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Abstract

In this paper we study the social preferences obtained from mono-

tone neutral social welfare functions for random individual preferences.

We identify a class of social welfare functions that demonstrate a com-

pletely chaotic behavior: they lead to a uniform probability distribu-

tion on all possible social preference relations and, for every ε > 0, if

a small fraction ε of individuals change their preferences (randomly)

the correlation between the resulting social preferences and the orig-

inal ones tends to zero as the number of individuals in the society

increases. This class includes natural multi-level majority rules.
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1 Introduction

How likely is it that small random mistakes in counting the votes in an

election between two candidates will reverse the election’s outcome? And if

there are three alternatives and the society prefers alternative a to alternative

b and alternative b to alternative c how likely is it that a will be preferred to

c? We will show that for general social welfare functions these two questions

are closely related.

In this paper we consider the behavior of general social welfare functions

with respect to random uniform voter profiles. Namely, the individual pref-

erences on a set of alternatives are uniformly and independently distributed

among all order relations. It turns out that there are two extreme types of

behavior: social welfare functions, such as the majority rule, that lead to the

stochastic stability of the outcome in terms of the perturbation of individ-

ual preferences and social welfare functions that lead to what we refer to as

“social chaos.” 1

These two types of behavior in the case of two alternatives have been

studied in the mathematical literature by Benjamini, Kalai and Schramm

(1999).

A simple game (or voting game) G defined on a set N of players (voters)

is described by a function v that assigns to every subset (coalition) S of

players the value “1” or “0”. We assume that v(∅) = 0 and v(N) = 1. A

candidate is elected if the set S of voters that voted for him is a winning

coalition in G, i.e., if v(S) = 1. We will always assume that the game G

is monotone, i.e., that if v(R) = 1 and R ⊂ S then v(S) = 1. Recall that

a simple game is proper if v(S) + v(N\S) ≤ 1 for every coalition S, i.e., if

the complement of a winning coalition is a losing one. A simple game G is

1 There are many studies of chaos and chaotic dynamics in economics but they appear

to be rather different from this one. In the context of social choice theory, the huge number

of “voting paradoxes” and the fact that “everything can happen” are often referred to as

chaotic phenomena and were studied extensively by Saari; see, e.g., Saari (2001). Saari’s

works are concerned mainly with specific voting methods like majority, plurality, Borda’s

method, and some weighted versions of them. We refer to the property that “anything can

happen,” as “indeterminacy”. Indeterminacy is different from yet related to our notion of

social chaos; see Section 7 and Kalai (2004).
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strong if v(S) + v(N\S) = 1 for every coalition S, i.e., if it is proper and the

complement of a losing coalition is a winning one.

It is convenient to let N = {1, 2, . . . , n} and regard v as a Boolean function

v(x1, x2, . . . , xn) where each variable xi is a Boolean variable: xi ∈ {0, 1}, and

thus v(x1, x2, . . . , vn) stands for v(S), where S = {i ∈ N : xi = 1}. This

notation is used in much of the relevant mathematics and computer science

literature. It is also consistent with the basic economic interpretation of the

variables xi as signals the voters receive regarding the superior alternative.

A neutral social welfare function F (A) on a set A of m alternatives based

on a proper strong simple game G is defined as follows: the function F (A)

is a map that assigns an asymmetric relation R on the alternatives to every

profile of individual preferences. Given a monotone proper simple game G

and a set A of alternatives, the society prefers alternative a to alternative b

if the set of voters that prefers a to b forms a winning coalition.2

We study probabilistic properties of social welfare functions for random

uniform voter profiles. Thus, to every individual, we assign the same proba-

bility (1/m!) for each one of the m! order preference relations on the alter-

natives. Furthermore, the individual preference relations are independent.

In other words, if there are n individuals, we assign the same probability

for each one of the (m!)n possible profiles of individual preferences. This

is a standard probabilistic model which has been extensively studied in the

literature especially in the case of the majority rule (see Gehrlein (1997)). It

is worth noting at this point that we will be studying the asymptotic proper-

ties of strong simple games and the associated social welfare functions, and

it will be convenient to describe our results in terms of sequences (Gk)k=1,2,...

of simple games.3

We can describe our notion of social chaos using several equivalent def-

2 The neutral social choice we consider satisfies the basic Pareto and IIA conditions.

Of course, we do not assume that the social preference is necessarily an order relation.
3 For our results we will not require any relation between the games Gk for different

values of k. It is useful to think of the results applied to the case where the various Gk’s

represent the “same” type of voting rule, such as “simple majority” for different population

sizes. But giving a formal definition of a “voting rule” that applies to populations of

different sizes is not an easy matter and, in any case, is not needed in this paper.
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initions and we will start with the following simple definition based on the

probability of cyclic social preferences when there are three alternatives. Let

G be a monotone strong simple game with n players and let F be a neutral

social welfare function on three alternatives based on G. Consider a random

uniform profile for the individual order preferences between the three alter-

natives. Let pcyc(G) be the probability that the social preferences are cyclic.

Arrow’s theorem asserts that unless G is a dictatorship, pcyc(G) > 0.

Definition 1.1. The sequence (Gk) of monotone strong simple games leads

to social chaos if

lim
n→∞

pcyc(Gk) = 1/4. (1.1)

There are altogether eight possible social asymmetric relations for three

alternatives, six of which are order relations and two of which are cyclic.

Consider a social welfare function based on a strong monotone simple game

G on three alternatives and the uniform distribution on individual order pref-

erences. Symmetry considerations imply that the probabilities of obtaining

each of the six order relations as the social preference relation are equal, as

are the two probabilities for the two cyclic relations. Therefore, another way

of stating relation (1.1) is that for a social welfare function based on (Gk) on

three alternatives under the uniform distribution on individual order prefer-

ences, for every asymmetric relation R, the probability, for a random voter

profile, that the social preferences are described by R tends to 1/8.

A result of Gulibaud (see Gehrlein (1997)) asserts that for the social

welfare functions on three alternatives based on simple majority, the proba-

bility for a cyclic order relation as the number of voters tends to infinity is

1/4− (3/(2 ·π)) · arcsin(1/3) ≈ .08744. In other words, if we assume that the

voter profile is uniform and observe that the society prefers alternative a to

b and b to c, our a posteriori probability of the society preferring a to c tends

to 0.876. In contrast, in a similar scenario where the sequence Gk satisfies

relation (1.1) our a posteriori probability of the society preferring a to c will

tend to 0.5 (which is the a priori probability).4

4 (Kalai (2002) proved that for every monotone strong simple game this a posteriori

probability is always larger than 0.5.)
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We will now move from three alternatives to two and consider the effect

of random noise. Suppose that there are two candidates and that the voters’

preferences are random and uniform or equivalently that xi = 1 with proba-

bility 1/2 independently for all voters. The noise sensitivity of f is defined as

the effect of random independent mistakes in counting the votes. Formally,

for a strong simple game G and t > 0, consider the following scenario: first

choose the voter signals x1, x2, . . . , xn randomly such that xi = 1 with prob-

ability p = 1/2 independently for i = 1, 2, . . . , n. Let S = v(x1, x2, . . . , xn).

Next let yi = xi with probability 1 − t and yi = 1 − xi with probability t,

independently for i = 1, 2, . . . , n. Let T = v(y1, y2, . . . , yn). Define Nt(G) to

be the probability that S 6= R.

Definition 1.2. A sequence (Gk)k=1,2,... of strong simple games is asymptot-

ically noise-sensitive if, for every t > 0,

lim
k→∞

Nt(Gk) = 1/2. (1.2)

Our first theorem shows a surprising relation between noise sensitivity

for two alternatives and the probability of Condorcet’s paradox for three

alternatives.

Theorem 1.3. A sequence (Gk) of monotone strong simple games leads to

social chaos if and only if it is noise-sensitive.

We will now define the complementary notion of noise (or stochastic)

stability.

Definition 1.4. A class G of strong simple games is uniformly noise-stable

if for every s > 0 there is u(s) > 0 such that Nu(s)(G) ≤ s.

Theorem 1.5. The family of simple majority functions Mn is uniformly

noise-stable. Moreover, Nu(s)(Mn) ≤ s for u(s) = K · s2 for some constant

K.

Our next theorems provide several additional equivalent properties of

social chaos which we believe justify this notion. We first note that we

can consider slightly larger classes of games. A sequence Gk of monotone
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proper simple games has a strongly diminishing bias if for a random uniform

voter profile, the probability of a “tie” tends to zero as n tends to infinity.

An example is the class of simple majority games. All our results extend

from strong simple games to the case of monotone proper simple games with

strongly diminishing bias.

An asymmetric relation R on a finite set X is a binary relation such

that every pair of elements x, y ∈ X is ascribed one and only one of the

relations xRy or yRx. Clearly, there are 2(m

2
) asymmetric relations on a set

of m alternatives. For a monotone strong simple game G and an asymmetric

relation R on a set of m alternatives, let pR(G) be the probability under the

uniform distribution on voter profiles that the social welfare function based

on G will lead to R as the social preference relation.

Theorem 1.6. Let (Gk) be a sequence of proper strong simple games. The

following properties Pm are equivalent for m ≥ 3:

(Pm) : For a social welfare function based on (Gk) on a set A of m alter-

natives and every asymmetric relation R on A,

lim
k→∞

pR(Gn) = 1/2(m

2
). (1.3)

Note that (P3) is simply our definition of social chaos. It is easy to see

that (Pm) implies (Pm′) when m′ < m. Surprisingly, the reverse implication

also holds when m′ ≥ 3.

Consider a neutral monotone social welfare function and a random voter

profile U , and let R be the resulting preference relation for the society. Con-

sider the following scenario:

Suppose that every voter with a small probability t reconsiders and re-

verses the order of the two alternatives he ranked in the two last places. Let

R′ be the new social preference relation.

Theorem 1.7. Let m ≥ 2 be a fixed integer and t, 0 < t < 1/2, be a fixed

real number. A sequence Gk leads to social chaos if and only if any one of

the following equivalent properties is satisfied:

(Am) The correlation between R and R′ tends to zero with n.

(Bm) For every two asymmetric relations R1 and R2 on A, the probability

that R′ = R2, conditioned on R = R1, tends to 1/2(m

2
) as n tends to infinity.
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(Properties A2 and B2 both coincide with the notion of noise sensitivity.)

In Section 2 we provide the mathematical tools and proofs for our results

concerning the equivalence between the different properties of social chaos.

We also describe there relations with the Banzhaf power index and addi-

tional characterization in terms of the correlation with weighted majority

functions. Benjamini, Kalai and Schramm (1999) showed that the class of

weighted majority (strong) games is uniformly noise-stable. A stronger quan-

titative version was proved by Peres (2004). Benjamini, Kalai and Schramm

(1999) also proved that if (Gk) is sequence of strong simple games that is

asymptotically uncorrelated with weighted majority games, then it is noise-

sensitive.

In Section 3 we will analyze several examples. Consider the class of multi-

level majority-based voting rules described inductively as follows: (i) Simple

majority on an odd number of at least three voters has one layer. (ii) Suppose

that the players are divided into an odd number of three or more groups and

on each group we consider a game with r layers. If G is defined by the simple

majority of the outcomes, then G is said to be a multi-layer majority-based

simple game with r + 1 layers.

Theorem 1.8. A sequence (Gk) of multi-layer voting rules based on simple

majority leads to social chaos if and only if the number of layers tends to

infinity as k does.

The reason for the chaotic behavior is that any new level of majority

will amplify the probability of a cyclic outcome in three alternatives and

by a similar argument every new level will amplify the noise introduced by

mistakes in counting the votes.

When we base our rule on supermajority, social chaos may already ap-

pear for two layers. Consider a set of n individuals that is divided into

many committees of size k. The decision between two alternatives is based

on the majority of committees that prefer one of the alternatives by a 2/3-

supermajority. This rule defines a proper simple game and in order to have

a strongly diminishing bias we require that k = o(log n). We will show in

Section 3 that this example leads to complete social chaos when the size of

the committees tends to infinity with n. The reason for the chaotic behavior
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in this case is that the outcomes of the elections are determined by a small

number of committees with “decisive views;” i. e., they are sufficiently biased

towards one of the alternatives. Such a strong bias in favor of one of the alter-

natives is unlikely to survive following a small perturbation of the individual

preferences. We note that hierarchical or recursive aggregation of preferences

similar to those in the first example, and cases where the social preferences

heavily depend on a small number of small communities with decisive views,

can both represent realistic situations of preference aggregation.

The assumption of uniform and independent voter behavior is a standard

one and is the basis of a large body of literature. Most of this literature deals

with the majority voting rule (see, e.g., Bell (1981) and Gehrlein (1997)). As-

suming uniform and independent voter behavior is unrealistic, though it can

be argued that for issues concerning noise sensitivity and Condorcet’s para-

dox this assumption represents a realistic way of comparing different voting

methods. In Sections 4 and 5 we examine our probabilistic assumptions and

discuss the situation under more general probability distributions for voter

signals/behavior. Section 4 is devoted to the case that either the probability

distribution or the voting rule are a priori biased. In Section 5 we present

an example of chaotic behavior under the majority voting rule, when voter

behavior is not independent.

Perhaps the most important form of “noise” in real-life elections and other

forms of aggregated choice is abstention. In Section 6 we extend our model to

allow for individual indifference between alternatives. Analyzing this model,

we find out that noise sensitivity implies that a small change in the fraction

of voters who decide to abstain has a dramatic effect on the outcomes, similar

to the effect of random mistakes in counting their votes. Section 7 is devoted

to a discussion of issues related to noise stability, information aggregation,

indeterminacy, the asymptotic nature of our results, and possible extensions

to other economic models. Section 8 concludes.
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2 Proofs of the equivalence theorems

In this section we prove the various equivalent properties of sequences of

simple games that lead to social chaos. We also state additional equivalent

formulations. The proofs rely on two methods. A rather simple coupling ar-

gument allows us to move from noise sensitivity to the conclusions concerning

more than two alternatives given in Theorems 1.3, 1.6, and 1.7. The only

remaining step is to show that our definition of social chaos in terms of the

probability of Condorcet’s paradox for three alternatives implies noise sensi-

tivity. I am not aware of a direct probabilistic argument and the proof of this

implication relies on a rather elementary harmonic analysis of Boolean func-

tions. This part of the proof requires mathematical techniques and concepts

developed in Benjamini, Kalai and Schramm (1999) and in Kalai (2002).

Let (Gk) be a sequence of strong simple games. (All our arguments apply

unchanged to the case of proper simple games with strongly diminishing

bias.) We consider the following properties:

• (NS) Noise sensitivity

• (Pm) Asymptotically uniform distribution of social preference relations

when there are m alternatives, m ≥ 3

• Properties (Am), (Bm), m ≥ 2.

We wish to prove that all these properties are equivalent. The basic argu-

ments are presented in this section with some technical proofs presented in

the Appendix.

2.1 A coupling argument

Proof of the implication (NS)⇒ (Pk):

We rely here on a simple (coupling) idea which nonetheless requires careful

application. Consider a random voter profile. For two alternatives a and b

consider the set V of voters for whom alternatives a and b are consecutive. We

will try to determine the effect of reversing the order of the two alternatives

a and b with probability 1/2 for all voters in V .
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Let R and R′ be two asymmetric relations that differ only for the two

alternatives a and b, namely, for a set {c, d} 6= {a, b} of two alternatives cRd

if and only if cR′d and for the two alternatives a and b, aRb and bRa. We

will derive from noise sensitivity that

lim
k→∞

pR(Gk) = lim
k→∞

pR′(Gk). (2.1)

Consider the following process of determining two profiles P and P ′ of

individual preference relations:

Step (1): Determine the preference order relations between alternatives

a and b for every voter randomly and uniformly.

Step (2): Choose the order preference relations for all voters subject to

the voters’ preference between a and b that was determined in step (1).

Let P be the resulting profile of voters’ order relations obtained by this

process. Of course, P is a uniformly distributed random profile.

Let V be the set of voters for whom alternatives a and b are consecutive

in the preference relation. The set V is a random subset of the set of voters.

The probability that a voter i belongs to V is 1/(m−1) and these events are

independent. Moreover, the set V and the random voter preference relations

are independent.

Let P ′ be the voter profile obtained from P by reversing the order relations

between alternatives a and b for every voter in V . Note that P ′ is also a

uniformly distributed random profile.

Let R be the asymmetric relation obtained by applying the social welfare

function F to the profile P and let R′ be the asymmetric relation obtained

by applying F to P ′. Note that the two relations R and R′ coincide for every

pair of alternatives except possibly a and b.

If we focus on these two variables we note that the distribution of voter

preference relations between a and b in P is random. We claim that the

correlation between the events aRb and aR′b tends to zero as n tends to

infinity. Indeed, this follows from the fact that limn→∞ Nt(fn) = 0 for t =

1/(m − 1). Q.E.D.

The proof of the implication (NS) ⇒ (Bm) is similar to the proof pre-

sented above and is presented in Section 9.1 in the Appendix.
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Proof of the implication (Pm) ⇒ (P ′
m) for m′ ≤ 3, m′ < m :

Let A be a set of m alternatives and let A′ be a subset of A containing m′

alternatives. A random uniform voter profile on A induces a random uniform

voter profile on A′. Every asymmetric relation R′ on A′ can be extended to

precisely 2(m

2
)−(m−1

2
) asymmetric relations R on A. Given such an asymmetric

relation R, the probability that a social welfare function based on Gk will lead

to R tends to 1/2(m

2
). (By our assumption (Pm).) Therefore the probability

that the restriction on A′ will lead to R′ tends to 1/2(m
′

2
) as required. Q.E.D.

The same argument shows the implications: (Am) ⇒ (Am′), for 2 ≤ m′ <

m.

2.2 An elementary harmonic analysis argument

Proof of Theorem 1.3:

As mentioned in the Introduction, a simple game can be described by a

Boolean function, namely, f(x1, x2, . . . , xn), where the variables xk take the

values 0 or 1 and the value of f itself is also either 0 or 1. Every 0-1 vector

x = (x1, x2, . . . , xn) corresponds to a subset of players S = {k : xk = 1} and

we let f(x1, x2, . . . , x2) = v(S).

Let Ωn denote the set of 0-1 vectors (x1, . . . , xn) of length n. Let L2(Ωn)

denote the space of real functions on Ωn, endowed with the inner product

< f, g >=
∑

(x1,x2,...,xn)∈Ωn

2−nf(x1, . . . , xn)g(x1, . . . , xn).

The inner product space L2(Ωn) is 2n-dimensional. The L2-norm of f is

defined by

‖f‖2
2 =< f, f >=

∑

(x1,x2,...,xn)∈Ωn

2−nf 2(x1, x2, . . . , xn).

Note that if f is a Boolean function, then f 2(x) is either 0 or 1 and therefore

‖f‖2
2 =

∑
(x1,...,xn)∈Ωn

2−nf 2(x) is simply the probability that f = 1 (with re-

spect to the uniform probability distribution on Ωn). If the Boolean function

f represents a strong simple game then ‖f‖2
2 = 1/2.
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For a subset S of N consider the function

uS(x1, x2, . . . , xn) = (−1)
P

{xi: i∈S} .

It is not difficult to verify that the 2n functions uS for all subsets S form an

orthonormal basis for the space of real functions on Ωn.

For a function f ∈ L2(Ωn), let

f̂(S) =< f, uS >

(f̂(S) is called a Fourier-Walsh coefficient of f ). Since the functions uS form

an orthogonal basis it follows that

< f, g >=
∑

S⊂N

f̂(S)ĝ(S). (2.2)

In particular,

‖f‖2
2 =

∑

S⊂N

f̂ 2(S). (2.3)

This last relation is called Parseval’s formula.

Remark: We will demonstrate now the notions introduced here with

a simple example. Let f3 denote the payoff function of the simple major-

ity game with three players. Thus, f3(x1, x2, x3) = 1 if x1 + x2 + x3 ≥ 2

and f(x1, x2, x3) = 0, otherwise. The Fourier coefficients of f3 are easy to

compute: f̂3(∅) =
∑

(1/8)f3(x) = 1/2. In general if f is a Boolean func-

tion then f̂(∅) is the probability that f(x) = 1 and when f represents

the payoff function of a strong simple game f̂(∅) = 1/2. Next, f̂3({1} =

1/8(f3(0, 1, 1) − f3(1, 0, 1) − f3(1, 1, 0) − f3(1, 1, 1)) = (1 − 3)/8 and thus

f̂3({j}) = −1/4, for j = 1, 2, 3. Next, f̂3(S) = 0 when |S| = 2 and finally

f̂3({1, 2, 3}) = 1/8(f3(1, 1, 0) + f3(1, 0, 1) + f3(0, 1, 1) − f(1, 1, 1)) = 1/4.

We point out the following simple result:

Proposition 2.1. If f is a Boolean function representing a strong simple

game then f̂(S) = 0 whenever |S| is an even positive integer.

12



Proof: Let g = f − 1/2 (= f(x) − 1/2u∅). Since f represents a strong

simple game g(1 − x1, 1 − x2, . . . , 1 − xn) = −g(x1, x2, . . . , xn). When |S| is

even, consider the contributions of (x1, x2, . . . , xn) and (1−x1, 1−x2, . . . , 1−
xn) to the expression ĝ(S) =< g, uS >. Note that these two contributions

cancel out and therefore ĝ(S) = 0 for every set S of even size. It follows that

when S is a nonempty set of even size, f̂(S) = ĝ(S) = 0.

Let f be a Boolean function. For k ≥ 0, let

Wk(f) =
∑

{f̂ 2(S) : S ⊂ N, |S| = k}. (2.4)

Theorem 2.2. The probability Pcyc(f) of a cyclic outcome of a social welfare

function on three alternatives based on a strong simple game G with a payoff

function f is

Pcyc(G) = 1/4 −
n∑

k=1

(1/3)k−1Wk(f). (2.5)

Theorem 2.2 is from Kalai (2002).

Theorem 2.3. Let G be a strong simple game and let f be its payoff function.

The probability that an ε-noise will change the outcome of an election is given

by the formula:

Nε(G) = 1/2 − 2 ·
n∑

k=1

(1 − 2ε)kWk(f). (2.6)

Theorem 2.3 is from Benjamini, Kalai and Schramm (1999). The proofs

of Theorems 2.2 and 2.3 are quite elementary and rely essentially on relations

(2.2) and (2.3). Note that we obtain a very simple relation between the prob-

ability for Condorcet’s paradox and noise sensitivity when the probability for

a noisy bit is 1/3.

2(Pcyc(G) + 1 = 3N1/3(G). (2.7)

¿From Theorem 2.3 we can easily derive (see Benjamini, Kalai and Schramm

(1999)):
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Corollary 2.4. A sequence (fn) of Boolean functions that represent strong

simple games is noise-sensitive if and only if for every k > 0

lim
n→∞

k∑

i=1

Wk(fn) = 0. (2.8)

As a matter of fact Corollary 2.4 holds as stated when the Boolean func-

tions (fn) do not necessarily represent strong simple games but rather satisfy

the probabilities that fn = 1 is bounded away from 0 and 1 as n tends to

infinity.

Proof of Theorem 1.3: For this proof we need to compare the informa-

tion given by Theorem 2.2 and Corollary 2.4. Suppose that Pcyc(fn) → 1/4.

Recall that since fk represent a strong simple game f̂k(S) = 0 if f is odd.

It follows from relation (2.5) that for every r > 0, limn→∞ Wr(fn) = 0,

which by Corollary 2.4 is equivalent to noise sensitivity. On the other

hand, if (fn) satisfies relation (2.8) then it follows from relation (2.5) that

limn→∞ pcyc(fn) = 1/4. (This implication was also proved earlier.) Q.E.D.

We now complete the proof of Theorems 1.6 and 1.7. We have already

proved the following implications: (P3) ⇒ (NS) ⇒ (Pm) ⇒ (P3) and (NS)

⇒ (Bm), for every m ≥ 3. Of course, if property (Pm) holds then property

(Am) is equivalent to property (Bm) and therefore (NS) ⇒ (Bm), m ≥ 3.

On the other hand, (Bm) ⇒ (B2) = (NS) and (Am) ⇒ (A2) = (NS).

Remark: We now continue to demonstrate the notions and results intro-

duced here with our simple example. As before, f3 denote the payoff function

of the simple majority game with three players. As we saw, the Fourier co-

efficients of f3 are described by f̂3(∅) = 1/2, f̂3({j}) = −1/4, for j = 1, 2, 3,

f̂3(S) = 0 when |S| = 2 and f̂3({1, 2, 3}) = 1/4. When there are three alter-

natives the probability for cyclic social preferences given by formula (2.5) is

1/4 − 3 · (1/4)2 − (1/9) · (1/4)2 = 8/(9 · 16) = 1/18. This value agrees with

the well-known outcome given by a direct computation. The value of Nt(f3)

is 1/2− 2 · (1− 2t)(3/16)− 2 · (1− 2t)3 · (1/16) = 3t/2− 3/2t2 + t3. (Again,

this can be derived by a direct computation.)
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2.3 Individual power

We conclude this section with a short discussion of the relation between noise

sensitivity and the Banzhaf power index. Let bj(G) denote the Banzhaf power

index of player j in a strong simple game G. Recall that bj(G) is defined

as the probability that player j is pivotal, i.e., the probability that for a

random coalition S not containing i it is the case that S is a losing coalition

but S ∪ {i} is a winning one. Let bmax(G) denote the maximum value of the

Banzhaf power indices and let I(G) denote the sum of the Banzhaf power

indices for all players in a simple game, known also as the total influence of

the game. It is known that in the case of n players, I(G) is maximized by

a simple majority game. (See, e.g., Friedgut and Kalai (1996).) For simple

majority games I(G) is proportional to
√

n.

Definition 2.5. The sequence (Gk) of monotone simple games has a dimin-

ishing individual Banzaf power if

lim
k→∞

bmax(Gk) = 0.

Proposition 2.6. If the sequence (Gk) of monotone simple games leads to

social chaos then it has a diminishing individual Banzhaf power.

The proof is immediate: when there is a player with a substantial Banzhaf

power the outcome of the game has a substantial correlation with this player

vote. A small noise in counting the votes will miss the vote of this player

with a substantial probability and therefore the correlation of the outcomes

before and after the noise will also be substantial. (Here “substantial” means

bounded away from zero.)

Definition 2.7. The sequence (Gk) of monotone simple games has a bounded

power ratio if the ratio bmax(Gk)/bmin(Gk) is uniformly bounded.

Given a monotone simple game G, let p(G) be the probability that a

random uniform subset of players is a winning coalition. If G is strong, then

p(G) = 1/2. Given two monotone simple games G and H on the same set N

of players let p(G, H) be the probability that a random uniform subset S of
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players is a winning coalition for both G and H . The correlation between G

and H , denoted by cor(G, H), is defined by

cor(G, H) = p(G, H) − p(G)p(H).

The well-known FKG inequality asserts that for every two monotone simple

games cor(G, H) ≥ 0.

Definition 2.8. Two sequences (Gk) and (Hk) of monotone strong simple

games are asymptotically uncorrelated if

lim
n→∞

cor(Gk, Hk) = 0.

Theorem 2.9. A sequence (Gk) of monotone strong simple games leads to

social chaos if and only if it is asymptotically uncorrelated with every sequence

of weighted majority games.

An important special case is:

Theorem 2.10. A sequence (Gk) with a bounded Banzhaf power ratio leads

to social chaos if and only if it is asymptotically uncorrelated with the se-

quence of simple majority games.

Theorem 2.10 together with our earlier results demonstrates the “robust-

ness of majority”:5 Voting methods (based on proper simple games where

the voters have comparable power and the probability of a tie tends to zero)

either have a substantial correlation with simple majority or else lead to

social chaos.

Theorem 2.11. Let (Gn) be a sequence of monotone strong simple games

with a bounded power ratio and suppose that Gn has n players. The sequence

Gn leads to social chaos if and only if limn→∞ I(Gn)/
√

n = 0.

This result can be derived directly from the following result from Ben-

jamini, Kalai and Schramm (1999):

5 A term coined by Dasgupta and Maskin in another context.
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Theorem 2.12. The sequence (Gk) is noise-sensitive if and only if

lim
k→∞

∑
(bk(Gk))

2 = 0.

Remark: Holzman, Lehrer and Linial (1988) proved that for every mono-

tone simple game
∑

(bk(Gk))
2 ≤ 1.

3 Multi-level majority

3.1 Simple majority

Our principal examples of social welfare functions that exhibit social chaos

are based on multi-level majority. For their analysis we will have to start with

the case of simple majority. The outcomes of simple majority under random

individual voter profiles have been the subject of intense study. We will first

require a few results concerning the behavior of simple majority. Given a

monotone strong simple game G recall that pcyc(G) denotes the probability

that for a social welfare function on three alternatives A, B and C and a

random uniform voter profile the social preferences will be cyclic.

We start with a simple result concerning the majority voting rule with

an odd number of voters.

Lemma 3.1. Let Mn be a simple majority game on an odd number n of

players, n ≥ 3. Then,

(i) Nε(Mn) ≥ Nε(M3) = 3/2 · ε − 3/2ε2 + ε3;

(ii) pcyc(Mn) ≥ pcyc(M3) = 1/18.

The proof is given in Section 9.2 in the Appendix. We point out that

Fishburn, Gehrlein and Maskin proved that pcyc(M2k+1) ≥ pcyc(M2k−1) for

every k ≥ 3. This implies, in particular, part (ii) of Lemma 3.1. The next

result describes the limiting behavior of majority when the number of voters

tends to infinity.

Proposition 3.2. (1) (Sheppard (1899)) For every ε > 0

lim
n→∞

Nε(Mn) =
arccos(1 − ε)

π
. (3.1)
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(2) Gulibaud (see Gehrlein (1997))

lim
n→∞

pcyc(Mn) = 1/4 − (3/(2 · π)) · arcsin(1/3) ≈ .08744.

It follows from relation (3.1) that as ε tends to zero limn→∞ Nε(Mn) =

(1+o(1)) ·
√

2ε/π. This is a more precise version of Theorem 1.5. We will not

reproduce here the proofs of Proposition 3.2 but rather will explain informally

why, for simple majority on a large number n of players and for a small

amount ε of noise, the function Nε(Mn) behaves like
√

ε. The median gap

between the number of votes of the winning candidate and the losing one in

a simple majority is close to
√

n. According to the central limit theorem the

probability that the gap is larger than t
√

n behaves like e−t2/4. It follows that

a large gap is extremely rare while below the median gap the distribution of

the gap is rather close to uniform. When we flip εn random votes the median

gap between the number of votes for Alice that now go to Bob and votes for

Bob that now go to Alice is thus close to
√

ε
√

n, and again it is rare that

this gap is much larger. In order for the noise to change the election’s results

we require (apart from an event with a small probability) that the original

gap between the votes for Alice and Bob be around
√

ε
√

n and this occurs

with probability of roughly
√

ε. On the other hand, if the gap between votes

for Alice and votes for Bob behaves like
√

ε
√

n then the probability that the

noise will change the election’s outcome is bounded away from zero. This

argument indeed shows that Nε(Mn) behaves like
√

ε.

3.2 Multi-level games based on simple majority

The first class of examples that exhibit social chaos are based on multi-level

majority where the number of levels increases. Recall the class of multi-

level majority-based voting rules described inductively in the Introduction:

(i) Simple majority on an odd number of at least three have one layer. (ii)

Suppose that the players are divided into an odd number of three or more

groups and on each group we consider a game with r layers. If G is defined

by the simple majority of the outcomes then G is said to be a multi-layer

majority-based simple game with r + 1 layers.
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Define u(1)(ε) = u(ε) = 3/2 · ε − 2ε2 + 5/4ε3 and u(r)(ε) = u(u(r−1)(ε),

r = 2, 3, 4, . . . .

Theorem 3.3. Let Gr be an r-layer simple game based on simple majority.

Then

Nε(Gr) ≥ u(r)(ε).

As ε tends to 0,

Nε(Gr) ≥ (3/2)rε + O(ε2).

Proof: The proof is by induction on r and the case r = 1 is given

by Lemma 3.1. Consider a random vector (x1, x2, . . . , xn) ∈ Ω(n). The

value of v(x1, x2, . . . , xn) is the simple majority of the (r − 1) level outcomes

z1, z2, . . . , zm. Suppose that we flip each variable xi with probability ε. By the

induction hypothesis each zi is flipped with probability of at least u(r−1)(ε)

and by Lemma 3.1 the probability that v is flipped is at least u(u(r−1)(ε) =

u(r)(ε). When G = Tr is the recursive ternary majority game with r levels we

obtain that Nε(Tr) = u(r)(ε). To prove Theorem 3.3 we need to verify that

for every ε > 0, limr→∞ u(r)(ε) = 1/2.

We will state separately the result for a bounded number of levels.

Theorem 3.4. Let φ(ε) = φ(1)(ε) = arccos(1−ε)
π

and let φ(i+1)(ε) = φ(φ(i)(ε),

i = 1, 2, . . . . Let r be a fixed positive integer. Consider a sequence (Gn)

of r-level majority strong simple games where each level is based on simple

majority of tn players. (Thus, n = trn.) Then for a fixed ε > 0 as n tends to

infinity,

Nε(r) =: lim
n→∞

Nε(Gn) = φ(r)(ε).

As ε tends to zero

Nε(r) ≥ (1 + o(1))(2/π)ε1/2r

.

In our model, simple majority is considerably more stable in the presence

of noise than a two-layer election method like the U.S. electoral system. In

an electoral system with many states and many voters in each state, Nε(G)

is proportional, for small values of ε, to ε1/4. In a three-stage system of

this kind Nε(G) behaves like ε1/8. Is the advantage of simple majority on

a two-level majority in terms of noise sensitivity relevant for evaluating the
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U.S. electoral method? Can we conclude that events like those in the 2000

U.S. presidential election are less likely to occur in a simple majority system?

While the probabilistic models are unrealistic, it appears that the advantage

of simple majority by a two-level electoral method is quite general.

Remark: The hierarchical voting methods considered here resemble the

multi-tier system of councils (“soviets” in Russian). Lenin (among others)

advocated this system during the 1917 Russian Revolution. Lenin’s concept

of centralized democracy is based on a hierarchical method of voting and

was implemented in the Soviet Union and its satellites for party institutions,

national bodies, and labor unions. (For national bodies, the method was

changed in 1936.) For party institutions (which were the most important)

there could be as many as seven levels. Party members in a local organi-

zation, for example, the Department of Mathematics in Budapest, elected

representatives to the Science Faculty party committee who in turn elected

representatives to the University council. The next levels were the council

of the 5th District of Budapest, the Budapest council, the Party Congress,

the Central Committee and finally the Politburo. Friedgut (1979) is a good

source on the early writings of Marx, Lenin, and others, and for an analysis

of the Soviet election systems that were prevalent in the 70’s.

3.3 Two-level games based on supermajority

The second class of examples of social welfare functions that exhibit social

chaos are based on a two-level method where the lower level is biased. Con-

sider a two-level proper game G = G[a, b, t], where t satisfies b/2 < t < b,

defined as follows. There are a · b voters divided into a communities of b

voters each. Given a subset S of voters, we call a community C positive

if |S ∩ C| ≥ t and negative if |S ∩ C| ≤ b − t. The subset S is a winning

coalition if there are more positive communities than negative communities.

Let Gn = G[an, bn, tn] be a sequence of such games. In order for Gn to have

strongly diminishing bias it is necessary and sufficient that the expected

number of decisive coalitions tends to infinity.
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Theorem 3.5. If Gn = G[an, bn, tn] has strongly diminishing bias and

lim
n→∞

bn = ∞,

then the sequence Gn leads to social chaos.

The proof is given in Section 9.2 in the Appendix.

Remark: It can be shown by similar proofs to those we present that

social chaos occurs for more general hierarchical voting methods. This applies

both in the case where in each level the method is balanced and the number

of levels tends to infinity and in the case where there are as little as two

levels and the method is biased in the lower level. (In the Appendix we will

formulate and prove a more general theorem that gives Theorem 3.5 as a

special case.) Social chaos may occur also for more complicated recursive

methods. For example the different communities that we considered need

not be disjoint. But the analysis in such cases can be considerably harder.

4 Bias

The framework described in this paper extends to more general probabilis-

tic distributions of voter behavior (or individual signals). We expect that

the dichotomy described here between stochastically stable and chaotic be-

havior can also be extended, though such extensions are conceptually and

mathematically more difficult. When we consider the effect of stochastic

perturbations there are also various possible models for the “noise.” Does

it represent mistakes in counting the votes? or, perhaps, a small fraction of

voters reconsidering their positions or considering whether or not to vote?

We also expect that the stochastic stability of the majority rule extends to

various other probability distributions representing the voters’ behavior.

Our probabilistic model assumes three properties which we will discuss

separately:

(1) Independence: Voters’ probabilities (or signals) are independent.

(2) No bias: For two alternatives a and b the probability that the society

prefers alternative a to alternative b is 1/2.
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(3) Identical voters: Voters’ probabilities (or signals) are identical.

The assumption of identical voter preference distribution is unrealistic

but I expect that the basic results of this paper can be extended to cases

where the assumption of identical voter behavior is relaxed while the other

two assumptions are kept. We will concentrate on the other two assumptions

and discuss in this section bias and in the next section dependence between

voters.

The assumption of no bias is clearly an ideal assumption. A more realistic

assumption in many cases of aggregated choice is the assumption of “small

bias,” which is defined as follows:

Definition 4.1. Consider a sequence (Gk, νk), where Gk is a proper simple

game with nk players and νk is a probability distribution on coalitions of Gk.

(Alternatively, νk can be regarded as a probability distribution on 0-1 vectors

of length nk.) The sequence (Gk, νk) has small bias if for some constant t > 0,

the probability pνk
(Gk) that a random coalition according to νk is a winning

coalition satisfies

t ≤ pνk
(Gk) ≤ 1 − t, for every k ≥ 1.

While it is hard to justify that a priori two candidates in an election have

the same probability of winning it is often quite realistic that the a priori

probability of winning is substantial for both. We will return to this issue

towards the end of this section.

We will describe in this section the extension of our results to cases with

bias. Bias occurs when the simple game is strong and thus neutral between

the candidates but the probability distribution of signals favors one of the

candidates, and also when the probability distribution is uniform but the

voting method itself is described by a simple game giving advantage to one

of the candidates. The results in these two types of extensions (and their

combination) are similar. The dichotomy between noise-stable and noise-

sensitive monotone simple games and many of the results presented in this

paper can be extended to the case of independent voter behavior with a small

bias.
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Recall that Ωn denote the set of 0 − 1 vectors (x1, x2, . . . , xn) of length

n. Given a real number p > 0, 0 < p < 1, Pp will denote that product

distribution on Ωn defined by

Pp(x1, x2, . . . , xn) = pk(1 − p)n−k,

where k = x1 + x2 + · · · + xn. For a monotone simple game G with payoff

function v = v(x1, x2, . . . , xn), define

Pp(G) =
∑

{Pp(x)v(x) : x ∈ Ω(n)}.

Let t > 0 and consider the following scenario: first choose the voters’

signals x1, x2, . . . , xn at random such that xi = 1 with probability p indepen-

dently for i = 1, 2, . . . , n. Consider S = v(x1, x2, . . . , xn). Next let yi = xi

with probability 1 − t and yi = 1 − xi with probability t, independently

for i = 1, 2, . . . , n. Let T = v(y1, y2, . . . , yn). Let Cp
t (G) be the correlation

between S and R.

Definition 4.2. Consider a sequence (Gk, pk)k=1,2,... where Gk is a monotone

simple game and 0 < pk < 1. The sequence (Gk, pk) is asymptotically noise-

sensitive, if for every t > 0,

lim
k→∞

Cpk

t (Gk) = 0.

In the case of small bias, namely, when Ppk
(Gk) is bounded away from

0 and 1, Theorem 1.6, which asserts that simple majority is noise-stable,

extends and so do Theorems 2.9 and 2.12.

If limk→∞ Ppk
(Gk) = 1 (or 0) the sequence is always noise-sensitive.

Theorem 4.3. Every sequence (Gk, pk) of monotone simple games where

limn→∞ Ppk
(Gn) = 1 (or 0) is noise-sensitive.

Theorem 4.3 follows from a Fourier-theoretic interpretation of noise sen-

sitivity, which extends the formula for the uniform distribution and a certain

inequality of Bonamie and Beckner.

Perhaps some explanation of the meaning of noise sensitivity in the pres-

ence of bias is in order. When there are two alternatives noise sensitivity can

be described in two ways:

23



• (i) The result following a small perturbation is asymptotically uncor-

related with the original result.

• (ii) The probability that a small perturbation will change the collective

choice tends to 1/2.

The reason that when there is no bias (i) implies (ii) is that the model

assigns equal probabilities to the two outcomes. Property (i) may extend to

rather general probability distributions but the dramatic conclusion in (ii)

requires that there be no bias.

Assuming small bias, condition (i) implies the following:

• (iii) With a probability uniformly bounded away from zero, a small

amount of noise will change the outcome of the election.

Note that for a sequence of games (Gk) with small bias in order to con-

clude property (iii) it is enough to assume a weaker property than noise

sensitivity. Property (iii) follows if the sequence (Gk), in addition to having

small bias, is uniformly chaotic, which is defined as follows:

Definition 4.4. Consider a sequence (Gk, pk)k=1,2,... where Gk is a monotone

proper simple game and 0 < pk < 1. The sequence (Gk, pk) is uniformly

chaotic, if there is α > 0 so that for every t > 0,

lim
k→∞

Cpk

t (Gk) < 1 − α.

It is interesting to compare what happens to conditions (i) and (iii) when

the bias get larger (maintaining the assumption of independent and identical

voter preferences). In an election between Alice and Bob, when the prob-

ability of Alice winning tends to zero then so does the probability that a

small random perturbation in voter behavior will change the outcome of the

election. On the other hand, Theorem 4.3 asserts that in this case it is al-

ways true, even for the majority rule, that the correlation between outcomes

before and after the noise also tends to zero. Roughly speaking, Theorem 4.3

asserts that when your probability of winning the election is small and you

have the option of forcing a recount of a random fixed fraction of votes, this
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option almost doubles your chances of winning (for the majority rule and for

any other voting rule).

Our next proposition, whose proof follows directly from the definition of

uniform noise stability, asserts that the property of noise stability is itself

stable under small changes in the probability distribution.

Let n(k) be a monotone sequence of positive numbers. Consider two

sequences (νk) and (ν ′
k) where νk and ν ′

k are probability distributions on

Ωk(n). We say that ν and ν ′ are asymptotically non-singular if for every

sequence of events Sk ∈ Ωk(n), lim ν(Sk) = 0 if and only if lim ν ′(Sk) = 0.

Proposition 4.5. Consider a family G of strong simple games which is uni-

formly noise-stable. Suppose that pn is a sequence of probabilities such that

the distributions Ppn
on Ωn are asymptotically non-singular to the uniform

distribution. Then G is uniformly noise-stable w.r.t. the distributions Ppn
.

The stability of uniform noise stability extends to small perturbations of

the voters’ profile distribution, and the distribution describing the noise does

not require the assumption of independent voters.

We will now briefly deal with three or more alternatives. Let η be a

probability distribution on order relations on a set A of alternatives. Given a

set of n voters we will denote by Pη the probability distribution on the voters’

profile where the voters’ preferences are independent and are described by η.

We will assume that for every two alternatives a and b the probability that

aRb when R is chosen at random according to η is strictly between 0 and 1.

We will study the distribution of social preferences when the voters’ profiles

are distributed according to Pη. Consider the probability distribution pη

defined on asymmetric relations as follows:

pη(R) =
∏

aRb

η(a, b)/
∑

R

∏

aRb

η(a, b). (4.1)

This distribution pη(R) represents the following scenario. For every indi-

vidual the order relations among the m alternatives are distributed according

to η and are independent. The distribution on the social preference is based

on the following procedure. For every two alternatives a and b choose an in-

dividual va,b and let the the social preference between a and b agree with the
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preference of this individual. Assume that all these individuals are different.

The resulting distribution on the social preferences is pη.

We will now extend the definition of social chaos to strong monotone

simple games and arbitrary distributions η on the individual order relations.

Definition 4.6. A sequence (Gk)k=1,2,... of strong simple games leads to

social chaos w.r.t. the probability distribution η on voters’ order preferences

if for every three alternatives a, b, and c the probability that the society

prefers alternative a to alternative c given that it prefers a to b and b to c is

asymptotically the same as the a priori probability that the society prefers a

to c.

Given these definitions, Theorems 1.3 and 1.7, part (A)k (and their

proofs) extend. In Theorems 1.6 and Theorem 1.7, part (B)k, one has to

replace the uniform distribution on all asymmetric relations by the distribu-

tion pηk
.

We conclude this section by a brief discussion of the assumption of small

bias. The assumption of small bias is realistic and this by itself can be

regarded as a surprising phenomenon. Why is it the case that so often

shortly before an election we can give substantial probability for each one of

two candidates to be elected? How come the probabilities that we can assign

to the choices of each voter do not “sum up” to a decisive collective outcome?

This seems especially surprising in view of the property of aggregation of

information. It is worth noting that there are several factors that can push

the situation of collective choice towards small bias:

(i) Abstention and other strategic considerations of voters: If a voter’s in-

centive to vote is based (as is often assumed) on his chances of being pivotal,

then for voters acting strategically, abstention or applying mixed strategies

and not acting just based on the signals may drive the situation towards

criticality. See, e.g., Feddersen and Pesendorfer (1996, 1998) where super-

majority is studied, and Samet (2004) for general simple games.6

6 In these cases strategic behavior leads to asymptotic complete aggregation of infor-

mation in the sense that if there are independent individual signals weakly biased toward

the superior alternative then with probability tending to one the superior alternative will

be chosen.
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If there are two main candidates and a few additional candidates who are

each ideologically close to one of these two, a voter may choose to vote for

a minor candidate if he knows that his vote is not needed to decide between

the main candidates. Again, this can push the situation between the two

main candidates towards criticality.

(ii) Strategic considerations of candidates: In elections, such as those in

the U.S., the candidates concentrate their efforts on swing states. This may

lead to critical behavior in some of these states.

(iii) Choice out of equilibrium: Consider the difference between the fol-

lowing two scenarios: a) choosing between two types of products, b) choosing

between two types of products when the difference in quality is reflected in

their prices. In the second scenario it is more likely that we will observe

critical behavior and even more so when the decision-maker’s information

about the difference in quality is based primarily on the difference in price.

(iv) Dependence: A major reason why the assumption of small bias is

realistic is the lack of independence between voter preferences. Even a short

time before an election there is a nonnegligible probability that an event will

influence a large number of voters in the direction of one candidate.7

5 Dependence

Following is an example that demonstrates some of the issues that arise when

the voting rule is simple majority and voter behavior is not independent.

Suppose that the society is divided into a communities of b voters each. The

number of voters is thus n = ab, which we assume is an odd number. Each

voter i receives an independent signal si, where si = 1 with probability 1/2

and si = 0 with probability 1/2. The voters are aware of the signals of the

other voters in their community and are influenced by them. Let q > 0

be a small real number. A voter changes his mind if he observes a decisive

7 This type of dependence can imply failure of aggregation of information in the fol-

lowing sense: it is possible that every voter’s signal will favor a certain candidate with

probability (say) 0.6 and yet there is a substantial probability that the other candidate

will be elected regardless of the number of voters.
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advantage for the other candidate in his community, i.e., if he observes an

advantage where the probability of observing such an advantage or a larger

one, when voter behavior is independent and uniform, is at most q.

The election’s outcome as a function of the original signals s1, s2, . . . , sn

can be described by a strong simple game which we denote by G[a; b; q]. (The

example will also “work” if a fraction (1−α) of the voters vote according to

their signals and only some small fraction α > 0 of voters change their minds

as before.8

Let us examine the situation for a sequence (Gn) of such examples where

the parameters a and b both tend to infinity, n = ab, q tends to zero, and√
1/q = o(

√
m). (For example, take a = b =

√
n, and q = n−1/4.) In

this case, Gn exhibit noise sensitivity for (independent) small amounts of

noise in the original signals. The outcomes of elections as a function of

the individual signals is thus completely chaotic. Indeed, the outcomes of

the elections are determined (with very high probability) by the number of

communities with decisive signals in favor of one of the candidates. The

expected number of decisive communities is qa. The difference between the

number of decisive communities favoring the two candidates behaves like√
qa. Therefore, these communities contribute b

√
qa votes to one of the

candidates. Since the original gap in the number of favorable signals between

the two candidates behaves like
√

ab and by our assumption
√

am = o(m
√

qa)

we conclude that the decisive communities determine the outcome of the

elections with very high probability. From this point on, the analysis is

similar to the proof of Theorem 3.5. 9

On the other hand, this same sequence is extremely noise-stable for inde-

pendent noise with respect to counting the votes! The gap between votes cast

for the two candidates behaves like b
√

qa so that even if a random subset of

40% of the votes are miscounted the probability that the election’s outcome

8 Another variant that will have similar properties is the case in which there are election

polls in each community that influence some small fraction of voters.
9 If q = t/

√
a, where t is small but bounded away from zero, then for every amount

ε of noise in the signals, the correlation between the outcomes before and after the noise

will tend to a small constant; in this case the situation depends on the original signals in

a very, but not completely, chaotic manner.
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will be reversed is extremely small.

The two properties of our example: The first property of chaotic behav-

ior for noise affecting the original signal and the second property of strong

stochastic stability for noise affecting individual votes seem characteristic to

situations in which voter behavior depends on independent signals in a way

that creates positive correlation between voters. This topic deserves further

study. Note that when we consider random independent noise in the origi-

nal signals, the distribution of the resulting votes is identical to the original

distribution without the noise. This is not the case for random independent

noise in counting the votes.

We now move from examples to more general models. A general model

for voter behavior will be of a pair < G, ν > where G is a strong simple

game representing a voting rule and ν is a probability distribution of voters’

preferences or signals. In this case we can consider random independent

noise that can represent mistakes in counting the votes. For such a form of

noise the distribution of the noisy signals will be different than the original

distribution. Another form of noise can be described as follows. Given a

vector (x1, · · · , xn) of voters’ signals and another vector y = (y1, . . . , yn)

define

q(y) = (1 − t)n−d(x,y)td(x,y) · ν(y),

and normalize q(y) to a probability distribution by setting

p(y) = q(y)/
∑

{q(z) : z ∈ {0, 1}n}.

If the noise changes x to y with probability p(y) the distribution of the noisy

voters’ signals is the same as the original distribution. This type of noise can

be regarded as applying to the (unknown) mechanism leading to the voters’

preferences distribution ν.

A somewhat more restrictive but still quite general probabilistic set-

ting for aggregation is the following: there are some independent signals

s1, s2, . . . , st that may depend on the state of the world. At the stage where

individuals make up their mind they are exposed to some of these signals

directly and also to the emerging preferences of other individuals. The indi-

vidual’s final preferences are then aggregated according to some voting rule.
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When we study the sensitivity to noise it can make a big difference if we

consider noise affecting the original signals or noise affecting the individual

choices (mistakes in counting the votes).

In such a general framework there are cases, such as the example presented

at the beginning of this section, when rather general simple games describe

the situation even for a standard voting rule. For simplicity we can restrict

ourselves to the case of simple majority rule. Suppose that the choice of the

i-th individual vi = vi(s1, . . . , st) is a function of the signals s1, . . . , st. If the

vi’s are monotone and satisfy vi(1− s1, 1− s2, . . . , 1− st) = 1− vi(1− s1, 1−
s2, . . . , 1 − st) then the outcome of the elections in terms of s1, s2, . . . , st is

expressed by a proper simple game G (see also Kalai (2004), Section 3). If

the signals are random and uniformly distributed on Ωt then the situation

can be considered within our frameworks. As we have shown, it is possible to

provide natural examples in which the elections outcome as a function of the

original signals will exhibit chaotic behavior. In addition to examples that

are hierarchical, like those we have considered, one can also consider cases

in which voters repeatedly update their positions based on the positions of

friends and neighbors.

6 Abstention

In real elections it is common for a large proportion of voters not to vote.

Abstention is thus the most common form of noise when it comes to real-life

elections and perhaps also other forms of aggregation. It is possible to ex-

tend our model and consider monotone and neutral social welfare functions

that allow individual indifference between alternatives. When there are two

alternatives a and b, a social welfare function can be described by a func-

tion v(x1, x2, . . . , xn) where each xi ∈ {−1, 0, 1} and also v(x1, x2, . . . , xn) ∈
{−1, 0, 1} . Here xi = 1,−1, 0 according to whether the i-th individual prefers

a or b or is indifferent between the two, or prefers b to a, respectively. For two

alternatives neutrality is equivalent to v(−x1,−x2, . . . ,−xn) = −v(x1, x2, . . . , xn).

When we consider only ±1 variables, the function v describes a proper simple
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game G.10 We assume that v is monotone, namely, if xi ≥ yi, i = 1, 2, . . . , n

then v(x1, x2, . . . , xn) ≥ v(y1, y2, . . . , yn). The function v determines a neu-

tral social welfare function on every set A of m alternatives.

We can study the stochastic behavior of social preferences as we did

before. Let (vn) be a sequence of functions of the types we considered above

and let (Gk) be the proper simple game associated to (vk). We need the

assumption that for every α > 0 if a random fraction of α among voters

are indifferent between the two alternatives (in other words, if they abstain)

and the voters that do not abstain vote randomly and uniformly, then the

probability of social indifference tends to zero as n tends to infinity. This

implies, in particular, that the sequence (Gk) has strongly diminishing bias.

Suppose that all voters vote; then we are back in the case we studied in

this paper (with the assumption of strongly diminishing bias) and the notion

of noise sensitivity and social chaos extend unchanged.

Our first theorem asserts that if (Gk) is a noise-sensitive sequence of social

welfare functions then the effect of abstention of even a small fraction of

voters is dramatic. (Note that the game Gk does not determine the function

vk but the result applies simultaneously for all neutral extensions of the games

Gk to cases of individual indifference.)

Consider the following scenario. Let R be the outcome of an election

between two candidates and random voter profile (x1, x2, . . . , xn) without

abstention. Now consider another random voter profile (y1, y2, . . . , yn) where

yi = xi with probability 1 − s and yi = 0 with probability s. Let R′ be the

outcome of the election for the voter profile (y1, y2, . . . , yn).

Theorem 6.1. Consider a sequence (vk) of functions describing a voting rule

with individual indifference. Suppose that the social indifference is strongly

diminishing and that the sequence (Gk) of associated proper games is noise-

sensitive. Then the correlation between R and R′ tends to zero as k tends to

infinity.

Our next result asserts that the property of noise sensitivity is preserved

with probability 1 under abstention.

10 Note that the payoff function v uses the values −1, +1 instead of 0, 1 to describe this

game.
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Theorem 6.2. Consider a sequence (vk) of functions describing a voting rule

with individual indifference. Suppose that the social indifference is strongly

diminishing and that the sequence (Gk) of associated proper games is noise-

sensitive. Let δ be a fixed real number, 0 < δ < 1. Suppose that (G′
k)

is a strong simple game obtained from Gk when every voter abstains with

probability δ. Then with probability 1 the sequence G′
k is noise-sensitive.

We remark that a similar result applies when “noise-sensitive” is replaced

by “uniformly noise-stable.”

The next theorem, which is a simple corollary of the two theorems above,

asserts that if (Gk) is a noise-sensitive sequence of social welfare functions

then the effect of abstention of even a small additional fraction of voters is

dramatic. (Again, the result applies simultaneously for all neutral extensions

of the games Gk to cases of individual indifference.)

Now, consider the following scenario. Let R be the outcome of an election

between two candidates and random voter profile (x1, x2, . . . , xn) conditional

on the assumption that the probability of a voter abstaining is α ≥ 0. Let

(y1, y2, . . . , yn) be another random voter profile where yi = xi with probability

1 − s and yi = 0 with probability s. Let R′ be the outcome of the election

for the voter profile (y1, y2, . . . , yn).

Theorem 6.3. Consider a sequence (vk) of functions describing a voting rule

with individual indifference. Suppose that the social indifference is strongly

diminishing and that the sequence (Gk) of associated proper games is noise-

sensitive. Then the correlation between R and R′ tends to zero as k tends to

infinity.

The proofs are described in the Appendix. Similar results apply to the

case of more than two alternatives.

7 Discussion

1. The superiority of majority. What are the simple games most sta-

ble under noise? It was conjectured by several authors that under several

conditions which exclude individual voters having a large power, majority
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is (asymptotically) most stable to noise. (See a discussion and a surprising

application to computer science in Khot, Kindler, Mossel and Ryan (2004)).

This conjecture was recently proved by Mossel, O’Donnell and Oleszkiewicz

(2005).

Definition 7.1. The sequence (Gk) of monotone simple games has dimin-

ishing Banzhaf individual power if

lim
n→∞

bmax(Gk) = 0.

Theorem 7.2 (Mossel, O’Donnell and Oleszkiewicz (2005)). for a

sequence (Gn) of strong simple games with diminishing individual Banzhaf

power,

Ns(Gn) ≥ (1 − o(1)) · (arccos(1 − s)

π
).

In other words, when the individual Banzhaf power indices diminish sim-

ple majority is asymptotically most stable to noise.11 A consequence of this

theorem based on theorem 2.2 is

Corollary 7.3. For every sequence (Gn) of strong simple games with dimin-

ishing individual Banzhaf power,

pcyc(Gn) ≤ 1/4 − (3/(2 · π)) · arcsin(1/3) − o(1).

In other words, for social welfare functions with diminishing Banzhaf

value, simple majority is asymptotically least likely to yield a cyclic social

preference relation on three alternatives.

2. Aggregation of information. Given a strong monotone simple

game G on a set V of players we denote by Pp(G) the probability that

a random set S is a winning coalition when for every player v ∈ V the

probability that v ∈ S is p, independently for all players. Condorcet’s Jury

theorem asserts that for the sequence Gn of majority games on n players

11 It is crucial to fix s and let n tend to infinity. If s tends to zero as n tends to infinity

the situation can be very different. For example, when s = 1/n the majority function is

most sensitive to noise.
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lim
n→∞

Pp(Gn) = 1, for every p > 1/2. (7.1)

This result, a direct consequence of the law of large numbers, is referred

to as asymptotically complete aggregation of information. In Kalai (2004)

it was proved that for a sequence of monotone simple games asymptotically

complete aggregation of information is equivalent to diminishing Shapley-

Shubik individual power.

The speed of aggregation of information for simple majority games is

described by the central limit theorem. For a monotone strong simple game

G, let Tε(G) = [p1, p2] and tε(G) = p2 − p1, where Pp1
(G) = ε and Pp2

(G) =

1 − ε. When Gn is simple majority on n players the central limit theorem

implies that tε(Gn) = θ(
√

n). It is known that for n-player games (n being an

odd integer) and every ε, tε(G) is minimized by the simple majority game12.

The next theorem asserts that uniform noise stability (in a slightly stronger

sense than before) implies that up to a multiplicative constant the aggrega-

tion of information is optimal.

Theorem 7.4. Let (Gk) be a sequence of strong simple games such that Gk

has nk players and let ε > 0 be a fixed real number. Suppose that the class

of games and distributions (Gk,Pp), p ∈ Tε(Gk) is uniformly noise-stable.

Then tε(Gn) = θ(1/
√

nk).

3. Indeterminacy. Consider a sequence (Gn) of strong simple games.

Let m ≥ 3 be a fixed integer, let A be a set of m alternatives, and denote by

Fn the neutral social welfare function based on Gn when the set of alternatives

is A. Let R be an arbitrary asymmetric relation on A. It was proved in Kalai

(2004) that if (Gn) has diminishing individual Shapley-Shubik power then,

for n sufficiently large, R is in the range of Fn (in other words, pR(Gn) > 0)

and this property is referred to there as complete indeterminacy. Note that

social chaos (in view of Theorem 1.6) can be regarded as the ultimate form

of social indeterminacy as it implies that all the probabilities pR(Gn) are

asymptotically the same.

12 The fact that the derivative dPp(G)/dp is maximized for simple majority can be

found, e.g., in Friedgut and Kalai (1996).
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The main tool for showing that diminishing individual Shapley-Shubik

power implies social indeterminacy is the equivalence between diminishing

individual Shapley-Shubik power and asymptotically complete aggregation

of information. It also follows from the results of Kalai (2004) that diminish-

ing individual Shapley-Shubik power implies diminishing individual Banzhaf

power (but not vice versa). When we assume diminishing individual Banzhaf

power we can expect the following strong form of complete indeterminacy.

Definition 7.5. A sequence (Gn) of strong simple games leads to stochasti-

cally complete social indeterminacy if for every asymmetric relation R on a

set A of m alternatives

lim inf
n→∞

pR(Gn) > 0.

Theorem 7.6. (1) A sequence (Gn) of strong simple games with diminishing

Banzhaf individual power leads to stochastically complete social indetermi-

nacy.

(2) A sequence (Gn) of strong simple games that is uniformly chaotic

leads to stochastically complete social indeterminacy.

The proof of Theorem 7.6 uses the argument used in proving Theorem 1.6

and for part (1) we require also a recent theorem of Mossel, O’Donnell and

Oleszkiewicz (2005), referred to as “it ain’t over until it’s over”. This theorem

roughly asserts that for any random voter profile when a large random set

of votes is counted there is still (almost surely as n tends to infinity) a

probability bounded away from zero (however tiny) that either candidate

will win. We defer further details to the Appendix.

4. Noise stability. This paper is mainly devoted to the chaotic behavior

of noise-sensitive classes of simple games. There are interesting issues con-

cerning the behavior of social preferences for social welfare functions based

on uniformly noise-stable classes of simple games, and random uniform voter

profiles. I will mention one topic worth further study: suppose that we are

interested in the social preference relation between two alternatives A and

B but we can cannot compare these two alternatives directly. Rather, we

can compare both A and B with other alternatives C1, C2, . . . Cr. Suppose
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that for all those alternatives we discover that the society prefers A to Ci

and Ci to B. It seems true that as r grows we can conclude that the society

prefers A to B with higher and higher probability that tends to 1 as r tends

to infinity. This is unknown even for simple majority. (In contrast, it follows

from Theorem 1.6 that for every fixed r and a noise-sensitive sequence (Gn)

of strong simple games, the a posteriori probability that the society prefers

A to B tends to 1/2.)

5. Other economic models. We study noise sensitivity and its chaotic

consequences for social welfare functions. It would be interesting to study

similar questions for other economic models and, in particular, for exchange

economies and more general forms of economies. Related notions of inde-

terminacy, aggregation of information, pivotal agents, and power were con-

sidered for various models of economies and some analogies with results in

social choice theory can be drawn. The well-known Sonnenschein-Debreu-

Mantel theorem concerning demand functions for exchange economies is an

indeterminacy result that implies that various dynamics for reaching equilib-

rium points can be chaotic. Yet, it appears that exchange economies behave

in a similar way to weighted majority functions and are thus quite stable

to noise in terms of initial endowments and individual demand functions.

More complicated models of economies (or simple models under a compli-

cated probabilistic environment) appear to exhibit a more chaotic behavior

in the sense of this paper.

6. The asymptotic nature of our results. We would like to stress

that our approach and results are asymptotic: we consider the situation when

the number of individuals tends to infinity. The number of alternatives m

and the noise ε are supposed to be fixed as n tends to infinity, so one has

to be careful in drawing conclusions for numerical values of n, ε, and m.

Moreover, the dichotomy between stochastic stability and complete chaos is

based on first fixing ε and letting n tend to infinity and then letting ε tend

to zero. Studying the dependence on ε even for multi-level majority-based

rules gives a more involved picture than that discussed in Section 7.
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8 Conclusion

Social welfare functions form a simple and basic model in economic theory

and political science. We have considered their probabilistic behavior under

uniformly distributed voter profiles. In contrast to social welfare functions

based on simple majority (or weighted majority) which demonstrate stable

behavior to small stochastic perturbations, in this paper we studied a class

of social welfare functions that demonstrate completely chaotic behavior and

showed that this class can be characterized in surprisingly different ways.

This class contains some rather natural examples. Chaotic behavior occurs

in our model for hierarchical or recursive aggregation of preferences and in

cases where the social preferences heavily depend on a small number of small

communities with decisive views.

One interpretation of our results relates to the primary role of the ma-

jority rule. There have been many efforts to demonstrate the dominance of

majority among voting rules. Analysis of sensitivity to noise gives a clear

advantage to the majority rule. Our results on the stochastic robustness of

majority and the chaotic nature of methods that are asymptotically orthogo-

nal to majority point in this direction. So is the result by Mossel, O’Donnell

and Oleszkiewicz (2005) on the asymptotic optimality of the majority rule

in terms of sensitivity to noise. The majority rule is a very simple and very

basic economic/political mechanism and an analysis of sensitivity to noise

in a similar manner to ours may be an important aspect in evaluating other

economic mechanisms.

Do we witness chaotic behavior in realistic economic situations of pref-

erence aggregation? A complete social chaos of the kind considered in this

paper is an ideal rather than a realistic economic phenomenon. However, I

would expect to find chaotic components in real-life examples of preference

aggregation and in my opinion complete (stochastic) stability of the kind we

observe for weighted majority is often unrealistic. Understanding the chaotic

components (in the sense of this paper) in other stochastic economic models

is worthy of further study.
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9 Appendix

9.1 Proof of the implication (NS) ⇒ (Bm)

Consider a sequence (Gk) of strong simple games that is noise-sensitive. We

already proved that for every asymmetric relation R on m alternatives

lim
k→∞

PR(Gk) = 1/2(m

2
).

Therefore, assuming noise sensitivity, property (Am) implies property (Bm).

We will now prove that noise sensitivity implies property (Am).

Consider a random profile P and let R = F (P ). We need the following

lemma:

Lemma 9.1. Let (Gk) be a noise-sensitive sequence of strong simple games.

Let x be a random vector in Ωn and let (V 1, V 2, . . . , V r) be random par-

titions of the players of Gk into r disjoint parts. For j = 1, 2, . . . , r let

yj
i = xi if i /∈ Vj and if xi ∈ Vj let yj

i = xi with probability 1 − t and

yj
i = 1−xi with probability t. (Independently for i ∈ Vj. Let (z0, z1, . . . , zk) =

(Gk(x), Gk(y
1), . . . Gk(y

r)). Then, as k tends to infinity, the distribution of

(z0, z1, . . . , z
r) tends to the uniform distribution on Ωr+1.

Proof: Note that for r = 1 this is just the definition of noise sensitivity.

Consider the following process:

(1) Choose a random set of players Vj such that each player belongs to

Vj with probability 1/r.

(2) Choose a random assignment xi : i /∈ Vj of 0-1 values for the players

not in Vj, and let yi = xi for these players.

(3) Choose at random an assignment xi : i ∈ Vj .

(4) Choose at random another assignment vi : i ∈ V such that yi = xi if

i /∈ Vj and for i ∈ Vj, yi = xi with probability 1 − t and yi = xi, otherwise

(independently for different players).

Now consider the probability z over choices (1) and (2) that the four

probabilities over choices (3) and (4) that f(x) = σ1 and f(y) = σ2, for

σi = 0, 1,i = 1, 2, all belong to the interval 1/4 − ε′, 1/4 + ε′.
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Noise sensitivity implies that for every ε′ > 0, z approaches 1 as k tends to

infinity. In fact, this is a complicated form of the definition of noise sensitivity

where the noisy bits are chosen in two stages: in the first stage a random

subset of players is chosen and in the second stage a random subset of these

players are chosen.

Let ε′ = ε/r and choose k large enough so that z ≥ 1−ε/2r. The assertion

of the lemma will now follow.

Q.E.D.

We return now to the proof of the implication (NS) ⇒ (Bm). Let P be a

random profile of voter preferences. Let R be the social preference relation

for some random voter’s profile P . The relation R is a random variable.

Suppose now that a fraction 2t of voters, chosen at random, switch, with

probability 1/2, the last two alternatives in their order preference relation.

Let P ′ be the new profile. Let Va,b be the set of voters such that their two

least-preferred alternatives are a and b. Each voter belongs to V (a, b) with

probability 1/
(

m
2

)
. Therefore the sets V (a, b) form a random partition and

we can invoke Lemma 9.1. Lemma 9.1 asserts that the probability of every

vector of length
(

m
2

)
representing an asymmetric relation of social preferences

among all the
(

m
2

)
pairs {a, b} tends to 1/2(m

2
), which is the desired result.

9.2 Proofs of properties of simple majority and multi-

level majority

Proof of Theorem 1.5: Let f2k+1 be the majority function on the set

V = {1, 2, . . . , 2k+1}. In order to prove Lemma 3.1 we will study the Fourier-

Walsh coefficients of f2k+1. For a Boolean function f the coefficient f̂({j})
by definition equals

∑
S⊂V,j /∈S 2−nf(S) − ∑

S⊂V,j∈S 2−nf(S). Therefore, if f

is monotone we obtain that

f̂({j}) = −bj(f)/2,

where bj(f) is the Banzhaf value of j in f .

For f2k+1 we obtain that f̂({j}) =
(
2k
k

)
/22k+1. Recall that for a Boolean

function f and for k ≥ 0 we denoted

Wk(f) =
∑

{f̂ 2(S) : S ⊂ N, |S| = k}.
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For every Boolean function that represents a strong simple game:

(1) W0(f) = f̂ 2(∅) = 1/4,

(2)
∑n

k=0 W 2
k (f) = ‖f‖2

2 = 1/2, and

(3) Wk(f) = 0 for an even integer k > 0 (Proposition 2.1).

For simple majority on 2k + 1 voters we obtain that

W1(f) =
2k+1∑

j=1

f̂ 2({j}) = (2k + 1)

(
2k

k

)
/22k+1.

It is easy to verify that this expression is monotone decreasing with k. There-

fore, if k ≥ 1 the value of W1(f2k+1) is minimized for k = 1, namely, for

simple majority on three voters. For k = 1 we get W1(f3) = 3/16. Of course,

f̂3(S) = 0 for |S| > 3 and therefore Wk(f3) = 0 for every k ≥ 3 . It follows

that for every k ≥ 1, W1(f2k+1) ≤ W1(f3) and Wr(f2k+1) ≥ Wr(f3).

These relations with Theorems 2.3 and t:arrow imply our result. Indeed,

Theorem 2.3 asserts that the probability Nε(f) that an ε-noise will change

the outcome of an election is given by the formula:

Nε(f) = 1/2 − 4 ·
n∑

r=1

(1 − ε)rWr(f).

When we compare this expression for f3 and f2k+1 the result follows from

the fact that when we pass from f3 to f2k+1 the weights Wi’s (whose sum is

constant) are shifted from the lower values of i to the larger ones. Formally,

the proof is completed by the following standard lemma:

Lemma 9.2. Let a1 > a2 > . . . , an > 0 be a sequence of real numbers.

Let b = (b1, b2, . . . , bn) and b′ = (b′1, b
′
2, . . . , b

′
n) be sequences of positive real

functions such that
∑n

i=1 bi =
∑n

i=1 b′i and for every r, 1 ≤ r ≤ n,
∑r

i=1 bi ≥∑r
i=1 b′i then

∑n
i=1 aibi ≥

∑n
i=1 aib

′
i.

The same argument or just applying Relation 2.7 implies part (i).

Proof of Theorem 3.5:

Consider the following class of two-level games G(r, m, H). We have r

committees of m players in each committee. In each committee the win-

ner is determined (with a possibility of indifference) according to a proper
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monotone simple game H on m players. The society’s decision is based on

majority. Given a sequence Gk = G(rk, mk, Hk) of such games we make the

following assumption:

The probability pk = p(Hk) that a random coalition is winning in the

game Hk satisfies:

(1) limk→∞ pk = 0,

(2) limk→∞ pk · rk = ∞.

Theorem 9.3. The sequence (Gk) is noise-sensitive.

Condition (2) implies that (Gk) has strongly diminishing bias, which is

a necessary condition for noise sensitivity: The expected number of decisive

communities for (Gk) is pk · rk and therefore with probability tending to one

the election will be decided.

We will now describe the effect of noise.

(1) Noise sensitivity given by Theorem 4.3 implies the following prop-

erties: the probability that a nondecisive community before the noise will

become decisive toward a specific candidate after the noise is pk(1 + o(1)).

(2) Theorem 4.3 implies that the probability that a decisive community

before the noise will remain decisive after the noise is at most pk(1+o(1)). Fi-

nally, the probability that a decisive community before the noise will become

decisive but in the opposite direction after the noise is at most pk. (This is

intuitively clear and can easily be verified from standard FKG inequalities.)

For the special case that Hk is supermajority game, (1) and (2) can easily

be derived by direct calculations.

The proportion of communities that are decisive before the noise is neg-

ligible and therefore by (2) the effect of these communities is negligible after

the noise. The outcome of the elections is decided with a probability tending

to 1 by the communities that are undecided before the noise and, therefore,

the probability of each candidate winning after the noise tends to 1/2.

9.3 Proof of Theorem 4.3

Theorem 4.3 is the only result in this paper that requires a nonelementary tool

from harmonic analysis. We will give the proof for the case where pk = 1/2,
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namely, for the uniform probability distribution. In this case the bias comes

from the voting rule and not from the probability distribution. Corollary 2.4

(which is quite elementary) extends to the case of Boolean functions that

may have large bias, as follows:

Theorem 9.4. A sequence (fn) of Boolean functions is noise-sensitive if and

only if, for every k > 0,

lim
n→∞

k∑

i=1

Wk(fn)/(
∑

i≥1

Wk(fn)) = 0. (9.1)

Note that by the Parseval formula
∑

i≥1 Wk(fn) = qn(1 − qn), where

qn = ‖fn‖2
2 is simply the probability that fn equals 1. (In the case that

(fn) represent a strong simple game or represent games with small bias the

denominator on the right-hand side of relation (9.1) is bounded from zero

and can be deleted.) In view of formula (9.1) relating the noise sensitivity

to the Fourier coefficients, in order to demonstrate noise sensitivity we have

to show that most of the Fourier coefficients of fn (in terms of the 2-norm of

fn) are concentrated on large “frequencies.”

For a real function f : Ωn → R, f =
∑

f̂(S)US, define

Tε(f) =
∑

f̂(S)ε|S|uS.

The Bonamie-Beckner inequality (see, e.g., Benjamini, Kalai and Schramm

(1999)) asserts that for every real function f on Ω(n),

‖Tε(f)‖2 ≤ ‖f‖1+ε2.

For a Boolean function f , note that for every t, ‖f‖t
t = P(f). It fol-

lows from the Bonamie-Beckner inequality (say, for ε = 1/2) that for some

constant K, ∑

0<S<log(1/t)/4

f̂ 2(S) ≤ K
√

(qn(1 − qn)).

This is sufficient to show that relation 9.1 holds even when k depends on n

and is set to be [log(1/(qn · (1 − qn))/4].
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9.4 The results about abstention

Proof of Theorem 6.1: Consider the following process. We choose a

sequence u of random signals for all voters and let S1 be the outcome of the

election had everybody voted. Next we choose a random set T of tn voters

who abstain. Let S2 be the outcome then. Let S3 be the outcome if the

votes of these tn players are determined by coin-flips independently of their

original signals. Noise sensitivity for a sequence Gk of strong simple games

asserts that with a large probability (namely, for a probability tending to

1 as k tends to infinity) over the choices of u and T the probability that

S1 = S2 is close to 1/2. Divide the set of 2n signals into 2n−1 pairs of the

form (u1, . . . , un) and (1 − u1, . . . , 1 − un). Consider now a random uniform

and independent choice of

(a) the set T ,

(b) a pair of signals {u, 1 − u}.
Based on the choices of (a) and (b), define random variables S1, S2, and

S3 as follows. Choose either u or 1 − u with probability 1/2 and define S1,

S2 and S3 as above. Since our game is strong, for every choice of (a) and (b)

both S1 and S2 have the value 1 with probability 1/2 and 0 with probability

1/2. Noise sensitivity implies that with a large probability over the choices

(a) and (b) the probability that S1 = S3 is close to 1/2. Therefore, with a

large probability the probability that S2 = S3 is close to 1. This means that

for every t > 0 with a large probability if we choose u uniformly at random

the correlation between the outcome of the elections and the outcome when

a random set of tn voters abstain tends to 0.

Proof of Theorem 6.2 (sketch): We want to show that if (Gk) is

a sequence of noise-sensitive strong games with indifference, t > 0 a real

number, and if (G′
k) is obtained from (Gk) by letting a fraction of t of the

players chosen at random abstain, then with probability 1 the sequence (G′
k)

is noise-sensitive. We can repeat the argument of the previous theorem based

on the observation that the effect of a fraction of t players abstaining is similar

to the effect of a fraction of t players reconsidering their position and voting

with the same probability for each candidate independently of the original

signals.
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9.5 It ain’t over until it’s over

Sketch of the proof of Theorem 7.6: In the proof of Theorem 1.6 we

considered two asymmetric relations R and R′ on m alternatives that differ

only in the ranking of the two last alternatives and used noise sensitivity to

show that the ratio pR(Gn)/pR′(Gn) tends to one as n tends to infinity. If

we want to show only that the ratio pR(Gn)/pR′(Gn) is bounded away from

0 we need a weaker property for the sequence (Gn), referred to as [IAOUIO],

which is defined as follows:

Let G be a monotone simple strong game considered as a voting rule

between Alice and Bob with n voters. Let ε > 0 and δ > 0 be small real

numbers. Given a set S of voters and the way these voters vote, let Q denote

the probability when the remaining voters vote uniformly at random that

Alice will win the elections. Let q(G; ε, δ) be the probability that a random

choice of a set S of (1 − ε)n of the voters and a random choice of the way

voters in S voted the value of Q is at least δ.

Consider a sequence (Gn) of strong simple games regarded as voting rules.

The sequence (Gn) has property [IAOUIO] if

• For every ε > 0 there is δ > 0 so that

lim
n→∞

q(G; ε, δ) = 1.

It can be shown using the central limit theorem that the sequence of

simple majority games on n players has the property [IAOUIO]. In this case

δ can be taken to be e−ε−2

. As indicated above the proof of Theorem 1.6

gives

Theorem 9.5. A sequence (Gn) of strong simple games with property [IAOUIO]

leads to stochastically complete social indeterminacy.

Showing property [IAOUIO] for a uniformly chaotic sequence of games

is immediate from the definition and therefore part (2) of Theorem 7.6 fol-

lows directly from the proof of Theorem 1.6. To prove the first part we

need to show that diminishing Banzhaf individual power implies the property

[IAOUIO]. This is much more difficult and was recently proved by Mossel,

O’Donnell and Oleszkiewicz (2005) in response to a conjecture by the author.
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Theorem 9.6 (It ain’t over until it’s over). [Mossel, O’Donnell and

Oleszkiewicz] A sequence of strong monotone simple games (Gn) with di-

minishing individual Banzhaf power has property [IAOUIO].
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