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Introduction

A José, Manuel, Angélica, Esperanza, Graciela,
que velan mis pasos,

y a los que siguen caminando conmigo,
mi Madre, mi Abuela, mi familia.

From the first examples of transcendental numbers, explicitly con-
structed by Liouville, and the nature of common numbers such as π, which
is the key to solve the very old problem of squaring the circle, transcenden-
tal numbers have got the attention of mathematicians and wonderful results
emerged from them. The idea of measuring how complicated a number is,
have intrigued generations of mathematicians. Nowadays there is a solid ma-
chinery which allows to explore the jungle of numbers, nonetheless very little
is known.

In this work we start giving the basic machinery, that is, the theory
of heights, and we will give a proof of a particular case of the criterion of
Schneider-Lang in the language of heights.

Then as is very common in mathematics, numbers not suffice, so we
move to transcendental functions which are surprisingly common (as well as
transcendental numbers) and assorted when we look at their possible images.
We give the proof of a result which is outstanding (but non effective), which
offers relatively small upper bounds for the number of algebraic values that
a transcendental function take at algebraic numbers.

In the last part we hyper-specialize, that is, we take the Riemann zeta
function, we take our magnifying glass between 2 and 3, and find that the
number of rational values at these points is insignificant; of course we do not
expect such points at all. This gives an insight of how fantastic the study of
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numerical functions can be.

I would like to thank the ALGANT consortium, who supported me to
pursue this beautiful path by which a lot of great minds and persons have
walked. Specially I am very grateful to my thesis advisor Yuri, who always
had a cup of coffee and a hand for me. I would like to thank also my profes-
sors for sharing their invaluable knowledge with us.



Chapter 1

Transcendental numbers

1.1 Introduction
An algebraic number is a complex number which is the root of some

nonzero polynomial with rational coefficients. Let Q be the set of the alge-
braic numbers, then every α ∈ Q belongs to some number field K (a finite
field extension of Q), the degree d of α is the degree [Q(α) : Q].

Definition 1.1.1. A complex number β is transcendental if β /∈ Q.

Georg Cantor used his diagonalization argument to show that C \ Q
is an uncountable set. Using approximation techniques to algebraic num-
bers, Liouville succeeded to give the first examples of transcendental num-
bers. Nevertheless, it was unknown whether e, π or 2

√
3 were transcendental

numbers until the works of Hermite-Lindemann and of Gelfond-Schneider
respectively.

In this chapter we introduce some of the machinery needed in the rest
of this work and we show carefully the proof of a theorem from which the
mentioned results follow.

1.2 Heights
For a number field K of degree d = [K : Q] let us denote MK be its set

of places, that is the set of non-trivial absolute values onK whose restrictions
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to Q are normalized as

|x|∞ = x, if x ∈ Q≥0,

|p|p = 1
p
, if p is a prime number.

For every α 6= 0 in K, we have the product formula∏
v∈MK

|α|dvv = 1, (1.1)

where dv is the local degree [Kv : Qv].

Let P ∈ PnK represented by a homogeneous non-zero vector x with
homogeneous coordinates x = (x0 : x1 : . . . : xn).
Definition 1.2.1. We define the projective height of P as

H(x) =
∏

v∈MK

max
0≤i≤n

|xi|dv/dv . (1.2)

Similarly we define the logarithmic projective height of α as

h(α) = 1
d

∑
v∈MK

dv max
0≤i≤n

log |xi|v. (1.3)

One shows easily that the projective height does not depend on the field
K nor in the coordinates up to scalar multiplication. The natural embedding

σ : An
K −→ PnK

(x1, . . . , xn) 7→ (1 : x1 : . . . : xn),

provides a height function for affine points, defining the height of such a point
as the projective height of its image.

Example 1.2.1. Let α ∈ K. We define the height of α as

H(α) =
∏

v∈MK

max{1, |α|v}
dv
d , (1.4)

and the logarithmic height of α as

h(α) = 1
d

∑
v∈MK

dv log+ |α|v, (1.5)

where log+ |α|v := log max{1, |α|v}.
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Notice that both definitions are equivalent up to taking logarithm, we
shall call both of them height, also we will use the term height for affine
points, considering the height of their image in a suitable projective space.

Proposition 1.2.1. Let α = α1, . . . , αn be algebraic numbers, then

(i) h(αr) = |r|h(α), for every r ∈ Q,

(ii) h(α1 · · ·αn) ≤ h(α1) + ...+ h(αn),

(iii) h(α1 + . . .+ αn) ≤ log(n) + h(α1) + . . .+ h(αn),

(iii) h(α) = h(σ(α)) for all σ ∈ Gal(Q/Q).

Proof. [Bo-Gu 06, I.1.5.14,15,17 & 18]. �

Definition 1.2.2. Let K be a number field. The height of a polynomial

f(T1, . . . , Tn) =
∑

µ1,...,µn

λµ1...µnT
µ1
1 · · ·T µnn =

∑
(µ)
λ(µ)T(µ),

is the quantity
H(f) =

∏
v∈MK

max
µ
{1, |λ(µ)|v}dv/d. (1.6)

Let fα(x) = ad(x − α1) · · · (x − αd) be the minimal polynomial of α,
where α = α1, ..., αn are its conjugates.

We define the Mahler measure of α (equivalently of fα) as

M(α) = M(fα) := |ad|
d∏
i=1

max{1, |αd|}, (1.7)

this is equivalent to Jensen’s formula

log(M(fα)) = log |ad|+
d∑
i=1

log+ |αi|. (1.8)

The Mahler measure is related to the height of α by the following formula

h(α) = 1
d

logM(α). (1.9)

The next theorem is a very important finiteness result.
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Theorem 1.2.1 (Northcott). The number of algebraic numbers with bounded
degree and bounded height is finite, i.e. for D ∈ Z≥1 and N ∈ R>0 the set

ED,N := {α ∈ Q | [Q(α) : Q] ≤ D and h(α) < N} (1.10)

is finite.

Proof. [Bo-Gu 06, I.1.6]. �

Moreover, the cardinality of ED,N which we will denote εD,N can be
bounded effectively.

Proposition 1.2.2. For every integer D ≥ 1 and every real number N ≥ 0,
we have

eD(D+1)(N−1) < εD,N ≤ eD(D+1)(N+1). (1.11)

Proof. [Su 06, Lemme 1.1]. �

There exist sharper results for the lower-bounding and for εd,N the set
of algebraic numbers with bounded height and exact degree d ≥ 1.

Another important result about heights is the so called Siegel’s lemma.
For a system of linear equations over K a number field, it gives an upper
bound (in terms of the height of the equations, the number of equations and
dimension of the solutions) for the height of a nontrivial solution.

We denote DK/Q the discriminant and OK the ring of integers of a
number field K.

Lemma 1.2.1 (Siegel’s lemma). Let K be a number field of degree d, let r, n
positive integers, assume that r < n and let

a11X1 + · · · + a1nXn = 0
... . . . ... ...

ar1X1 + · · · + arnXn = 0

be a system of linear equations with aij ∈ K (not all zero), denote A = (aij)
and let H(A) be the projective height of A as a point in Pnr−1

K . There exists
a nontrivial solution x = (x1, ..., xn) ∈ Kn such that

H(x) ≤ |DK/Q|1/2d(
√
nH(A))

r
n−r ,

where H(x) is the projective height considering x as a point in Pn−1
K .
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Proof. [Bo-Gu 06, 2.9.9]. �

The first version of Siegel’s lemma was introduced by Siegel himself for
integral linear systems and it is basically a consequence of the Pigeon-hole
principle. There exist several variants of Siegel’s lemma, the one we use here
is proved using geometry of numbers.

Let f ∈ C[X1, . . . , Xt] be a polynomial in t variables over the complex
numbers. We denote L(f) the length of f , which is the sum of the modu-
lus of its complex coefficients. The length behaves well under addition and
multiplication

L(f + g) ≤ L(f) + L(g) and L(fg) ≤ L(f)L(g). (1.12)

An immediate result of the properties coming out from the height and
the product formula is the following.

Lemma 1.2.2 (Liouville’s Inequality). For an algebraic number α 6= 0 in K
and v ∈MK we have

|α|v ≥ H(α)−d/dv. (1.13)

Proof. By (i) in Proposition 1.2.1 we have H(α) = H(α−1) and clearly
|α|v ≤ H(α)d. �

1.3 The transcendence of e and π

An entire function is a complex analytic function which is defined in
the whole complex plane.

Let f be an entire function, we say that f has order ≤ ρ if there exists
a number C > 1 such that for a large R we have

|f(z)| ≤ CRρ ,

whenever |z| ≤ R. In general a meromorphic function is said to have order
≤ ρ if it is a quotient of entire functions of order ≤ ρ.

Let f, g be real functions, we say that f = O(g) if there exists C > 0
such that for x sufficiently big |f(x)| ≤ Cg(x).
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Let
P (T1, ..., TN) =

∑
λ(µ)T(µ) ∈ K[T1, ..., TN ]

and let
Q(T1, ..., TN) =

∑
β(µ)T(µ) ∈ R≥0[T1, ..., TN ],

both of degree r. We say that Q dominates P at v ∈MK if

|λ(µ)|v ≤ β(µ) ∀µ.

Theorem 1.3.1 (Schneider-Lang). Let K be a number field. Let f1, f2, ..., fN
be meromorphic functions of order ≤ ρ such that K(f1, ..., fN) has trascen-
dental degree ≥ 2 over K. Suppose that the derivative D = d/dz is an
endomorphism of K[f1, ..., fN ]. Let w1, ..., wm ∈ C none of them poles of the
fi’s, and such that

fi(wν) ∈ K

for i = 1, ..., N and ν = 1, ...,m. Then

m ≤ 10ρ[K : Q].

Proof. Let f and g be two functions among f1, ..., fN which are algebraically
independent over K. Let r be a multiple of 2m.

Define
F =

r∑
i,j=1

bijf
igj ∈ K[f, g].

So F has degree 2r. We have that DkF (z) ∈ K[f1, ..., fN ] for every k ≥ 0,
then

DkF (wν) ∈ K ∀ ν = 1, ...,m.
So let n = r2

2m and consider the system of linear equations in (b11, ..., brr) over
K

DkF (wν) = 0
for 0 ≤ k < n and ν = 1, ...,m. We have r2 = 2mn unknowns bij and mn
equations, so by Siegel’s lemma 1.2.1 we have that there exist a nontrivial
solution b = (bij) ∈ O2mn

K such that

H(b) ≤ C1rH(A) (1)

for C1 depending only on K, and where A is the matrix of the system of
linear forms over K.
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Claim 1. Let w = wi for some i = 1, ...,m and let

P (T1, ..., TN) =
∑

λ(µ)T(µ) ∈ K[T1, ..., TN ]

of degree ≤ r. Set f = P (f1, ..., fN), then there exists a real number C2 such
that for all positive integers k

H(Dkf(w)) ≤ H(P )rkk!Ck+r
2 .

Proof of the claim. For every v ∈MK define

bv = max
µ
{|λ(µ)|v} and Cv = 1 + |f1(w)|v + ...+ |fN(w)|v.

P is dominated at v by bv(1 + T1 + ...+ TN)r, which implies |f(w)|v ≤ bvC
r
v .

It follows
max{1, |f(w)|v} ≤ max{1, bv}max{1, Cr

v},
hence taking the corresponding product over all the places we get

H(f(w)) ≤ H(P )Cr
2 ,

from which the case k = 0 follows.
For the remaining cases we proceed by induction. There exist polynomi-

als Pi(T1, ..., TN) such thatDfi = Pi(f1, ..., fN) and put h = max1≤i≤N{degPi}.
There exists a unique derivation D on K[T1, ..., TN ] such that

DTi = Pi(T1, ..., TN).

For any P ∈ K[T1, ..., TN ] we can write

D(P (T1, ..., TN)) =
N∑
i=1

∂P

∂Ti
(T1, ..., TN)Pi(T1, ..., TN).

Writing
∂P

∂Ti
(T1, ..., TN) =

∑
λ(µ)

∂

∂Ti
T(µ)

we find that it is a polynomial (over) dominated at v by

bvr(1 + T1 + ...+ TN)r,

moreover if we write

Pi(T1, ..., TN) =
∑

λ(µi)T(µi),
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and define bi,v = max
µi
{|λ(µi)|v}, we have that Pi is a is dominated at v by

bi,v(1 + T1 + ...+ TN)h,

therefore DP is dominated by

bvC3r(1 + T1 + ...+ TN)h+r.

Now suppose that Dk
P is dominated by

Q(T1, ..., T2) = bvC3r
kk!(1 + T1 + ...+ TN)hk+r,

one compute easily that DQ = bvC4r
kk!(hk + r)(1 + T1 + ... + TN)h(k+1)+r

which dominates Dk+1
P , in fact since hk+ r ≤ r(k+ 1) we have that Dk+1

P
is dominated by

bvC4r
k+1(k + 1)!(1 + T1 + ...+ TN)h(k+1)+r.

Using the last equation we obtain

|Dkf(w)|v ≤ bvC4r
kk!(1 + |f1(w)|v + ...+ |fN(w)|v)hk+r,

taking maximums and the corresponding products we get

H(Dkf(w)) ≤ H(P )rkk!Ck+r
2 ,

this proves the claim. �

Since f, g are algebraically independent over K, our function F is not
identically zero, so eventually the derivative would not vanish at all the points
w1, ..., wn, let s ≥ n be the smallest integer for which that happens for a w,
say w1. We have then

γ := DsF (w1) 6= 0,
is in K.

Using Liouville’s Inequality (1.13) we find a lower bound for the norm
of γ and an upper bound obtained from the claim

1 ≤ |γ|H(γ)[K:Q] ≤ |γ|O(s5s)[K:Q] (2)

when s→∞.
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Now we will estimate the complex absolute value of γ by global argu-
ments.

Let Θ be an entire function of order ≤ ρ, such that Θf and Θg are
entire and Θ(w1) 6= 0. Then Θ2rF is entire and has zeros of exact order s at
w1 and sν ≥ s at wν for ν = 2, ...,m. We consider the entire function

G(z) = Θ(z)2rF (z)∏m
v=1(z − wν)s

.

By the maximum modulus principle, |G(z)| is bounded by the maxi-
mum of G on the boundary of a disk of radius R, moreover if we take R be
large, then |z − wν | approches R if z lies on the boundary of the disk, and
consequently,

|G(z)| ≤ s3sC2rRρ
5

Rms
.

Put R = s
1

2ρ , we get the estimate and the upper bound

|γ| ≤ s4sCs
6

sms/2ρ
≤ O(s5s),

when r tend to infinity, so n and s tend to infinity. Combining this last
inequality with (2), we obtain

sms/2ρ ≤ O(s5s)[K:Q],

the desired result follows from taking logarithms. �

Corollary 1.3.1 (Hermite-Lindemann). If α is algebraic and nonzero, then
eα is transcendental. Hence e and π are transcendental.

Proof. Suppose α 6= 0 and eα are algebraic, let K = Q(α, eα). Consider
the functions z and ez, both of order ≤ 1. Also z and ez are algebraically
independent overK, since ez ∈ K[[z]]\K[z], thusK(z, ez) has transcendental
degree 2. The derivative d/dz is an endomorphism ofK[z, ez]. For everym ≥
1 our functions take algebraic values at α, 2α, ...,mα. Then m > 10ρ[K : Q]
for a sufficiently large m, contradiction. �

Corollary 1.3.2 (Gelfond-Schneider). If α is algebraic and 6= 0, 1 and if β
is algebraic irrational, then αβ = eβ logα is transcendental.
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Proof. Suppose α 6= 0, 1 and αβ are algebraic, with β quadratic irrational.
Let K = Q(α, αβ). Consider the functions eβt and et, both of order ≤ 1.

Claim 2. If ω1, ..., ωn ∈ C are pairwise distinct then eω1z, ..., eωnz are alge-
braically independent.

Let ω1, ..., ωn ∈ C are pairwise distinct, consider z0 ∈ C such that
(ωj−ωk)z0 is not a multiple of 2πi for every j 6= k. For that z0, the numbers

γ1 = eω1z0 , ..., γn = eωnz0

are pairwise distinct, consider the Vandermonde matrix
1 1 · · · 1
γ1 γ2 · · · γn
... ... . . . ...

γn−1
1 γn−1

2 · · · γn−1
n


which determinant is non-zero, since it is given by ∏1≤j,k≤n |γk − γj| 6= 0,
thus the columns and rows are linearly independent, hence eω1z, ..., eωnz are
algebraically independent. �

From the claim we see that since β /∈ Q, eβt and et are algebraically in-
dependent overK. The derivative d/dz is an endomorphism ofK[eβt, et]. For
every m ≥ 1 our functions take algebraic values at logα, 2 logα, ...,m logα.
Then m > 10ρ[K : Q] for a sufficiently large m, contradiction. �



Chapter 2

Algebraic values of
transcendental functions

Definition 2.0.1. We say that f is an analytic transcendental function if
the graph (z, f(z)) does not vanish identically for any non-trivial polynomial
P (X, Y ) ∈ C[X, Y ], i.e. z, f(z) are algebraically independent over C.

A transcendental entire function is an entire function which is not a
polynomial.

For a transcendental function f we denote Sf the set of algebraic values
of f at algebraic points

Sf = {α ∈ Q | f(α) ∈ Q}. (2.1)

Example 2.0.1. Sez = {0} by Hermitte-Lindemman (Corollary 1.3.1). For
the same reason for P ∈ Q[x], SeP (z) = { zeros of P}.

Example 2.0.2. If f(z) = eλz where λ 6= 0 and ez is algebraic, then by
Gelfond-Schneider (Corollary 1.3.2) we have Sf = Q.

2.1 The possible sets of values of a transcen-
dental function

A natural question which arises is: Does there exist an entire function f
for which its set of algebraic values is either empty or either all the algebraic
integers? The answer is yes.

14
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Theorem 2.1.1 (Stäckel). Let Σ be a countable subset of C and T a dense
subset of C, there is an entire transcendental function sending Σ into T .

Hence if Σ = Q, as we already mentioned we can have Sf = ∅ when
T = C \Q and we can get Sf = Q when T = Q.

F. Gramain showed that Stäckel’s Theorem 2.1.1 apply if Σ ⊂ R and T
is dense in R. Then a real number field K could be mapped into T = Z[1/n],
for n ≥ 2.

We fix a transcendental function f . In order to study the set Sf we
will study it locally.

Let us denote D(0, R) the disk of radius R around the origin in the
complex plane. If a function f is continuous in D(0, R), we denote

|f |R = max
|z|≤R

|f(z)|. (2.2)

Schwarz’ Lemma for complex analytic functions of one variable provides
a sharp upper bound for the values of a function having a lot of zeroes.

Lemma 2.1.1 (Schwarz’ Lemma). Let R ≥ r > 0 be real numbers. Let f be
an analytic function in an open neighbourhood of D(0, R) which vanishes at
w1, . . . , wN ∈ D(0, r) with multiplicity ≥ κi (1 ≤ i ≤ N). Then

|f |r ≤ |f |R
N∏
i=1

(
R2 + r|wi|
R(r + |wi|)

)−κi
(2.3)

Proof. [Wa 00, Exercise 4.3] �

Liouville’s Inequality for algebraic numbers can be generalized in the
following way.

Lemma 2.1.2 (Polynomial Liouville’s Inequality). Let K be a number field
of degree d, let v ∈ M∞

K and ν1, . . . , ν` be positive integers. For 1 ≤ i ≤ `,
let γi,1, γi,2, . . . , γi,νi be elements of K. Let f be a polynomial in ν1 + · · ·+ ν`
variables, with coefficients in Z, which does not vanish at the point γ =
(γij)1≤j≤νi,1≤i≤`. Assume f is of total degree at most Ni with respect to the
νi variables corresponding to γi1, . . . , γiνi. Then

log |f(γ)|v ≥ −(d− 1) logL(f)− d
∑̀
i=1

Nih(1 : γi1 : · · · : γiνi). (2.4)
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Proof. [Wa 00, Proposition 3.14]. �

Notice that if we let ` = 1, v1 = 1 and consider the polynomial f(x) = x
we recover (1.13).

Definition 2.1.1. Let R > r > 0 be real numbers. For every analytic
function defined D(0, R), for every integer D ≥ 1 and every real number
N > 0 we define

ΣD,N(f, r) = ΣD,N (2.5)

as the set of α ∈ Q ∩D(0, r) such that

f(α) ∈ Q, [Q(α, f(α)) : Q] ≤ D, h(α) ≤ N, h(f(α)) ≤ N.

Then it follows that Sf is the union of all the ΣD,N , more precisely

Sf ∩D(0, r) =
⋃
D,N

ΣD,N(f, r).

We will denote σD,N the cardinality of ΣD,N .

For a real number x, [x] ∈ Z denotes the integer part of x, it satisfies
0 ≤ x− [x] < 1.

2.2 An outstanding non effective theorem
The next theorem gives an upper bound for σD,N(f, r) which depends

uniquely on the domain of definition of the function, the degree and the
height of the algebraic values.

Theorem 2.2.1 (A. Surroca). Let R > r > 0 be real numbers. Define

c0 = log
(
R2 + r2

2rR

)
,

and let δ be a real number such that δ > 2(6/c0)2.
Let f be an analytic transcendental function on D(0, R) and continuous

on D(0, R).
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(i) For every integer D ≥ 1 there exists a sequence of real numbers N ≥ 0
tending to infinity such that

σD,N(f, r) < δD3N2 (2.6)

(ii) For every real number N > 0, there is a sequence of integers D ≥ 2
tending to infinity such that

σD,N(f, r) < δD3N2 (2.7)

Figure 2.1: Graph of δ.

Notice that c0 is small when R− r → 0 and big when R− r →∞, and
exactly the opposite happens for δ: when R and r are too close one to the
other then its value is big and vice versa (see Figure 2.1).

If D and N are fixed then the set ΣD,N(f, r) is finite since it is a subset
of ED,N (See Theorem 1.2.1).

Moreover, for D fixed and infinitely many integers N , the lower bound
of εD,N given in Proposition 1.2.2 is bigger than σD,N . The same is true for
fixed N and infinitely many integers D.
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Proof of the Theorem.
First let us prove (i), we proceed by contradiction.
We give first an sketch of the proof.

(a) We suppose that there exists an integer D ≥ 1 and an integer
N0 ≥ 1 big enough such that for every N ≥ N0, we have

σD,N ≥ δD3N2.

For every N ≥ N0 we start by extracting a subset SD,N of ΣD,N for
which its cardinality is well known.

(b) Using a Siegel’s Lemma kind argument we find a non-zero polyno-
mial P in two variables with integer coefficients which vanishes at
every point in SD,N0 . From which we define an analytic function F
which is continuous in all D(0, R).

(c) Using induction, Liouville’s Inequality and Schwarz lemma, we
show that F vanishes at all points in SD,N for N ≥ N0.

(d) Last point implies that the function F will be the zero function,
which is impossible since f is a transcendental over C(z).

(a)
Fix an integer D ≥ 1 and a real δ > 2(6/c0)2, suppose there exists a real
number N0 such that for every N ≥ N0

σD,N ≥ δD3N2.

Set
T =

[
c0δ

6 D2N0

]
. (2.8)

Up to increasing N0, the integer T satisfies the inequality

c0
[
δD3(N0 − 1)2

]
> D log 2 + 4D log T + T

(
4N0D + log+R + log+ |f |R

)
.

Putting
u1 = log(2T 4e2N0T max{1, RT}max{1, |f |TR}) (2.9)
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the last inequality becomes

c0
[
δD3(N0 − 1)2

]
> u1 + (D − 1) log(2T 4) + 2TN0(2D − 1). (2.10)

If N ≥ N0, we have σD,N ≥ δD3N2, then we can extract a subset SD,N
of ΣD,N of exact cardinality sD,N = [δD3N2].

Since D and N0 are fixed, we denote S0 = SD,N0 and s0 = sD,N0 , and
we can write

S0 = {w1, w2, . . . , ws0}.

(b)

Using a Siegel’s Lemma kind argument we construct a polynomial
P (X, Y ) ∈ Z[X, Y ] which vanishes in every point of S0.

Lemma 2.2.1. There exists a polynomial P ∈ Z[X, Y ] with the property that
P (1, Y ) and P (X, 1) are of degree strictly less than T (see (2.8)) and such
that

P (w, f(w)) = 0, ∀w ∈ S0.

Moreover its coefficients are bounded in absolute value by 2T 2e2TN0.

Proof. Let us write

P (X, Y ) =
T−1∑
i=0

T−1∑
j=0

ci,jX
iY j,

so consider the system of linear equations on the ci,j’s variables given by

P (w1, f(w1)) = 0
... ... (2.11)

P (ws0 , f(ws0)) = 0,

the system has a non-trivial solution c ∈ ZT 2 provided s0D < T 2. This
is in fact the case, since we have δ2(c0/6)2 > 2δ, we find that (eventually
increasing N0)

s0D < 2δD4N2
0 < T 2 ≤

(
c0δ

6

)2

D4N2
0 . (2.12)
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Proposition 2.2.1. Let K` = Q(w`, f(w`)) and let d` = [K` : Q], similarly
let d`,id = [Q(w`) : Q] and d`,f = [Q(f(w`)) : Q], with 1 ≤ ` ≤ s0. Then there
is a solution c = (ci,j) ∈ ZT 2 to the linear system (2.11) such that

max
0≤i,j<T

|ci,j| ≤

(2s0
s0∏
`=1

M`

)1/(T 2−s0D)
 , (2.13)

where
M` = T 2d`M(w`)(T−1)d`/d`,idM(f(w`))(T−1)d`/d`,f ,

and the M in the right denote the usual Mahler’s measure (see 1.7).

Proof. [Gr-Mi-Wa 86, Lemme 1.1]. �

The relation (1.9) between the Mahler’s measure and the height yields

M` = T 2d`H(w`)(T−1)d`H(f(w`))(T−1)d` ,

furthermore since d` ≤ D and using the fact that h(w`) and h(f(w`)) are
bounded by N0 we have

max
0≤i,j<T

|ci,j| ≤
[(

2s0T 2s0De2s0N0DT
)1/(T 2−s0D)

]
,

finally since T 2 > 2s0D, we have the bound

max
0≤i,j<T

|ci,j| ≤ 2T 2e2TN0 .

�

Therefore we can define a function F continuous in all D(0, R) in the
following way

F (z) = P (z, f(z)), ∀ z ∈ D(0, R). (2.14)
(c)

We show now that F vanishes for all w ∈ SD,N for every N ≥ N0.

Lemma 2.2.2. For every N ≥ N0 we have that if F (w) = 0 for every
w ∈ SD,N then

|F (w)| ≤ eu1−c0sD,N , ∀w ∈ SD,N+1, (2.15)
where u1 is like in (2.9).
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Proof. Let N ≥ N0 and suppose F (w) = 0 for every w ∈ SD,N . Considering
0 < r < R we can apply Schwar’z Lemma 2.1.1, from it we have

|F |r ≤ |F |R
sD,N∏
i=1

(
R2 + r|wi|
R(r + |wi|)

)−1

, (2.16)

further
R2 + r|w|
R(r + |w|) ≥ ec0 > 0 ∀ w ∈ SD,N , (2.17)

which implies that
|F |r ≤ |F |Re−c0sD,N . (2.18)

Now we bound |F |R for z ∈ D(0, R),

|F |R ≤

∣∣∣∣∣∣
T−1∑
i=0

T−1∑
j=0

ci,jz
if(z)j

∣∣∣∣∣∣
≤ T 2 max

i,j
|ci,j|max{1, RT}max{1, |f |TR}

≤ 2T 4e2N0T max{1, RT}max{1, |f |TR}
= eu1 ,

it follows that |F (z)| ≤ eu1−c0sD,N , for all z ∈ D(0, r), in particular every
w ∈ SD,N+1 has complex absolute value ≤ r, and the lemma follows. �

Lemma 2.2.3. For every N ≥ N0 + 1 and for every w ∈ SD,N , we have

|F (w)| ≤ eu1−c0sD,N−1 =⇒ F (w) = 0.

Proof. Let N ≥ N0 + 1, w ∈ SD,N and suppose that |F (w)| ≤ eu1−c0sD,N−1 .
We have sD,N−1 = [δD3(N − 1)2] and since N − 1 ≥ N0, so N satisfies

c0sD,N−1 > u1 + (D − 1) log(2T 4) + 2TN0(D − 1)− 2TND. (2.19)

We can upper bound the length of f using Proposition 2.2.1 as follows

L(f) ≤
T−1∑
i=0

T−1∑
j=0
|ci,j|

≤ T 2 max
i,j
|ci,j|

≤ 2T 4e2TN0 ,
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hence we have

eu1−c0sD,N−1 < e(1−D) log(2T 4)+2TN0(1−D)−2TND

≤ L(f)(1−D)(e2N)−TD

≤ L(f)(1−D)(H(w)H(f(w)))−TD, ∀w ∈ SD,N .

Thus by the hypothesis we get that ∀w ∈ SD,N

|F (w)| < L(f)(1−D)(H(w)H(f(w)))−TD,

so setting | · | = | · |v, K = Q(w, f(w)), ` = 2, N1 = N2 = T , γ = (w, f(w)),
f = P and taking logarithm we get

log |P (w)| < (1−D) logL(f)− TD(h(w) + h(f(w))),

so by the Polynomial Liouville’s Inequality (2.4), the polynomial vanishes at
(w, f(w)), and this proves the lemma. �

Since F (w) = 0 for all w ∈ S0, then for all w ∈ SD,N0+1 the inequality
(2.15) of Lemma 2.2.2 holds, then Lemma 2.2.3 implies that F vanishes at
SD,N0+1. Continuing the process we get the desired result.

(d)

We have shown that F vanishes for all w ∈ SD,N(f, r) for everyN ≥ N0,
that is

F (w) = 0, ∀w ∈
⋃

N≥N0

SD,N(f, r). (2.20)

The function F is continuous and non-zero in all D(0, R), furthermore is an-
alytic in the compact D(0, r), this last contains every SD,N , hence F vanishes
in infinitely many points of D(0, r). This contradicts the fact that the zeros
of the holomorphic function F are isolated.

This proves the part (i) of Theorem 2.2.1.

We sketch the proof of part (ii), it is quite similar to the proof of (i).
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(a’) We fix a real number N0 and a real number δ > 2(6/c0)2. Suppose
that there exists an integer D such that for every D′ ≥ D we have

σD′,N0 ≥ δD′3N2
0 .

We let T be as in (2.8). For every D′ ≥ D we start by extracting a
subset SD′,N0 of ΣD′,N0 for which its cardinality is well known.
This time we ask D to satisfy (up to increase it) the next inequality

c0
[
δ(D − 1)3N2

0

]
> u1 +D log(2T 4) + 2TN0(2D + 1),

with u1 as in (2.9).

(b’) Using Siegel’s Lemma kind argument we find a non-zero polynomial
P in two variables which vanishes at every point in SD,N0 . From
which we define an analytic function F which is continuous in all
D(0, R).

(c’) Using induction, Liouville’s Inequality and Schwarz lemma, we
show that F vanishes at all points in SD′,N for D′ ≥ D.

(d’) Last point implies that the function F will be the zero function,
which is a contradiction to the fact that f is a transcendental over
C(z).

This completes the proof of the Theorem.
�

2.3 Unspecified sequences
Another natural question which arises is the following: Can we replace

the statement there exists a sequence of real numbers N ≥ 0 tending to
infinity in Theorem 2.2.1 by for N big enough. The next theorem gives the
answer: No.
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Theorem 2.3.1 (A. Surroca). Let Φ be a positive function such that

lim
x→∞

Φ(x)
x

= 0.

There exists a sequence of real numbers (Nν)ν≥1 strictly increasing and an
entire transcendental function f such that for every algebraic number α and
every positive integer k we have

f (k)(α) ∈ Q(α),

and such that for every integer D ≥ 1 and every k ≥ D,

σD,Nν (f, 1) ≥ 1
2e

D(D+1)Φ(Nν). (2.21)

Proof. [Su 06, Theorem 1.2]. �

Pila showed that if f is a real analytique function, defined in a closed
interval and such that the image is not contained in any algebraic curve.
For every positive real number ε there exists a constant c(f, ε) such that the
number of points (x, f(x)) ∈ Q2 of bounded height by N is less than

c(f, ε)eεN .

In particular Surroca’s Theorem 2.3.1 shows that for N big enough both
bounds get closer, so Pila’s result is not far from been optimal.



Chapter 3

Rational values of the Riemann
zeta function

The Riemann zeta function is a meromorphic function, obtained by
analytic continuation of the series

ζ(z) =
∞∑
n=1

1
nz

(3.1)

to the whole complex plane with exception of a simple pole in z = 1.
The function ζ(z) satisfies the functional equation

ζ(z) = χ(z)ζ(1− z), (3.2)

where χ(z) = 2zπz−1 sin(1
2zπ)Γ(1 − z) and Γ is the Euler Γ-function. Seven

classical methods to prove this equation can be find in [Ti 86, Theorem 2.1].
It is known that it has rational values at the non-positive integers and

the irrationality of its values at the even positive integers. The French math-
ematician Roger Apéry showed in 1978 that ζ(3) is irrational, however it is
unknown whether ζ(2k + 1) is irrational for k ≥ 2.

n · · · −4 −3 −2 −1 0 1 2 3 4 5 · · ·
ζ(n) · · · 0 1

120 0 − 1
12 −1

2 ∞ π2

6 /∈ Q π4

90 ? · · ·

In the beginning of the 21st century, the use of some linear forms allowed
to show results like: At least one of the numbers

ζ(5), ζ(7), ζ(9), ζ(11), ζ(19)

25
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is irrational [V. V. Zudilin]. At least one of the twenty two numbers

ζ(9), ζ(11), ζ(13), . . . , ζ(49), ζ(51)

is irrational [V. V. Zudilin]. The number of irrationals among

ζ(3), ζ(5), ζ(7), . . . , ζ(2D + 1)

is at least c logD, for some c > 0 [Ball & Rivoal].
This last result implies that there are infinitely many irrationals in the

set {ζ(2k + 1) | k ≥ 1}. However it is less known about the behaviour of ζ
at non integral points.

Regarding the zeros of the ζ-function, apart from the trivial zeros at
ζ(−2), ζ(−4), ... from the functional equation (3.2) we can prove that the ζ
function have an infinity of zeros in the strip 0 < Re(z) < 0.

3.1 Masser’s effective theorem
The next Theorem, which restricts to an open interval in the real line

(for definiteness) gives an insight of the number of rational values of the
ζ-function.

The denominator d of a rational number x is the smallest positive in-
teger d such that dx is integral.

Theorem 3.1.1 (Masser). There is a positive absolute constant C such that
for any integer D ≥ 3 the number of rational z with 2 < z < 3 of denomina-
tor at most D such that ζ(z) is rational also of denominator at most D is at
most C

(
logD

log logD

)2
.

One expects that there are no such z at all. For an interval of length
1 the number of rational points of height less than H is about H2, since
H(p/q) = max{|p|, |q|}.

If we apply Surroca’s Theorem 2.2.1 to the function f(z) = ζ(z), setting
r = 1/2, R = 1 − ε for ε > 0 very small and fix D = 1, then there exists a
sequence of positive real numbers tending to infinity such that

σ1,N(ζ, 1/2) ≤ 1446(logH)2,
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for H big enough.
Moreover if we put f(z) = (z − 1)ζ(z) then f is an entire function so

we can let R tend to infinity, in that way δ is an arbitrary positive small
constant. However the sequence of real numbers is still unspecified.

The proof of the theorem splits in two main arguments. The first one
resides in the analysis of the ζ-function, while the second one is an argument
which follows from diophantine approximation.

In order to prove the Theorem we first prove two propositions.

3.2 On the zeros of P (z, ζ(z))
For real X ≥ 0 and Y ≥ 1 denote Z(X, Y ) the region of the complex

plane defined by

Z(X, Y ) := {z ∈ C | −X ≤ Re(z) ≤ X, 1 ≤ Im(z) ≤ Y }. (3.3)

Proposition 3.2.1. There is an effective absolute constant c such that for
any integer L ≥ 1, any real number R ≥ 2 and any non-zero polynimial
P (z, w) ∈ C[z, w] of degree at most L in each variable the function P (z, ζ(z))
has at most

cL(L+R logR) (3.4)
zeroes (counted with multiplicity) in D(0, R).

3.2.1 Five Analytic Lemmas
In order to prove the proposition we have to prove some lemmas first.

The following lemma bounds the modulus of the derivative of an analytic
function on a neighbourhood in which the function is not injective.

Lemma 3.2.1. Let R,M be a positive real number and f a function analytic
in an open subset containing D(z0, R) and suppose that |f ′| ≤M in that disk.
Suppose there is z̃0 and δ with f(z̃0) = f(z0) and z̃0 ∈ D(z0, δ) with z̃0 6= z0
where δ ≤ R

2 . Then |f
′(z0)| ≤ 16 δM

R
.

Proof. This is a consequence of the Inverse Function Theorem. Suppose
f ′(z0) 6= 0 otherwise we are done, consider the function

g(z) = f(z + z0)− f(z0)
f ′(z0) ,
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notice that 0 = g(0) = g(z̃0 − z0) and g(z̃0 − z0) = 1. Applying the Lemma
at [La 73, p. 124] with r = δ, we have that there exist a unique z ∈ D(0, δ)
such that g(z) = 0 provided that

|g′(z1)− g′(z2)| ≤ s,

for 0 < s < 1 and for all z1, z2 ∈ D(0, δ), in particular we can let s = 1/2. But
we have two solutions 0 and z̃0 − z0, so we must have 1/2 < |g′(z1)− g′(z2)|.

We estimate |g′(z1)−g′(z2)| using Cauchy’s Integral Formula. We have

g′(zj) = 1
2πi

∫
|z|=R

g′(z)
(z − zj)

dz,

for j = 1, 2. Then subtracting, changing variable z 7→ z − z0 and taking
absolute value we have

|g′(z1)− g′(z2)| =
∣∣∣∣∣ 1
2πif ′(z0)

∫
|z−z0|=R

(z1 − z2)f ′(z)dz
(z − z1 − z0)(z − z2 − z0)

∣∣∣∣∣ ,
now notice that

|z − zj − z0| ≥ |z − z0| − |zj| ≥ R− δ ≥ R

2 ,

for j = 1, 2. From which the lemma follows. �

The proof of the next lemma follows from analysis of the Hadamard
product of the derivative of the ζ-function.

Lemma 3.2.2. For real Y ≥ 2, B ≥ 0 suppose |ζ ′(z)| < exp(−B) for z ∈
Z(3, Y ). Then there exists a zero z0 of ζ ′ with |z − z0| ≤ cY exp

(
− B
cY log Y

)
.

Proof. The ζ-function has a simple pole of order 1 at z = 1, thus its derivative
has only one pole of order 2 at z = 1. The function (z − 1)2ζ ′(z) is entire
of order 1, then Hadamard’s factorization theorem [Ti 39, 8.24] implies that
there exist complex numbers a and b such that

(z − 1)2ζ ′(z) = a exp(bz)
∞∏
n=1

(
1− z

zn

)
exp

(
z

zn

)
,

where zn are the zeros of ζ ′.
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We have the next decomposition for the product∏∞n=1 = ∏
|zn|<2|z|

∏
|zn|≥2|z|,

the product when |zn| ≥ 2|z| is harmless since∣∣∣∣∣∣
∏

|zn|≥2|z|

(
1− z

zn

)
exp

(
z

zn

)∣∣∣∣∣∣ ≥
∏

|zn|≥2|z|

∣∣∣∣Re(1− z

zn

)∣∣∣∣ ∣∣∣∣exp
(
Re

(
z

zn

))∣∣∣∣
≥

∏
|zn|≥2|z|

exp
(
−
∣∣∣∣ zzn

∣∣∣∣2
)
,

taking logarithms and considering the annuli 2i|z| ≤ |zn| < 2i+1|z| for i ≥ 1
we have

− log

∣∣∣∣∣∣
∏

|zn|≥2|z|

∣∣∣∣∣∣ ≤
∑

|zn|≥2|z|

∣∣∣∣ zzn
∣∣∣∣2 ≤ ∞∑

i=1
2−2i ∑

2i|z|≤|zn|<2i+1|z|
1.

Using Jensen’s theorem [Ti 39, 3.61] for the function (z − 1)2ζ ′(z) we can
deduce that there are at most cr log r zeroes with |z| ≤ r.

In the same fashion we get the same bound (up to multiplication by a
constant) for

∣∣∣∏|zn|<2|z| exp
(
z
zn

)∣∣∣, and also for
∣∣∣a exp(bz)

(z−1)2

∣∣∣. So using the hypoth-
esis |ζ ′(z)| < exp(−B) we have∏

zn<2|z|

∣∣∣∣1− z

zn

∣∣∣∣ ≤ exp(−B + cY log Y ).

There exists n such that∣∣∣∣1− z

zn

∣∣∣∣ ≤ exp
(
−B + cY log Y

N

)
,

where N is the number of zeroes in the disk < 2|z|. Then we have

|zn − z| ≤ |zn| exp
(−B
N

)
exp

(
cY log Y

N

)

≤ cY exp
(−B
N

)
exp

(
cY log Y

N

)

≤ cY exp
(
−B

cY log Y

)
,

since we can write N = ĉY log Y , for some constant ĉ. �

The next lemma is an application of Lemma 3.2.1 in the special context
of the ζ-function.
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Lemma 3.2.3. Let Y ≥ 2, δ > 0 be real numbers and suppose w ∈ D(0, 1/2)
and ζ(z̃0) = ζ(z0) = w for z̃0, z0 ∈ Z(3, Y ) with 0 < |z̃0 − z0| ≤ δ ≤ 1

4 . Then
|ζ ′(z0)| ≤ cδY 5.
Proof. Let f = ζ and R = 1

2 . For z ∈ D(z0, 3/4) we have that Re(z) < |15
4 |,

we want to estimate the order of ζ in this disk. The order of ζ depends on
the real and imaginary part of the variable z as follows:

ζ(z) =
{
O(Im(z) 1

2−Re(z)) Re(z) ≤ −δ < 0,
O(Im(z) 3

2 +δ) Re(z) ≥ −δ,
which follows from [Ti 86, 5.1]. Hence we have that for z as above |ζ(z)| ≤
cY 5. Now consider Cauchy’s Integral Formula

ζ ′(z) = 1
2πi

∫
|ξ−z|=3/4

ζ(ξ)
(ξ − z)2dξ,

taking modulus on both sides yields |ζ ′(z)| ≤ cY 5. Therefore we make
M = cY 5 and apply Lemma 3.2.1 to obtain |ζ ′(z0)| ≤ cδY 5. �

3.2.2 On the distribution of the w-points of ζ(z)
The next result is about the distribution of the w-points.

Lets denote N(w, Y ) the set of solutions of the equation

ζ(z) = w,

for 0 ≤ Re(z) ≤ 1 and 1 ≤ Im(z) ≤ Y , with Y > 1. In the second part
of [Bo-La-Li 13] it is proved that N(w, Y ) is finite for Y > 1 and they also
showed the following result

N(w, Y ) =
{

1
2πY log Y − 1+log 2π

2π Y +O(log Y ) pour w 6= 1,
1

2πY log Y − 1+log 4π
2π Y +O(log Y ) pour w = 1,

which is clearly not uniform near w = 1.
Lemma 3.2.4. There is an absolute constant r0 > 0 such that for any com-
plex w ∈ D(0, r0) and any real Y ≥ 2 the number N of solutions (with
multiplicity) of ζ(z) = w with z ∈ Z(3, Y ) satisfies∣∣∣∣∣N −

(
1

2πY log Y − 1 + log 2π
2π Y

)∣∣∣∣∣ ≤ c log Y. (3.5)
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Proof. [Bo-La-Li 13, Chapitre II] �

The next result enable to recover the coefficients of a polynomial P from
suitable values of P (z, ζ(z)). This is done by using a sort of interpolation.

Lemma 3.2.5. There are absolute constants r0 > 0 and c0 > 0 such that for
any integer L ≥ 2 there exist wl (l = 1, . . . , L) and zkl (k, l = 0, . . . , L) with

ζ(zkl) = wl k, l = 0, . . . , L

and
|wl| ≤ r0, |wl − wi| ≥

1
cL1/2 i, l = 0, . . . , L; i 6= l,

|zkl − 1|, |zkl| ≤
c0L

logL,
∏

0≤j≤L,j 6=k
|zkl − zjl| ≥ exp

(
−cL3/2

)
k, l = 0, . . . , L.

Proof. For any w take |w| ≤ r0 as in Lemma 3.2.4, so we have an inequality
for the number N of solutions of ζ(z) = w in Z(3, Y ). Suppose that all the
solutions are different, because if this fails then ζ ′(z) = 0 and such z are
countable. We can also suppose that the z cannot be too close.

For each of the allowable w we have zk with ζ(zk) = w with say at least
1
8Y log Y values of zk. Thus we should take Y so as to make 0 ≤ k ≤ L; that
is Y of order L

logL , and we can assume that Y is an integer. Further

|zk − zj| ≥ exp(−Y 5/4)

for j 6= k. By Lemma 3.2.4 we find that the domains defined by t ≤ y < t+1
with t = 1, . . . , Y − 1 contains at most c log Y of the zk. One of the families
subsets defined by t odd or even contain at least the half of the zk. If we
estimate the product for a fixed j we find that at most c log Y of the zj can
satisfy |zk − zj| ≤ 1. So the last inequality gives∏

0≤j≤L,j 6=k
|zk − zj| ≥ exp(−Y 11/8) ≥ exp(−cL3/2)

as required. �
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3.2.3 The proof
Proof of the Proposition 3.2.1. Let L be an integer ≥ 1 and R a real ≥ 2.
Let P ∈ C[z, w] non-zero and such that P (1, w) and P (z, 1) have degree at
most L. We can suppose up to multiplication by a complex number, that
the coefficient norm of P is 1. Suppose that F (z) = P (z, ζ(z)) has N zeroes
(counted with multiplicity) in D(0, R), say z1, . . . , zN . The function

Φ(z) = (z − 1)LF (z)∏N
i=1(z − zi)

is entire. We set R̃ = c0L
logL + R, where c0 is the constant found in Lemma

3.2.5. The maximum modulus principle yields

|Φ|R̃ ≤ |Φ|5R̃

for the supremum norms. The function ζ̂(z) = (z − 1)ζ(z) has growth order
1 and it is classical that |ζ̂|r ≤ rcr for all r ≥ 2. It follows that

|Φ|5R̃ ≤ R̃cR̃L(4R̃)−N .

For any z with |z − 1| ≥ 1 and |z| ≤ R̃ we have

|F (z)| = |Φ(z)||z − 1|−L
N∏
n=1
|z − zn| ≤ (2R̃)N |Φ|R̃.

Hence it follows that |F (z)| ≤ 2−N R̃cR̃L. From Lemma 3.2.5 this holds for
the z = zkl for k, l = 0, . . . , d as R̃ ≥ c0L

logL . Thus

|P (zkl, wl)| ≤ 2−N R̃cR̃L for k, l = 0, . . . , L.

We use now Lagrange interpolation formula twice:

P (z, w) =
L∑
l=0

 ∏
0≤i≤L,i 6=l

w − wi
wl − wi

P (z, wl)

and

P (z, wl) =
L∑
k=0

 ∏
0≤j≤L,j 6=k

z − zjl
zkl − zjl

P (zkl, wl).
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The coefficient norm of P is at most 2−N R̃cR̃L. As this norm is 1 and
R̃ log R̃ ≤ c(L + R logR) we have that the proposition follows. This com-
pletes the proof of the proposition. �

Notice that the result is best possible since in L for a fixed R, one can
build a polynomial which vanishes at (0, ζ(0)) with order at least L2 + 2L.

On the other hand if we fix L, the result is also best possible in R, since
if consider the polynomial P (z, w) = wL, the ζ-function has around R logR
zeroes within D(0, R) and they will appear with multiplicity at least L.

3.3 Interpolation
Definition 3.3.1. For a finite set S in C2 let ω(S) be the least degree of
any curve passing through S, i.e. it corresponds to the total degree of a
polynomial where the elements of S belong to its set of roots.

Proposition 3.3.1. For any integers d ≥ 1, T ≥
√

8d and any real A >
0, Z > 0, M > 0, H ≥ 1, let f1, f2 be functions analytic on an open
neighbourhood of D(0, 2Z), with supremum norm |fi|2Z ≤ M for i = 1, 2
and set f = (f1, f2). Suppose that Z is a finite set of complex numbers such
that

(i) z ∈ D(0, Z) for every z ∈ Z.

(ii) |z′ − z′′| ≤ 1
A
for all z′, z′′ ∈ Z.

(iii) [Q(f1(z), f2(z)) : Q] ≤ d for all z ∈ Z.

(iv) H(f1(z)) ≤ H H(f2(z)) ≤ H for all z ∈ Z.

Then

ω(f(Z)) ≤ T provided (AZ)T > (4T ) 96d2
T (M + 1)16dH48d2

.

Proof. Take S =
[
T 2

8d

]
≥ 1 and pick z1, . . . , zS ∈ Z. If f(Z) has less than S

elements, then we will have S − 1 < (T+1)(T+2)
2 , so there is a curve of degree

at most T passing through f(Z), i.e. ω(f(Z)) ≤ T . So suppose that this is
not the case.
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We will use Siegel’s lemma to built a non-zero polynomial P (w1, w2) of
total degree at most T with

P (f1(zs), f2(zs)) = 0 for s = 1, . . . , S

and then we will use Scharwz lemma to prove that in fact it vanishes for
every z ∈ Z. Hence f(Z) ≤ T .1

Let L =
[
T
2

]
and consider the polynomial

P (w1, w2) =
L∑
i=0

L∑
j=0

λijw
i
1w

j
2,

obviously deg(P (w1, 1)), deg(P (1, w2)) ≤ L. Consider the system of equa-
tions

P (f1(z1), f2(z1)) = 0
... ... (3.6)

P (f1(zS), f2(zS)) = 0.

The next lemma provides the conditions for a solution to exist.

Lemma 3.3.1. Let Kh = Q(f1(zh), f2(zh)) and let dh = [Kh : Q], similarly
let dh,1 = [Q(f1(zh)) : Q] and dh,2 = [Q(f2(zh)) : Q], with 1 ≤ h ≤ S. Define
D = ∑

1≤h≤S dh.
For (L + 1)2 > D there is a solution c = (ci,j) ∈ Z(L+1)2 to the linear

system (3.6) such that

max
0≤i,j<L+1

|ci,j| ≤

(2µ′
S∏
h=1

Mh

)1/((L+1)2−D)
 , (3.7)

where
Mh = (L+ 1)2dhM(f1(zh))Ldh/dh,1M(f2(zh))Ldh/dh,2 ,

the M in the right denote the usual Mahler’s measure (see 1.7) and . µ′

(≤ µ) is the number of fields Kh which do not admit any real embedding.
1In fact we will use a similar technique we have already used while proving 2.2.1.
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Proof. [Gr-Mi-Wa 86, Lemme 1.1]. �

So in order to apply the proposition to our setting we must first show
that in fact (L+ 1)2 > D, to do so let d ≥ dh for every 1 ≤ h ≤ S, then

D ≤ dS < 2dS ≤ 2d
[
T 2

8d

]
<
T 2

4 ≤ (L+ 1)2.

So using the relation (1.9) and by hypothesis we find that

max
0≤i,j<L+1

|ci,j| ≤
(

2S
S∏
h=1

(L+ 1)2dhH(f1(zh))LdhH(f2(zh))Ldh
)1/((L+1)2−D)

(3.8)

≤
(

2S
S∏
h=1

(T + 1)2dHdT

)8/T 2

(3.9)

≤ 21/d(T + 1)2HT . (3.10)

Now we have to prove that the function given by the polynomial actu-
ally vanishes for every z ∈ Z, that is F (z) = P (f1(z), f2(z)) = 0. So pick
z0 ∈ Z and consider the function

Φ(z) = P (f1(z), f2(z))∏S
s=1 z − zs

,

it is analytic on an open set containing |z| ≤ 2Z. We have that |Φ(z0)| ≤
|Φ|2Z . For z on the boundary we have |z − zs| ≥ Z (by hypothesis (i)), and
so |Φ|2Z ≤ |F |2ZZ−S. We get

|F (z0)| = |Φ(z0)|
S∏
s=1
|z0 − zs| ≤ (AZ)−S|F |2Z .

Further we can bound the norm of F using the bound we found for the coef-
ficients as follows |F |2Z ≤ |P |(M + 1)T . Moreover we also have H(F (z0)) ≤
(T + 1)2|P |HT (using standard domination argument), if F (z0) 6= 0 Liou-
ville’s inequality (1.13) yields H(F (z0))−d ≤ |F (z0)|, which turns out to be
a contradiction provided (AZ)S > (T + 1)2d(M + 1)T |P |2dHdT , in this case
F (z0) = 0. Substituting the estimate of |P | this will happen provided

(AZ)S > 4(T + 1)6d(M + 1)TH3d,
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since AZ > 1 and S ≥ 1
16dT

2 we get as expected

(AZ)T > (4T ) 96d2
T (M + 1)16dH48d2

.

�

Now we have all the ingredients to give the proof of the main theorem.

3.4 Proof of Masser’s effective theorem
We prove a more general statement in terms of heights.

Theorem 3.4.1 (Masser). There is a positive absolute constant C such that
there are at most C

(
d2 log 4H

log(d log 4H)

)2
different complex numbers z with |z− 5

2 | ≤
1
2

such that [Q(z, ζ(z)) : Q] ≤ d, H(z) ≤ H and H(ζ(z)) < H.

This theorem implies the Theorem 3.1.1 since a bounded rational num-
ber of denominator at most D has height of order at most D.

Proof of the theorem. Let T ≥
√

8d be an integer. Consider the entire
functions f1(z) = z and f2(z) = (z − 1)ζ(z). By Proposition 3.3.1 we have
that

ω(f(z)) ≤ T

for any subset Z of points z with |z − 5
2 | ≤

1
2 provided

(i) Z ≥ 3 so z ∈ D(0, 3) for every z ∈ Z.

(ii) For A = 1 actually |z′ − z′′| ≤ 1
A
for all z′, z′′ ∈ Z.

(iii) [Q(z), (z− 1)ζ(z)) : Q] ≤ d for all z ∈ Z, this is automatically satisfied
since we want rational values at rational points.

(iv) H(z) ≤ H̃ H((z − 1)ζ(z)) ≤ H̃ for all z ∈ Z.

(v) (AZ)T > (4T ) 96d2
T (M + 1)16dH̃48d2 .
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So if z is to be counted we have H(z) ≤ H and by the height properties

H((z − 1)ζ(z)) ≤ H((z − 1))H(ζ(z)) ≤ 2H2,

so we take H̃ = 2H2 and (iv) is satisfied.
Now we take

M ≤ max{|z|Z , |(z − 1)ζ(z)|Z} = ZcZ ,

so (v) is true whenever ZT ≥ cd
2
ZcdZ(2H2)48d2 for positive absolute c. Taking

T ≥ 2cdZ we get ZcdZ ≥ cd
2(2H2)48d2 , which is valid if Z is a sufficiently

large constant multiple of d log 4H
log(d log 4H) , which is going to be in fact bigger than

3 as in (i) and T >
√

8d.
Applying Proposition 3.2.1 letting the degree be at most T and R = 3

we get cT 2 = C
(

d2 log 4H
log(d log 4H)

)2
possible points. �

3.5 Conclusions
All the constants calculated in these chapter are actually effective, they

rely basically in the properties of the Riemann zeta function.
In the article of David Masser [Ma 11], he asked questions related to

the study of the functions such as the Euler Gamma function for which very
few things are known as well.
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