, the hypothesis of fault-tolerant quantum com-

5In Section 5.1 we suggest that in some scenarios with unbiased stochastic errors ef-

fecting large percentage of qubits, classical computation may prevail.
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puting indeed offers such a model: The model of noiseless computation. It

would be interesting to describe an alternative model with non-zero noise in

the non-classical case, which is consistent with the laws of quantum physics.

(Of course, in such a model the hypothesis of fault-tolerant quantum com-

puters fails.)

Less abstractly, for studying noise models for computers with n physical

qubits, a unified model for (noiseless) classical and (noisy) quantum comput-

ers still makes sense and seems necessary for finding scenarios where noisy

quantum computation reduces to classical probabilistic computation.

In any case, in a reality of sharply different models of noise for digital and

quantum computers (even in terms of the constants involved), we cannot

dismiss claims that noisy quantum computers will not be able to perform

any kind of computation just on the grounds that classical computation and

classical error-correction do exist. But, on the other hand, it will be hard to

accept any such claim against quantum computers as completely satisfying.6

4 Random noise that is neither malicious,

nor oblivious, but rather related to the sig-

nal.

Noise operators, like all operators in quantum physics are linear. Is it possi-

ble, though, that noise operators satisfy systematic non-linear inequalities?

Before jumping to a fierce “no” note that the starting point of FTQC, the

6Kuperberg mentioned computation processes in biology (say, the brain) as examples of

noisy computation, where the model of noise might be closer to the case at hand. Indeed,

these computations exhibit a substantial amount of parallelism in according with insights

of fault-tolerance. They also appear to represent “small depth” computation. I do not

know if independence is a reasonable assumption for noise models in such systems. (I

would not expect so.)
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fact that quantum computers, unlike digital computers, are subject to a sub-

stantial amount of noise, is, at least on the face of it, an example of such a

non-linear inequality.

An additional attack on quantum computers suggests that dependencies

that are expressed already by rather low multi-Pauli operators can already

cause problems. It goes vaguely as follows (we will try to make it more

explicit later on):

Conjecture 4.1 Realistic stochastic models of noise (based on tiny noise

operators of the kind we considered above) will create dependence between

the noise operators among qubits, which itself is associated to the dependence

structure of qubits yielded by the quantum computation. In particular, there

will be a damaging dependence on the block structure of an error-correcting

code used in the current noise-resilient computation. Moreover, this kind of

noise suffices to reduce quantum computing to classical randomized comput-

ing.

Conjecture 4.1 follows a simple logic of “reverse engineering,” i.e., try-

ing to understand how fault-tolerant algorithms can (badly) fail. It would

be important for this purpose that the dependence between the noise and

the signal apply to high terms in their expressions in terms of multi-Pauli

operators, or, even more directly, the sets of qubits with large coefficients

in the expansion should be “badly located” as far as the error-correction is

concerned.

Remarks: 1. This claim of a relation between the dependence structure

of the signal and the dependence structure of the noise may look strange, and

it is not a priori clear also why such dependence may be damaging. Compare,

however, the elections example in Section 5.3.

2. It seems suspicious that the stochastic model for noise may depend on

the “signal” (the state of the n qubits). If the linear operator describing the

noise depends on the signal itself then the noise may depend non-linearly on
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the signal. This looks non-kosher and has indeed drawn criticism. However,

in models of quantum computation, in order to achieve each desirable dis-

tribution among the qubits we need a different physical device (say circuit)

and the noise can very well depend on this device. So it appears that the

kind of dependence we consider is quite expected and a non-linear (stochas-

tic) dependence of the noise on the signal does not contradict the fact that

the operators describing noise are linear operators. To make the argument

clearer the reader is referred to the simple example in Section 10.

3. A dependence between the entanglement of the noise operators and

the entanglement of the qubits themselves appears to be related to an argu-

ment by R. Alicki, R. Horodecki, M. Horodecki, and P. Horodecki [AHHH].

According to their argument the neighborhoods of the qubits will echo the

entanglements between the qubits. This may lead to the type of dependence

we propose between the dependence structure of the noise and that of the

signal.

4. A serious critique already raised against the argument of Alicki,

Horodecki, Horodecki, and Horodecki is that it is not clear why the type of

noise they consider will “conspire” against the computation. Parts of the rest

of the paper can be regarded as an attempt to understand the implications of

such a “conspiracy” which may suggest also why such a “conspiracy” might

be possible. The most appealing answer I can think of is that the dependence

of the noise on the signal is systematic and is expressed by non-linear (as a

function of the signal) relations (inequalities) for the decoherence which are

damaging.

5. If there is a systematic form for the dependence of the noise on the

signal (which lead to systematic non-linear relations), we can ask, what is its

mathematical nature. From the complexity-theoretic point of view it may

present us with an opportunity to address the problem of finding a model of

noisy quantum computation that is consistent with classical computers being

noiseless. (The dependence of the noise operator on the state of the computer
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is likely to be expressed by a differential relation (probably inequalities rather

than equations) describing the dependence of the noise on the state in an

infinitesimally earlier time.

Problem 4.2 Propose non-linear inequalities satisfied (necessarily) by (lin-

ear) decoherence operators for quantum computers.

It would be nice to have a description not affecting a situation when the n

qubits are independent, and, more generally, reducing probability dependence

(or covariance) between pairs of qubits. Some suggestions for non linear

inequalities for decoherence can be found in Section 11. Of course, it would

also be needed to relate such inequalities to infinitesimally local models of

noise when we allow the infinitesimally local operators acting on a few qubits

to (stochastically) depend on the state of these qubits.

6. Perhaps the simplest explanation of why quantum computers are in-

trinsically noisy that offers simple non-linear inequalities for the (linear) de-

coherence operators is that correlations are collapsing. Can it be that in all

quantum systems (and perhaps also in classical physical systems) correlations

between qubits and especially correlations between many qubits are fading

away? As pointed out by Robert Alicki this type of proposed behavior seems

related to “Onsager regression theorem” in (classical) statistical physics.

7. We can try to model dependence of the noise on the gates, hypothet-

ical relations between the noise and the signal, and hypothetical “elastic”

properties of forming entanglements, in a more combinatorial way by ad-

justing the random walk model of the previous section. For example, let

the random walk noise described in the previous section run in parallel to

the actual computation carried out by a quantum computer and add to our

stochastic oblivious noise after every operation of the computer additional

random generators (say with probability decaying in time) that δ-reverse the

operation taken by the computer.
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8. Michael Ben-Or offered an ingenious (yet, incomplete) argument (re-

lated to an argument by Preskill and Shor) to the effect that a quantum

computer (with a classical computer running beside keeping track of some of

the noise), may run so that the state of qubits will be “completely random.”

5 Stability, sensitivity and the majority func-

tion

5.1 Merits of the majority function

This section’s three part are all related to the majority function. Given an

odd integer n, the majority function f(x1, x2, . . . , xn) is a Boolean function

on n Boolean variables defined by: f(x1, x2, . . . , xn) = 1 if x1 + x2 + ·+ xn >

n/2, and f(x1, x2, . . . , xn) = 0 otherwise. This subsection gives another

mathematical suggestion on how to reconcile the possibility of fault-tolerance

in the classical case with the possibility of fault-tolerance being impossible in

the quantum case. The idea is that in the classical case, devastating behavior

expressed by random 49% (say,) of bits being harmed (in an unbiased way),

can still be repaired by the majority function, and that this healing power

of majority, which may be relevant to modeling digital computers in the

microscopic level, has no quantum counterpart. The prominent role of the

majority function for classic fault-tolerance and the difficulty in realizing

“majority” in various settings regarding quantum computers is mentioned

e.g. by Gottesman in [G] as an important distinction between quantum

error-correction and classical one. The idea that “majority” is essentially a

classic notion and, as some natural extensions of majority to the context of

quantum states are non-linear, cannot be extended to the quantum setting

can be found in several other places. However, I am not aware of a useful

formalization of this idea in the literature. (The majority function is used,
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in fact, in various quantum error-correcting codes.)

As we mentioned in Section 3.3 one difficulty in various attacks on quan-

tum computers, and, in particular, an attack based on models like those

considered in Section 3, is that these attacks continue to apply for digital

computing, and are especially relevant when we consider digital computers

on the microscopic level.

Current schematic descriptions of digital computers on the microscopic

level are based on each logical bit described by the majority function of a

huge number of “physical” microscopic “bits”.7

It is important to note that the majority function is immune against

random unbiased errors which come very close to effecting 50% of all bits —

like the kind of errors considered in Section 3.1, but in the classical setting.

If the type of noise considered in Section 3 is realistic for digital computers

described in the microscopic level majority-based self-error-correction can

still prevail.

On the other hand, I do not know if this is possible in the quantum case

(where 50% should be replaced by 75%). Non-linear majority-like (or rather

“plurality”) functions on quantum states will correct random unbiased errors

effecting almost 75% qubits but I suspect this cannot be achieved by linear

error-correction. (Here by “plurality” I refer to a function that given N states

outputs the state that appeared the largest number of times.)

Problem 5.1 (1) Demonstrate that majority-based error-correction in which

a logical bit is represented by the majority value of a huge number of physical

bits can repair (classical analogs) of stochastic noise considered in Section 3.

(2) Find an argument for showing that this is impossible in the quantum

case.

7Describing a detailed mathematical model of digital computers in terms of the micro-

scopic representations of logical bits, including a description of the noise (and gates), will

be of interest.
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Remarks:

1) It may well be the case that such an argument can be found in the

existing literature and may be related to the issue of “optimal cloning”.

Daniel Gottesman referred me to [BDEFMS] for a related result. (But for

our purposes a standard no-cloning argument may suffice.)

2) A useful way to think both about the classical and quantum case

together is to apply on 98% (say) of the bits (or qubits) a random unbiased

uniform rotation. For ordinary Boolean bits we can expect 49% of the bits

to be harmed.

3) An exciting direction in the quantum computers endeavor is the con-

structions (theoretical, so far) of self-error-correcting physical devices. Kitaev

found [K2, K3] an error-correcting scheme based on 2-dimensional topology

which can be regarded as the starting point of a whole new physical model

for quantum computers referred to as topological quantum computers, see,

e.g., [FKLP]. The idea of topological quantum computation is to embed the

error-correction in the physical device, in an analogous way, perhaps, to what

make ordinary digital computers (essentially) error-free.

5.2 Stability and sensitivity

(Noise) sensitivity and (noise) stability is a setting where, to get an advantage

over classical (probabilistic) computation, a substantial amount of “depen-

dence” is needed, which also implies a substantial sensitivity to noise. It is a

scenario where there is a dichotomy between the weighted majority functions

(which are stable) and functions asymptotically orthogonal to them (which

are sensitive). This appears to be related (and perhaps suggests a way to

formalize) an assertion that is often made that in order to get an advantage

over classical probabilistic computers a “substantial amount” of entangle-

ment is required. The notion of (noise) stability and (noise) sensitivity was

introduced by Benjamini, Kalai and Schramm [BKS] and was further devel-
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oped by various people. It is also closely related to the work of Tsirelson

and Vershik and various works of Tsirelson [VT,T]. (I will just use the term

sensitivity and stability since we may want at times to apply these notions

also to “noise”.) This is a setting where in order to have an advantage over

classic (deterministic) computation sensitivity to noise is required and thus

it may be relevant for us.

Let us consider a randomized computation which depends on n coin flips

that are independent and unbiased. Suppose that if the answer is NO the

computation gives 0 while if it is YES it gives 1 with a probability of at

least 1/2. Suppose that the answer is YES, the n bits are chosen at random,

and the computation yields the outcome T . Suppose next that a fraction δ

of the bits chosen at random are flipped and the new outcome is T ′. Let

g(δ) be a fixed function that tends to 0 when δ tends to 0. We say that

the computation is (uniformly) stable if the the correlation between T and

T ′ is at least 1 − g(δ). (This is an asymptotic notion for a class of Boolean

functions.)

If the computation is uniformly noise-stable then it can be simulated by a

polynomial classical algorithm. (This follows from the basic Fourier descrip-

tion of stable Boolean functions: a class of Boolean functions is uniformly

stable if most of the L-2 norm of functions in the class is concentrated on a

bounded number of levels in terms of the Fourier expansion.) It is quite pos-

sible that (1/(small polylog(n))-stable or even (100/ log(n))-stable suffice.

This and related problems are described in Section 9

In the world of Boolean functions weighted majority functions are noise-

stable and a sequence of functions that are asymptotically orthogonal to

every weighted majority function are noise-sensitive [BKS].

Finally let me remark that the related notions of stable and sensitive

stochastic flows by Tsirelson (who studied these concepts also in the quantum

context) may be closer to the context of quantum computation and noise

operators.

26



5.3 An analogy - An example concerning elections

The issue at hand is about noise sensitivity in systems with probability de-

pendence. Following is an example (taken from a paper of mine on social

choice [Ka]) which demonstrates some of the issues that arise when we con-

sider noise sensitivity of Boolean functions (thought of as elections with n

voters) when the distribution for the input is not a product distribution. The

Boolean function is simple majority but the voter behavior is not indepen-

dent. (Of course, this is only an analogy to the case at hand.)

Suppose that the society is divided into communities of b voters each.

The number of voters is thus n = ab, which we assume is an odd number.

Each voter i receives an independent signal si, where si = 1 with proba-

bility 1/2 and si=0 with probability 1/2. The voters are aware of the signals

of other voters in their community and are influenced by them. Let q > 0

be a small real number. A voter changes his mind if he observes a decisive

advantage for the other candidate in his community, i.e., if he observes an

advantage where the probability of observing such an advantage or a larger

one, when voter behavior is independent and uniform, is at most q. (We can

even assume that a voter only sees the outcomes of an election poll and also

that only a small fraction of voters are influenced by the views of others.)

The election’s outcome as a function of the original signals s1, s2, ..., sn

can be described by a Boolean function which we denote by G[a; b; q].

Let us examine the situation for a sequence (fn) of such examples where

the parameters a and b both tend to infinity, n = ab, q tends to zero and

(1/q) is o(m). (For example, take a = b =
√

n, and q = n−1/4.) In this

case, fn exhibit noise-sensitivity for (independent) small amounts of noise in

the original signals. The outcome of elections as a function of the individual

signals is thus noise-sensitive.

On the other hand, this same sequence is extremely noise stable for inde-

pendent noise with respect to counting the votes! The gap between votes cast

27



for the two candidates behaves like b
√

qa, so that even if a random subset of

40% of the votes are miscounted the probability that the election’s outcome

will be reversed is extremely small.

The two properties of this example — noise sensitivity for noise affecting

the original signal and strong stochastic stability for noise affecting individual

votes — seem characteristic to situations in which voters’ behavior depends

on independent signals in a way that creates positive correlation between

the voters. Note that when we consider random independent noise in the

original signals, the distribution of resulting votes is identical to the original

distribution without the noise. This is not the case for random independent

noise in counting the votes.

If we do not know the internal mechanism for creating the distribution of

votes then the noise looks like some mysterious mechanism that “conspires”

to foil the outcome.

It appears that the tensor-product model of noise is analog to noise in

counting the votes where noise stability is more likely, but perhaps not suf-

ficiently general. We have to worry about noise that is more related to the

mechanism that creates the probability dependencies in the system.

6 Restriction of states of n qubits in noisy

quantum computers

Here we look at quantum computers from a different angle. Rather than

thinking about the noise, we consider what is the hypothetical effect of the

noise.

Let us assume that the noise itself is infinitesimally local and also ap-

proximately local. Consider the operator S which describes the state of the

n qubits at some time along the computation of a noisy quantum computer.

(It is better to think of S as a random variable). Let W denote the class
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of these operators. Let us consider again Conjecture 4.1. This conjecture

asserts that there is some sort of a correlation between the entanglement of

the noise and the entanglement of the signal. We referred to the elections

example (Section 5.2) to suggest that such a relation can be possible and

damaging. However, this example relies on the noise and the signal both

have similar structure and depend on the same “hidden” signals.

In our models the noise is infinitesimally local and stochastic. Let us

examine how the noise can “conspire” against the computation. How would

the noise “know” what would be the entanglement in the signal involving a

large set of qubits? One explanation would be that the space of operators

describing the state of the qubits is very confined in order that:

• The dependencies between large sets of qubits are determined by the

dependencies between small sets of qubits — and in a similar way for

the noise and the signal.

This line of thought suggests that in order for the noise to be damaging

as we expect it to be, the possible states of the n-qubits of our computer

should be very limited. The following bold conjecture is in this direction.

Conjecture 6.1 For the case of realistic infinitesimally local and approxi-

mately local noise, the class W of operators S representing states of noisy

quantum computers on n qubits is confined:

(a) S itself is approximately local.

(b) (stronger) S can be written as: S is equal to S1 + S2 where

(*) S1 is up to classical operations, an approximately local and infinites-

imally local stochastic operator.

(**) e(S2) is uniformly bounded.
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Conjecture 6.1(a) asserts that for a realistic approximately local noise the

operators representing the states of the n qubits in a noisy quantum com-

puter are approximately local. The stronger part (b) asserts that essentially

all that can be done in quantum computers apart from operators in L(k)

for bounded k is to apply classical gates to an initial state described by a

stochastic infinitesimally local operator. (Since there is no canonical way to

embed classical computation in the quantum model, the term “up to classical

computation” is concrete only in terms of complexity.)

An even stronger version would say that S1 is just a noise operator and

that even classical operations on such operators cannot be maintained.

Conjecture 6.2 The class W of operators S representing states of noisy

quantum computers on n qubits is confined: S can be written as: S is equal

to S1 + S2 where e(S2) is uniformly bounded and S1 is noise.

Some stronger versions may suffice to reduce noisy quantum computers

to classical ones. Conjectures 6.1 and 6.2 represent the most optimistic form

of the pessimistic direction concerning quantum computers: namely, we can

take the complexity away and make a time-free statement on the limitation

of quantum computers. If true, such a statement under suitable assumptions

concerning the noise may yield to a proof that is inductive on the quantum

circuit. This direction is worth trying. (Replacing the absolute bound on k

by a slowly growing function of n like log n may still be useful.)

In this context the work of Aharonov, Ben-Or, Impagliazo, and Nisan

[ABIN] is relevant. They considered the model of noisy reversible computa-

tion and showed that it can be reduced to quantum computation of depth

O(log n). The strength of the general model compared to the reversible model

lies in the ability to regain entanglement between qubits by extending a cer-

tain “restriction” of the n qubits to a subset of the qubits using fresh qubits.

We want to argue that a correlation between the entanglements of qubits

in the computer and the entanglements between the noise operators acting

30



on them will maintain the restriction of the states of the computer, and, in

particular, will force the state of the computer to be approximately local if

the noise is.

Remarks:

1. Greg Kuperberg pointed out that the idea (which he regards as base-

less) that the quantum states for large quantum computers (or for complex

quantum systems in nature) are confined is not new, and is referred to as

“censorship” in the physics literature. (Of course, complexity theory gives

very severe (but elusive) forms of “censorship” both in the classical and in

the quantum case.) A paper by Aaronson [AA] studies the power of quan-

tum computation under several forms of censorship. Aaronson attributes

the forms of “censorship” he considers to breakdowns of the laws of quan-

tum physics for large systems. (Such a possibility was considered by several

people, see e.g., Levin [Le].) In my opinion, much more interesting reasons

for “censorship” would come from mundane properties of noise, well within

the laws of quantum physics.

2. I do not know if there are situations in nature in which entanglement

cannot be regarded as approximately local. (Indeed, successful quantum

computing appears to rely on such scenarios.) It might be possible for in-

finitesimally local noise to lead to noise operators that are not approximately

local, and in such cases we could expect the operator describing the state of

the n qubit not to be approximately local either. I would expect that in the

presence of such a noise no form of computation is possible and that the not

approximately local component of the operator describing the state of the

quantum computer in such a case is just noise.

3. It is known that when we consider ordinary randomized algorithms

it confers no advantage to aggregate with the random bits throughout the

algorithm rather than sample them right away. Conjecture 6.2 suggests that

sampling the random bits up-front is essentially the only method that will

work in noisy computers and that even classical correlations cannot be main-
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tained along noisy computation. (The only way I can think of formalizing

such a claim is by considering fragments of the quantum model that capture

the power of probabilistic classical computers.)

Our censorship proposals are based on Section 4. We can ask what kind

of censorship can be expected by the direction of Section 5.1. Refer by the

majority operator to the linear extension of the majority function on 0-1

states.

Problem 6.3 What could be the possible states of a quantum computer equipped

with a noiseless majority operator subject to noise considered in Section 3

7 Summary of Problems

A sequence of ǫ-noise operators Tn is devastating if in the expansion of Tn

to multi-Pauli operators the weight w(Tn) of multi-Pauli operators of height

≥ 0.74n is at least ǫ/2. The sequence is alarming if we witness a power-law

decay in height of weights of multi-Pauli operators.

Malice:

1. Show that for every ǫ > 0 a polylogarithmic-depth polynomial-size

malicious quantum computer can create a devastating ǫ-noise.

2. What is the smallest growth rate of k = k(n) so that for every constant

ǫ > 0, there is a devastating noise operator Tn ∈ L(k(n))[ǫ] acting on

n qubits?

Stochastics:

3. Show that for every ǫ > 0, a random ǫ-noise operator T = T1 · T2 · Tm,

with m = log n, Ti ∈ L(k)[ǫ′] (ǫ′ chosen accordingly), when k grows to

infinity with n arbitrarily slow, is devastating. What is the situation

when k = 2?

32



4. Study the Ising-like model of noise on graphs. Can it lead to a devas-

tating ǫ-noise? alarming ǫ-noise?

Geometry:

5. Show that a devastating behavior in items 2-4 will continue to hold

under reasonable restrictions based on the geometry of the computer.

Conspiracy:

6. Describe a model (consistent with the laws of physics) in which classical

computing is noise-free and quantum computing is noisy.

7. Propose non-linear inequalities for decoherence that amount to decline

of correlations. Show how such inequalities can be derived from in-

finitesimally local behavior.

Majority:

8. Show that a majority-based correction can lead to fault-tolerant sys-

tems immune against devastating stochastic noise of the kind consid-

ered in Section 3, and that no analogous methods are possible in the

quantum case.

Censorship:

9. Is censorship consistent with the laws of physics? Can it be the outcome

of mundane properties of noise/decoherence?

8 Conclusion

The working hypothesis of this paper is that the computational advantage

of current fault-tolerant quantum computation accounts for the “classical”

restriction of the noise, and will be reduced or even completely diminish for

other models of noise.
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Adopting and exploring such a pessimistic hypothesis is well in the tradi-

tion of the theory of computation. Theoretical Computer Science is famous

for its “pessimistic” point of view, and there are plenty of attacks on other

computational models based on worse-case scenarios, powerful adversaries,

Byzantine generals, cryptographic attacks, etc. (This paper has some flavor

of a cryptographic attack.) Such attacks are important for a theoretic un-

derstanding of distributed computation, randomness in computation, cryp-

tography, and various other areas. The mathematics involved and developed

in these studies is often quite exciting and usually easily recycled.

The first issue to examine, in my opinion, is how damaging infinitesi-

mally local stochastic noise operators can be. Finding an alternative model

to the hypothesis of FTQC, that is consistent with the laws of physics, in

which quantum computers are noisy and classical computers are noise-free,

is another interesting problem.

Why noise at all? We took it for granted in this paper, and it appears

to be a clear insight of experts that quantum systems are noisy. Specifically,

it appears to be a common view that the amount of noise in a quantum

computer will be a substantial fraction of the number of qubits. While it

appears to be clear to experts that quantum systems are necessarily noisy I

am not sure there is a good explanation why this is the case.

And is it correct to think of decoherence as noise? Perhaps decoherence

is a fundamental property of complex quantum systems that will remain

invariant no matter what physical gadgets are used and which sub-gadgets

are declared to be the qubits — implying that methods to eliminate deco-

herence (error-correction, decoherence-free-spaces, and even the spectacular

topological quantum computers) are doomed to fail?
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APPENDICES

9 Questions on sensitivity and stability

The questions presented here are related to possible connections between

noise-sensitivity and complexity.

Problem 9.1 Let f be a 1/ log(n)-stable Boolean function on n variables

(or (1/(small polylog(n))-stable). Is it the case that most L-2 norm of f

(or a substantial part of the L-2 norm of f) is concentrated on a polynomial

number of coefficients?

If a Boolean function f is (1/t)-stable then most of its L-2 norm is con-

centrated on Fourier coefficients of “levels” O(t). Showing that if t = 1/ log n

this implies that most of the L-2 norm of f is concentrated on a polynomial

number of Fourier coefficients is unknown. It is related to conjectures by

Mansour [M] and by Friedgut and Kalai [FK] and a work by Bourgain and

Kalai [BK]. (The techniques used in [BK] may be useful to show that if f is,

say, 1/
√

(log n)-sensitive then most Fourier L-2 norm of f is on a polynomial

number of coefficients.)

Another related question is the following:

Problem 9.2 Let F be a class of uniformly noise-stable Boolean functions

(not necessarily monotone). (Suppose that for each f ∈ F the probability

that f = 1 is 1/2.) Is it true that for some δ > 0 for every f ∈ F there are

n Fourier coefficients of f whose sum of squares is at least δ?

The monotone case is the main Theorem in [BKS]. The more-than-median-

runs function (f = 1 if the number of “runs” in the sequence x1, . . . , xn is

more than the median number of runs when the values of the variables are

given uniformly at random) gave the motivation for this question since I

expect Fourier coefficients for adjacent pairs will do.
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10 Non-linear relations respected by (linear)

noise operators: An example

Consider the following scenarios. We have 3 universal gates A, B and C

for quantum computing. Suppose that A and B enable classic computing

but nothing beyond. Let W be a rather dense set of states for an n qubits

quantum computer.

For each w in W write an algorithm (applying the gates one by one)

that uses as few C-gates as possible and choose the algorithm to be minimal

according to some natural ordering.

The noise is simple: all C-gates are defunct; they do nothing.

In this case N(w) is a (deterministic) function of w and it is a non-linear

function.

Now, consider a similar scenario where the C-gates operate with proba-

bility 0.8

In this case, N(w) is a stochastic function of w and it is not a linear

function, namely, it is not described by a probability distribution on linear

functions.

Suppose we use an arbitrary algorithm. In this case N(w) is not a function

of w (alone) but of the algorithm leading to w that carries more information.

Still going from w to N(w) have a systematic effect which is intrinsically non

linear and can be described by a nonlinear inequality. In this case we have

the non-linear relation (inequality): N(w) 6= w if w requires C.

Remark: Current FTQC do apply when gates are faulty with small

positive probabilities. The example of this section only demonstrates that

non linear relations for noise is a possibility. Showing that there are non

linear inequalities that systematically apply is a distant goal.
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11 Speculating on non-linear inequalities for

decoherence

It is interesting to consider entanglement-reducing noise operators, that do

not alter states which are in L(1) to start with. Noise operators that decrease

entanglements are natural from the mathematical point of view and also from

the point of view of physics. (Mathematically, such operators are related to

those studied in hypercontractive estimates.) From the physics point of view

they are referred to as thermal noise, or thermalization of state, etc.

A standard simple example is: with some probability you forget the

present state, replacing it with a unit vector chosen at random (uniformly

on the unit sphere, or equivalently, uniformly from an orthonormal basis).

Basic linear operations of this kind do have a tensor product form and

therefore will yield to current FTQC schemes. (In fact, this is a nice appli-

cation of FTQC.)

The discussion in Section 4 suggests looking at non-linear relations (in-

equalities) for noise operators that express decreased dependencies between

qubits. Such non-linear relations can be of the following form: we start with

a class W of correlation-decreasing non-linear operators. The non-linear in-

equality for a noise operator N is that for any state x of the computer N(x)

is in the convex hull if T (x) for T ∈ W .

A quite natural class of correlation-decreasing operators can be obtained

as follows. (This follows a discussion with Yuval Peres and Oded Schramm.)

Suppose that the coefficients of your distribution are nowhere zero. Apply

your favorite linear thermal noise (like the one from the previous paragraph)

on the logarithm of the distribution, then exponentiate and normalize. (An-

other way to put it is to write the distribution in Gibbs form and apply a

linear “thermal” operator on the exponent.)

More formally (following Yuval Peres), consider the qubits as admitting

the values +1 and -1. For a nowhere-zero distribution given by a complex
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vector of length 2n µ(x1, x2, ...xn), xi = +1 or -1, i = 1, 2, . . . , n, write

µ(x1, ..., xn) = e−H(x)/Z,

where H(x) =
∑

k≤n Hk(x), and Hk is a homogeneous polynomial of degree k

in x1, . . . , xn. Consider the following family D of operators: map the measure

µ above to measures µt that have a similar form, µt(x) = e−H(x,t)/Z(t) where

H(x, t) =
∑

k c(k, t)Hk(x) with c(1, t) = 1 and c(k, t) decreasing in k and in

t, with c(k, t) tending to zero as t goes to infinity for each k > 1.

As we said, we cannot expect that the decoherence operator will be of such

a form but rather that for a quantum computer at a state s the value N(s) of

the (linear) decoherence operator will be in the convex cone of dependence-

reducing operators like those described here.

Such a property of decoherence may amount to an “elasticity” behavior

with respect to entanglement. When you apply a process leading to an

entanglement there will be some persistence of or recoil towards the existing

state with no effect in the case of no entanglement.

Another class of operators which I find mathematically appealing can be

described as follows. Let V be a normed vector space and U0 ⊂ U1 ⊂ . . . ⊂
U(k) be a filtration of it. For v ∈ V let vk be the projection of v to Uk,

namely, let ‖v − uk‖ be minimal among uk ∈ Uk. For ǫ > 0 define

Nǫ(v) =
∑

ǫk(uk+1 − uk).

When the filtration is described by flags of vector spaces we obtain fa-

miliar linear “contractive” operations. Operators of this kind related to

other filtrations (e.g., filtrations of the space of matrices according to rank)

look interesting. Let Nǫ be the operator that corresponds to the filtration

L(1) ⊂ L(2) ⊂ . . . of quantum operations.

Conjecture 11.1 For every ǫ > 0, quantum computation subject to the op-

erator N1−ǫ is polynomially reducible to probabilistic classical computation.
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This (or a somewhat weaker statement) may yield to the fundamental

simple argument by Aharonov, Ben-Or, Impagliazo, and Nisan.
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