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Chapter 1

Elliptic Functions

A Complex Torus is a compact Riemann surface of genus 1. It is the
set of equivalence classes of the quotient C/L, where L = ω1Z ⊕ ω2Z is a
lattice, i.e. a discrete subgroup of C generated by two complex numbers ω1
and ω2 linearly independent over R. The projection

π : C→ C/L

z 7→ z mod(L),
is continuous and open, this makes C/L a Haussdorf, connected and compact
topological space. Its complex structure can be defined by the set of triples
(π−1, U, V ), where

π−1 : U ⊂ C/L→ V ⊂ C
and such that π : V → U is a homeomorphism. In this way C/L is a Riemann
surface.

Algebraically a complex torus is an abelian group, the addition of points
is the usual addition on C modulus L.

Topologically, C/L is homeomorphic to the torus S1 × S1 via the map

xω1 + yω2 7→ (e2πix, e2πiy), with x, y ∈ R,

then geometrically one can figure out the complex torus as a doughnut shaped
bubble (Fig 1.1).

We say that a function f is meromorphic in W an open subset of C/L
if and only if f ◦π is meromorphic on π−1(W ). It turns out that the function
f ◦ π is L-periodic, that is

f(z + ω) = f(z) for all z ∈ C and ω ∈ L;

5



6 Chapter 1. Elliptic Functions

Figure 1.1: Torus

thus there is a correspondence between functions on C/L and L-periodic
functions on C. A meromorphic L-periodic function on C is called an elliptic
function, then the next one-to-one correspondence holds{

Elliptic functions
on C

}
1−1←→

{
Meromorphic functions

on C/L

}
.

Trough all this chapter we will work with elliptic functions. We will see
that the set of basis for L is invariant under the action of the special linear
group SL2(Z) and that we can find a positive ordered basis (ω1, ω2) for L
such that the quotient τ = ω2/ω1 lies in a fundamental domain B ⊂ H.

L-periodicity implies that elliptic functions are totally defined in a rep-
resentant of C/L, this fundamental domain turns out to be a domain shaped
parallelogram. This allows us to restrict our study of elliptic functions into a
fundamental parallelogram and prove the next facts about elliptic functions.

Holomorphic elliptic functions must be constants because of Liouville’s
Theorem. The number of poles and zeros inside a fundamental parallelogram
must be the same counting multiplicities and its location on the plane is not
random at all.

The residue of any elliptic function on a fundamental domain is zero,
thus the simplest kinds of non-constant elliptic functions are those which
have two simple poles with residues equal in absolute value but opposite
sign or elliptic functions with a double pole with residue zero, these elliptic
functions are called Weierstrass-℘ functions. Due to their importance we
will study them in great detail in this chapter and the beginning of the next
chapter.

The map
ϕ : C/ω1Z⊕ ω2Z→ C/τZ⊕ Z,
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is an holomorphic isomorphism between complex tori.

The set of all meromorphic functions on C/L, denotedM(C/L) forms
a field denoted EL. We show that this field is generated by two elliptic func-
tions: the Weierstrass ℘−function and its derivative, moreover we study a
differential equation that relates both functions.

In this chapter, we will expose all these results with some detail, from a
basic complex analysis aproach, we study important examples of elliptic and
quasi-elliptic functions which turn out to be related with Number Theory.

1.1 Periods of meromorphic functions
The meromorphic functions defined on an open connected set in the

complex plane form a field. In what follows, a meromorphic function is sup-
posed to mean a function meromorphic in the whole complex plane denoted
C.

A meromorphic function f is said to be periodic, if there exists a com-
plex constant ω 6= 0, such that

f(z + ω) = f(z)

for all z ∈ C. The number ω is said to be a period of f . The number zero
is called the trivial period. Every constant function f is periodic, and every
complex number is a period of f ; conversely if every complex number is a
period of a meromorphic function f , then f must be constant. If ω is a period,
so are all integral multiples nω. Let per(f) be the set of all the periods, if
ω1 and ω2 belong to per(f), so does any linear combination mω1 + nω2 with
m,n ∈ Z. Thus the set per(f) is a Z-module ⊂ C and we call it the period
module of f .

Lemma. Let f be a non-constant meromorphic function, then all the
points of per(f) are isolated.

Proof. Suppose ω0 is a finite accumulation point of per(f). Let ε be
an arbitrarily small positive number. We can find two different periods ω1,
ω2 inside the open disk |z − ω0| < ε, evidently ω1 − ω2 is a period. Then
there exists a sequence of periods say {ωn} such that lim

n→∞
ωn = 0. If z0 is
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a point at which f is holomorphic then f(z0) = f(z0 + ωn), n = 1, 2, ..., so
that f(z)− f(z0) has an infinity of zeros z0 + ωn, n = 1, 2, ..., which have z0
as a finite accumulation point. Hence f(z) is a constant, contradicting our
assumption.

�

Then if f is non-constant, per(f) is an abelian discrete closed group
and it contains a period ω of minimal absolute value.

Theorem 1. The period module per(f) of a non-constant meromor-
phic function consists either of zero alone, of the integral multiples nω of a
single period or of all linear combinations nω1 +mω2 with integral coefficients
of two periods ω1, ω2 with Im(ω2/ω1) 6= 0.

Proof. Suppose per(f) 6= {0}, let ω1 be a period of minimal absolute
value and suppose that for every ω ∈ per(f) the quotient ω/ω1 is real, then
for every ω there exists an integer k such that

0 ≤ ω

ω1
− k < 1.

Then the difference, ω − kω1 = ω0 is a period with |ω0| < |ω1|, thus ω0 = 0
and ω = kω1. It follows that every period ω whose quotient is real is of the
form kω1, k ∈ Z.

Now, let ω ∈ per(f) such that the quotient ω/ω1 is not real, let ω2
denote one such period whose absolute value is smallest. Let τ = ω2/ω1, so
|τ | ≥ 1.

Every complex number z can be written uniquely in the form

z = (m+ α)ω1 + (n+ β)ω2,

where m,n ∈ Z and −1/2 ≤ α < 1/2, −1/2 ≤ β < 1/2. Then, we can write
ω = (m+ α)ω1 + (n+ β)ω2, it follows that

ω0 = ω −mω1 − nω2 = αω1 + βω2

is a period. If α or β are zero, then ω0 = 0 and this immediately proves our
assertion. Suppose both are non-zero, thus∣∣∣∣ω0

ω2

∣∣∣∣ =
∣∣∣∣ατ + β

∣∣∣∣ ≤ |α||τ | + |β| ≤ 1
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since |τ | ≥ 1.
The right inequality holds if and only if α = β = −1/2 and |τ | = 1.

Then |1 + τ | < 2 since Im(τ) > 0 (see Figure 1.2), that is the first inequality
is strict.

Figure 1.2: The orange circle is the image of the map τ 7→ τ +1 when |τ | = 1
and Im(τ) > 0.

Then, at least one of the inequalities is strict, that is |ω0| < |ω2|. It fol-
lows that ω0/ω1 is real and β = 0, hence also that α = 0. Therefore ω0 = 0,
we conclude that every period ω of f is a linear combination ω = mω1 +nω2,
with m,n ∈ Z.

�

If per(f) is generated by a single period ω1 6= 0, f is said to be simply
periodic. In case that per(f) is generated by a pair of periods ω1 and ω2
which are linearly independent over R, f is said to be doubly periodic. Let
τ = ω2/ω1, if ω1 is a period of minimal absolute value, |ω2| is small as pos-
sible, and Im(τ) > 0, we say such pair is primitive or reduced, i.e. such pair
of periods form an ordered positive oriented basis for per(f). Geometrically,
per(f) forms a lattice in the complex plane.

Example 1. The integral domain of the Gaussian integers

Z[i] = {a+ ib | a, b ∈ Z}

forms a square lattice, see Figure 1.3.
F
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Figure 1.3: The lattice of the Gaussian integers generated by two non-reduced
periods.

Example 2. Let ω be a primitive cube root of the unity, say e2πi/3.
Then the set of Eisenstein integers

{a+ bω | a, b ∈ Z}

forms a triangular lattice which periods are ω and 1, see Figure 1.4.
F

Figure 1.4: The lattice of the Eisenstein integers generated by two reduced
periods.
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Definition. A doubly periodic meromorphic function in the complex
plane is called an elliptic function.

We have seen in the previous examples, that the period module of
an elliptic function may have several associated bases. Now we exhibit the
relation between two such bases.

Theorem 2. The complex numbers ω∗1, ω∗2 form a pair of basic periods
of an elliptic function f(z), if and only if they are related to a pair of basic
periods ω1, ω2 of f(z) by a transformation of the type

ω∗1 = aω1 + bω2

ω∗2 = cω1 + dω2

where a, b, c, d are integers, with the property ad− bc = ±1.
Such transformation of (ω1, ω2) into (ω∗1, ω∗2) is called a unimodular

transformation. A unimodular transformation is said to be a proper uni-
modular transformation if ad− bc = 1.

Proof. ⇒) Since (ω1, ω2) is a basis there exist integers a, b, c, d such
that (

ω∗1
ω∗2

)
=
(
a b
c d

)(
ω1
ω2

)
Similarly, since (ω∗1, ω∗2) is a basis there exists integers a′, b′, c′, d′ such that(

ω1
ω2

)
=
(
a′ b′

c′ d′

)(
ω∗1
ω∗2

)
,

then we obtain (
a′ b′

c′ d′

)(
a b
c d

)
=
(

1 0
0 1

)
,

then the matrices are inverses of each other, so they must satisfy

det
(
a′ b′

c′ d′

)
det

(
a b
c d

)
= 1,

since the entries are integers, the determinants have value ±1.
⇐) Let ω = mω1 + nω2 ∈ per(f), and

ω∗1 = aω1 + bω2
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ω∗2 = cω1 + dω2,

with ad − bc = ±1, then there exists an inverse unimodular transformation
such that

ω1 = dω∗1 − bω∗2
ω2 = aω∗2 − cω∗1

therefore every ω ∈ per(f) can be written uniquely as ω = m′ω∗1 +n′ω∗2, with
m′, n′ integers.

�

Two bases of reduced periods for an elliptic function f are related via
a proper unimodular transformation, for let (ω1, ω2) and (ω∗1, ω∗2) be such
bases, where ω∗1 = mω1 +nω2 and ω∗2 = pω1 + qω2 with m,n, p, q ∈ Z and let
τ = ω2/ω1 and τ ∗ = ω∗2/ω

∗
1. Then

Im(τ ∗) = mq − np
|nτ +m|2

Im(τ),

this implies mq − np = 1. Moreover, this transformations induce a modular
transformation

M : H→ H,
such that

τ 7→ τ ∗ = mτ + n

pτ + q
, m, n, p, q ∈ Z, τ ∈ H,

with mq − np = 1, and pτ + q 6= 0. These transformations form a group,
called the modular group, which we denote Γ, it is generated by the two
transformations

A : τ → τ + 1, and B : τ → −1
τ
. (1.1)

Where A is a translation and B is an inversion followed by a reflection.
The set

SL(2,Z) = {
(
a b
c d

)
| a, b, c, d ∈ Z and ad− bc = 1}

is a discrete subgroup of the complex special linear group SL(2,C) with iden-
tity I. There is a natural inclusion of the modular group into the Möbius
transformations. Both facts yield the group isomorphism

SL(2,Z)/{I,−I} ∼= Γ,

thus Γ acts properly discontinuously on the upper-half plane H.
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Theorem 3. A pair of basic periods ω1, ω2 is reduced if and only
if the point τ = ω2/ω1 = ξ + iη lies in the region of the upper half of the
complex plane defined by the three inequalities

ξ2 + η2 ≥ 1, −1
2 ≤ ξ ≤ 1

2 . (1.2)

Proof. ⇒) Suppose the pair (ω1, ω2) is reduced, then we have

|ω2 ± ω1| ≥ |ω2| ≥ |ω1|,

since the quotient Im
(
ω2±ω1
ω1

)
> 0, so dividing by |ω1| we have

(ξ ± 1)2 + η2 = |τ + 1|2 ≥ ξ2 + η2 = |τ |2 ≥ 1,

and ±2ξ + 1 ≥ 0, from which follow (1.2).
⇐) Let ω2, ω1 be two periods such that τ = ω2/ω1 = ξ + iη lies in

the region defined by (1.2). By hypothesis, |τ | ≥ 1 and Im(τ) > 0, that
is |ω2| ≥ |ω1| and τ is non-real. Then it suffices to show that ω1 and ω2
have minimal absolute value, for this consider any non-trivial period ω =
mω1 + nω2, m,n ∈ Z.

If n = 0, then ω/ω1 = m, where m ∈ Z∗ since ω is non-trivial, hence
|ω| ≥ |ω1|.

If n 6= 0, then ω/ω1 is not real, since ω2/ω1 is not. Then

|ω| ≥ |ω2| ⇔ |m+ nτ |2 − |τ |2 ≥ 0,

thus set

D = |m+ nτ |2 − |τ |2 = (m+ nξ)2 − ξ2 + (n2 − 1)η2.

If n 6= ±1, and m any integer, then we have n2 ≥ 4, ξ2 ≤ 1/4 and
η2 = (ξ2 + η2)− ξ2 ≥ 3/4, so

D ≥ (m+ nξ)2 − ξ2 + 9
4 ≥ 2.

If n = ±1, then

D = (m± ξ)2 − ξ2 = m2 ± 2mξ ≥ 0

since |ξ| ≤ 1/2. Thus if n 6= 0, |ω| ≥ |ω2|.
We conclude that the pair ω1, ω2 is reduced.
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�

In order to find a region where the action of the modular group Γ is
non-transitive, we sharpen the previous theorem somewhat.

The boundary of the region defined by the inequalities (1.2), consists
of the rays ξ = ±1/2, η ≥

√
3/2 and the arc ξ2 + η2 = 1 with |ξ| ≤ 1/2, see

Figure 1.5.
If τ belongs to the right ray, then τ ∗ = τ − 1 belongs to the left ray.

Similarly if τ belongs to the right half arc, then τ ∗ = −τ−1 belongs to the
left half arc.

Then given a non-constant elliptic function, there exists a pair of re-
duced periods (ω1, ω2) such that τ = ω2/ω1 = ξ + iη satisfies

ξ2 + η2 ≥ 1 and − 1
2 ≤ ξ <

1
2; with (1.3)

−1/2 ≤ ξ ≤ 0, if |τ | = 1,

Now we prove that a pair (ω1, ω2) of reduced periods which quotient τ
satisfies (1.3) is uniquely determined.

Suppose (ω1, ω2) and (ω∗1, ω∗2) are two pairs of such reduced periods, thus
they are related by a proper unimodular transformation, say ω∗1 = aω1 + bω2,
ω∗2 = cω1 + dω2, with ad− bc = 1. Also we have

|ω2| ≥ |ω1| = |ω∗1| ≤ |ω∗2| and Im(τ) = Im(τ ∗).

If b = 0, then a = d = ±1. So that τ ∗ = τ ± c implies c = 0, therefore
τ = τ ∗.

If b 6= 0, ω∗1/ω1 is not real, then as in the previous theorem b = ±1,
|ω1| = |ω∗1| = |ω2|, |τ | = 1, −1/2 ≤ ξ ≤ 0, and a = 0 or a = ±1.

In case a = 0, τ ∗ = ±d ∓ τ−1, −1 ≤ Re(τ) + Re(τ ∗) = ±d < 1 since
|τ | = 1, thus d = 0 or d = −1. If d = 0, then τ ∗ = −τ−1, so τ ∗ = τ = i. If
d = −1, then Re(τ) = Re(τ ∗) = −1/2, so τ ∗ = τ = e2πi/3.

In case a = ±1, we have |τ + 1| = 1 = |τ |, and therefore τ = e2πi/3, and
since Im(τ) = Im(τ ∗), we must have τ = τ ∗ = e2πi/3.

Therefore the conditions (1.3) determine τ uniquely.

We denote B the set defined by (1.3), it is a fundamental domain for
the modular group Γ, see Figure 1.5. That is, the fundamental domain B
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contains all the representatives of the different equivalence classes given by
the action of Γ in H, for τ1, τ2 ∈ H we define the equivalence relation

τ1 ∼ τ2 ⇔ ∃M ∈ Γ such that τ2 = Mτ1.

Figure 1.5: Fundamental domain

Definition. A complex-valued function f(z) of one complex variable z
is said to be a modular function, if it is meromorphic in H, and f(Mz) = f(z)
for all transformations M belonging to the modular group Γ, or for all M
belonging to a subgroup of the modular group of finite index.

1.2 General properties of elliptic functions
Given an elliptic function f , let (ω1, ω2) be a pair of reduced periods for

its period-lattice L = {mω1 + nω2|m,n ∈ Z}. Let Πm,n, be the set defined
by

Πm,n = {z ∈ C|z = xω1 + yω2,m ≤ x < m+ 1, n ≤ y < n+ 1, m, n ∈ Z}.

Then every lattice element defines a parallelogram Πm,n, which we call a
period-parallelogram. Since f is elliptic, it suffices to consider Π0,0 = Π a
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fundamental period-parallelogram, see Figure 1.6. We consider the passage
from 0 to ω1, ω1 + ω2, ω2, and back to 0, in that order, defines a positive
orientation of the curve ∂Π, we denote each of those segments c1, c2, c3 and
c4, respectively.

Figure 1.6: Fundamental parallelogram

Let EL denote the set of the elliptic functions for a lattice L. Every
constant is, trivially an elliptic function. If f, g ∈ EL, then their sum f + g,
their difference f − g, their product f ∗ g and, if g is not identically zero,
their quotient f/g are all elliptic functions. Thus the set EL forms a field. In
addition, EL is closed under differentiation.

We now prove a sequence of propositions giving some very special prop-
erties which any elliptic function must have.

Theorem 4. A function f ∈ EL without poles in the fundamental
parallelogram Π must be constant.

Proof. Any such function must be entire and bounded on Π, since Π is
compact. Hence by Liouville’s theorem, is a constant.

�

Notice that, since a meromorphic function f can only have finitely many
poles in a bounded region, it is always possible to choose an α such that the
boundary of α+Π misses the poles of f , so let α+Π = {α+z|z ∈ Π} denote
the translate of Π by the complex number α.

Theorem 5. Suppose that f ∈ EL has no poles on the boundary C of
α + Π, for some α. Then the sum of the residues of f in α + Π is zero.
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Proof. By the residue theorem, this sum is equal to
1

2πi

∫
C
f(z)dz.

Let C = c1 + c2 + c3 + c4, where the ci’s are the sides of α + Π (choosing a
positive orientation), then we have∫

c1
f(z)dz +

∫
c3
f(z)dz = 0 and

∫
c2
f(z)dz +

∫
c4
f(z)dz = 0

because of the periodicity of f . Thus the integral is zero, and so the sum of
residues is zero.

�

The preceding theorems immediately imply that a non-constant elliptic
function cannot have just one simple pole in a period-parallelogram. It must
have therefore at least two simple poles, or at least one pole which is not
simple, in any period-parallelogram.

Theorem 6. Suppose that f ∈ EL is not constant and has no poles
on the boundary C of α+ Π, for some α. Then, the number of zeros of f in
α + Π is equal to the number of poles in α + Π, being counted according to
their multiplicity.

Proof. Let {mi} be the order of the various zeros and {nj} be the
orders of the various poles of f in α+ Π. Consider the elliptic function f ′/f ,
which residue is zero by Theorem 5. On the other hand, by the argument
principle we have

1
2πi

∫
C

f ′(z)
f(z) dz =

∑
mi −

∑
nj = 0.

�

It is convenient to say that z1 is congruent to z2, z1 ≡ z2 mod(L), if
z1 − z2 ∈ L. Then the function f takes the same values at congruent points,
and may thus be regarded as a function on the congruence classes. If c is
any constant and f ∈ EL, f(z)− c has the same poles as f(z). Therefore, all
values are assumed equally many times. The number of incongruent roots of
the equations f(z) = c is called the order of the elliptic function, each root
being counted according to its multiplicity.
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Theorem 7. Suppose that f ∈ EL is not constant and has no poles on
the boundary C of α+ Π, for some α. Let a1, ..., ah be the zeros and b1, ..., bh
be the poles, each of them repeated according to its multiplicity, of an elliptic
function f ∈ EL. Then

a1 + · · ·+ ah ≡ b1 + · · ·+ bh mod(L).

Proof. Let α be such that the function z f
′(z)
f(z) is holomorphic and non-

zero on C = ∂(α + Π). Consider the integral

1
2πi

∫
C
z
f ′(z)
f(z) dz =

h∑
i=1

ai −
h∑
i=1

bi,

since the argument principle and the residue theorem, call this sum Ω. Let
c1, c2, c3 and c4 be the sides of C, under some changes of variable, we have

2πiΩ = −ω2

∫
c1

f ′(z)
f(z) dz − ω1

∫
c4

f ′(z)
f(z) dz,

since f is periodic. Now, ω ∈ L implies log f(α + ω) = log f(α) + 2kπi for
k ∈ Z. Therefore

2πiΩ = −ω2 log f(z)|α+ω1
α − ω1 log f(z)|αα+ω2

= 2πi(ω2k + ω1l) with k, l ∈ Z,

thus Ω ∈ L.
�

1.3 Non-constant elliptic and quasi-elliptic func-
tions

We proceed now to construct non-constant elliptic functions. In seeking
to do so, after the results of the preceeding section, there are two simplest
types of elliptic functions; the Weierstrassian elliptic functions which have
a double pole, with residue zero, in a period-parallelogram, and the Jaco-
bian elliptic functions which have two simple poles, each of them being the
negative of the other.
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1.3.1 Weierstrass’s ℘-function
Let (ω1, ω2) be a pair of reduced periods and L = {mω1 + nω2} its

period-lattice, let L∗ = L− {0}. We define, for z ∈ C,

℘(z) = ℘(z;L) = 1
z2 +

∑
ω∈L∗

(
1

(z − ω)2 −
1
ω2

)
, (1.4)

this function is called the Weierstrass ℘-function. It is denoted ℘(z;ω1, ω2),
℘(z;L) or simply ℘(z). Indeed, this is the partial fraction decomposition of
the ℘-function, for more information on obtaining this, see the Appendix ??.
We shall prove that the series on (1.4) converges absolutely and uniformly on
any compact subset of the complex plane, for this, we prove the next lemma.

Lemma. The series ∑
ω∈L∗
|ω|−ρ converges for ρ > 2.

Proof. Let Pk be the set of periods lying in the sides of the parallelogram
with corners in ±kω1 ± kω2, with k ≥ 1, there are 8k such periods. Denote
Tk = ∑

ω∈Pk
|ω|−ρ the partial sums. The series ∑

ω∈L∗
|ω|−ρ converges if and only

if
∞∑
k=1

Tk does. Furthermore, there exists a, b > 0 for all k ≥ 1 such that
ak < |ω| < bk for all ω ∈ Pk. Now, for all w ∈ Pk, (ak)ρ < |ω|ρ < (bk)ρ, then

∞∑
k=1

8bρk1−ρ <
∞∑
k=1

Tk <
∞∑
k=1

8aρk1−ρ,

the series on the left side does not converge for ρ ≤ 2, and note that for the
series on the right side we have

8aρ
∞∑
k=1

k1−ρ < 8aρ
(

1 +
∫ ∞

1

1
x2dx

)
= 16aρ,

for ρ > 2.
�

Theorem 8. The sum∑
ω∈L∗

(
1

(z − ω)2 −
1
ω2

)

converges absolutely and uniformly for z in any compact subset of C− L.
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Proof. We prove this theorem for every circle of finite radius discarding
a sufficient number of terms. Given R > 0, let |z| ≤ R be the circle of
radius R. In order to produce convergence we consider the periods such that
|ω| > 2R, then we have∣∣∣∣∣ 1

(z − ω)2 −
1
ω2

∣∣∣∣∣ =
∣∣∣∣∣ z(2ω − z)
ω2(z − ω)2

∣∣∣∣∣ =
∣∣∣∣∣ ωz(2− z/ω)
ω4(z/ω − 1)2

∣∣∣∣∣ ≤ 10|z|
|ω|3

≤ 10R
|ω|3

since |2 − z/ω| ≤ 2 + | − z/ω| ≤ 5/2 and |z/ω − 1|2 ≥ 1/4. The theorem
follows after comparison of the series of the preceding lemma.

�

In order to prove some properties of the ℘-function and its derivatives
we shall prove the next lemma.

Lemma. The series ∑
ω∈L∗
|ω − z|−ρ

converges uniformly in every circle of finite radius for ρ > 2, if we discard a
sufficient number of terms at the beginning.

Proof. Let |z| ≤ R and |ω| > 2R, for R > 0, so that |ω| < 2(|ω|−|z|) <
2|ω − z|, then

1
|z − ω|

≤ 2
|ω|

,

hence
1

|z − ω|ρ
<

2ρ
|ω|ρ

for ρ > 0,

this proves the lemma, since the sum of the second part of inequality con-
verges for ρ > 2.

�

Let E+
L be the subfield of the even elliptic functions for a given lattice

L, and let E−L be the subset of the odd elliptic functions.

Theorem 9. For a given lattice L, the following properties hold

(i) ℘′ ∈ E−L ;
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(ii) ℘(n) ∈ EL for n ≥ 2, where ℘(n) is the n-derivative;

(iii) ℘ ∈ E+
L .

Proof. By Theorem 8 and the uniform convergence theorem for holo-
morphic functions, ℘ is a meromorphic function with double poles at all
ω ∈ L. Also, Theorem 8 permits differentiation term by term, then

℘′(z) = −2
∑
ω∈L

1
(z − ω)3 ,

by the former lemma the series converges absolutely for z /∈ L, and defines a
meromorphic function with triple poles at all ω ∈ L. Now, a rearrangement
of the series of ℘′(z + ω) yields ℘′(z + ω) = ℘′(z), therefore ℘′ is an elliptic
function. The same argument as above gives

℘(n)(z) = (−1)n(n+ 1)!
∑
ω∈L

1
(z − ω)n+2 ,

this proves (ii).
Note that ℘(−z) = 1

z2 + ∑
ω∈L∗

(
1

(z+ω)2 − 1
ω2

)
, and that {−ω} = {ω}, so

that ℘(−z) = ℘(z), differentiating we have −℘′(z) = ℘′(−z), thus ℘ is an
even function and ℘′ is an odd function, then (i) holds.

Finally, integrating ℘′(z + ω) = ℘′(z) we obtain ℘(z + ω) = ℘(z) + c.
Setting z = −ω/2, we get ℘(ω/2) = ℘(−ω/2) + c, since ℘ is even, it follows
c = 0, then (iii) holds.

�

Inside a fundamental parallelogram Π, there is exactly one pole for ℘,
which is one of the ω ∈ L. By Theorem 7 there exists two zeros, say u and
v, such that u + v ≡ 0 mod(L). ℘ is an elliptic function of order two, that
is, for c ∈ C there exists two points u and v in a fundamental parallelogram
such that ℘(u) = ℘(v) = c, and since the poles of ℘(z) − c coincide with
those of ℘(z), then u + v ≡ 0 mod(L). If u ≡ −u mod(L), then u = v,
that is the points coincide. There are exactly four points in a fundamental
parallelogram Π such that u ≡ −u mod(L),

0, ω1

2 ,
ω2

2 and ω1 + ω2

2 .
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The first of these points is the pole of ℘ in Π. Now let ω3 = ω1 + ω2. The
elliptic function ℘′ is of order 3, by Theorem 9 ℘′(−z) = −℘′(z), more-
over the periodicity of ℘ yields ℘′(ωi/2) = ℘′(−ωi/2) for i = 1, 2, 3, then
℘′(ωi/2) = −℘′(ωi/2). Thus ω1

2 ,
ω2
2 and ω1+ω2

2 are the three zeros of ℘′(z) in
Π. Additionally, the values of ℘ at these points, call them

e1 = ℘
(
ω1

2

)
, e2 = ℘

(
ω2

2

)
and e3 = ℘

(
ω1 + ω2

2

)
,

are all of multiplicity 2 and distinct.

The field of elliptic functions

The Weierstrass function not only gives an example of an elliptic func-
tion but enable one to describe the structure of all elliptic functions. We first
prove the next lemma which enable us to demonstrate the next important
theorem.

Lemma. The subfield E+
L ⊂ EL of even elliptic functions for a lattice

L is generated by ℘, i.e., E+
L = C(℘).

Proof. Let f ∈ E+
L . The idea of the proof is to build a function which

has the same zeros and poles as f(z) using only functions of the form ℘(z)−u
for u ∈ C, recalling that for every u there exists two points in a fundamental
parallelogram Π, counting multiplicity. Then the ratio of f(z) to such con-
structed function must be constant.

We list the zeros and poles inside a fundamental parallelogram Π, om-
miting 0 from our list, and counting only half of them since ℘ is of order 2.
We describe the method of listing the poles; the method of listing the zeros
is analogous, but first let’s show some properties on the zeros and poles of
an even elliptic function.

Suppose that b ∈ Π − {0} is a pole of order m which is not a half
of a lattice point. Let b∗ be point inside Π such that b + b∗ ≡ 0 mod(L).
If b is a pole of order m, because of the periodicity and the evenness of
f(z) we have f(b∗ − z) = f(b + z). Thus if f(b + z) = bmz

−m + · · · then
f(b∗ + z) = bm(−z)−m + · · · , then b∗ is also a pole of order m.

Now suppose that b 6= 0 is a pole of f with b ≡ −b mod(L). We have
f(b+ z) = bmz

−m + · · · and f(b+ z) = f(−b+ z) = f(b− z) because of the
periodicity and the evenness of f(z), then f(b− z) = bm(−z)−m + · · · , that
is the order m of the pole b must be even.
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Now we list the zeros and poles of f . Let {bj} be a list of the poles of f
in Π which are not half-lattice points, each taken as many times as the mul-
tiplicity of the pole there, but only one taken from each pair of symmetrical
poles b, b∗; if one of the three nonzero half-lattice points in Π is a pole of f ,
include it in the list half as many times as its multiplicity. Let {ai} the list
of nonzero zeros, counted in the same way as the poles.

Since ai 6= 0 and bj 6= 0 for all i, j, the values ℘(ai) and ℘(bj) are finite,
and it makes sense to define the elliptic function

g(z) = Πi(℘(z)− ℘(ai))
Πj(℘(z)− ℘(bj))

,

where the nonzero zeros of g come from the zeros of ℘(z) − ℘(ai) and the
nonzero poles of g come from the zeros of ℘(z)− ℘(bj), since ℘ has order 2,
then it has one double zero u ∈ Π such that u ≡ −u mod(L) or two sym-
metric points u and v in Π such that u+ v ≡ 0 mod(L). Then g and f have
the same nonzero zeros and poles in Π, with the possible exception of the
point 0. Theorem 6 tell us that when we know that two elliptic functions
have the same order of zero or pole everywhere but possibly at one point in
Π + α, then that one point is carried along automatically, this implies that
g has the same zeros and poles as f , from wich it follow that f(z) = cg(z)
for some constant c and g ∈ C(℘).

�

Theorem 10. Let f and ℘ ∈ EL. Then there exist rational functions
R and T such that

f = R(℘) + T (℘)℘′,
that is EL = C(℘, ℘′) the field of elliptic functions for a lattice L equals the
rational functions field generated by ℘ and ℘′.

Proof. Let f ∈ EL, then we can write f as follows

f(z) = f(z) + f(−z)
2︸ ︷︷ ︸
∈E+

L

+ f(−z)− f(z)
2℘′(z)︸ ︷︷ ︸
∈E+

L

℘′(z),

the Theorem follows from the former Lemma.
�
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A certain differential equation

The Theorem 10 has many implications, one of the most important is
that the Weierstrass function satisfies certain differential equation, we ex-
plain this result below. Later we give another independent derivation of the
differential equation for ℘.

Since ℘′(z)2 is an even elliptic function, it can be expressed as a rational
function of ℘(z), furthermore it can be expressed as a polynomial of ℘(z) since
its poles lie at the nodes of the period lattice. The zeros of ℘′(z) turn out to
be double zeros of ℘′(z)2. Hence we have

℘′(z)2 = c(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

where c is some constant. In order to find this constant let’s compare the
coefficients of the leading term on each side of the equation; the leading term
on the left side is (−2z−3)2 = 4z−6, while on the right it is c(z−2)3 = cz−6,
we conclude that c = 4. That is, ℘(z) satisfies the differential equation

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3). (1.5)

Notice that the cubic polynomial on the right side has distinct roots. Sup-
pose, for example, e1 = e2, then the function ℘(z)−e1 has zeros of multiplicity
2 at the points ω1/2 and ω2/2, then there are inside Π at least 4 zeros of this
function, which is impossible.

Example 3. The even function ℘′′(z) which has a pole of order 4 at
the nodes of L can be expressed as f(℘(z)), where f(x) is a second degree
polynomial. We exhibit this polynomial using the technique explained below.

F

So as to give another independent derivation of the differential equation
for ℘(z), we seek find a cubic polynomial

f(x) = ax3 + bx2 + cx+ d,

such that the Laurent expansion of the elliptic function f(℘(z)) agrees with
the Laurent expansion of ℘′(z)2 through the negative powers of z. Then by
Theorem 4, the function ℘′(z)2 − f(℘(z)) would be constant, and we can
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choose d in such a way that this constant is zero. Since ℘(z) is an even
function, its Laurent expansion at z = 0 is given by

℘(z) = 1
z2 + b1z

2 + b2z
4 + · · ·+ bnz

2n + · · · ; (1.6)

by Theorem 8 if |ω| > 2R ≥ |z| we can expand each term of the series as
follows {

1
(z − ω)2 −

1
ω2

}
= 2
ω3 z + 3

ω4 z
2 + 4

ω5 z
3 + 5

ω6 z
4 + · · · ;

hence we have

b1 = 3G4, b2 = 5G6, bn = (2n+ 1)G2n+2,

where for k ≥ 2 we denote

G2k = G2k(L) =
∑
ω∈L∗

1
ω2k , (1.7)

each of this series is called the holomorphic Eisenstein series G2k of weight
2k, we will go deeper on this later; and so (1.6) turns in

℘(z) = 1
z2 + 3G4z

2 + 5G6z
4 + 7G8z

6 + · · ·+ (2n+ 1)G2n+2z
2n + · · · , (1.8)

and computing we have

℘(z)2 = 1
z4 + 6G4 + 10G6z

2 + (9G2
4 + 14G8)z4 + (30G4G6 + 18G10)z6 + · · · ;(1.9)

℘(z)3 = 1
z6 + 9G4

1
z2 + 15G6 + (27G2

4 + 21G8)z2 + (90G4G6 + 27G10)z4 + · · · ;(1.10)

℘′(z) = − 2
z3 + 6G4z + 20G6z

3 + 42G8z
5 + 72G10z

7 + 110G12z
9 + · · · ; (1.11)

℘′(z)2 = 4
z6 − 24G4

1
z2 − 80G6 + (36G2

4 − 168G8)z2 + · · · . (1.12)

Now, for find the coefficients a, b, c, d of a cubic f(x) = ax3 + bx2 + cx + d
such that

℘′(z)2 = a℘(z)3 + b℘(z)2 + c℘(z) + d,
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we multiply equation (1.10) by a, and comparing the principal parts of ℘′(z)2

and a℘(z)3 we have that a = 4, that is

℘′(z)2 − 4℘(z)3 = −(24G4 + 4(9G4)) 1
z2 − (80G6 + 4(15G6)) + h(z),

where h(z) is holomorphic and vanishes at z = 0. The preceding function
does not have any pole of order 4, then b = 0. If we multiply the equation
(1.8) by c and compare the principal part of c℘ with the principal part of
the previous function, we have that c = −60G4, that is

℘′(z)2 − 4℘(z)3 − 60G4℘(z) = −(80G6 + 4(15G6)) + h1(z),

where h1(z) is holomorphic and vanishes at z = 0. Finally, d = −140G6. It
is traditional to denote

g2 = 60G4 and g3 = 140G6. (1.13)

We have thereby derived a second form for (1.5):

℘′(z)2 = f(℘(z)) where f(x) = 4x3 − g2x− g3 ∈ C[x]. (1.14)

Example 4. From Example 3 the even function ℘′′(z) can be ex-
pressed as f(℘(z)), where f(x) is a quadratic polynomial. Now differentiating
(1.14) we have

℘′′(z) = 6℘(z)2 − g2

2 ,

then

℘′′(z)− 6℘(z)2 + g2

2 = (−54G2
4 + 126G8)z4 + (−180G4G6 + 396G10)z6 + · · · ;

(1.15)
by Theorem 4 this equation is identically zero for every z, thus G8 = 3

7G
2
4.
F

The former example exhibits relations among the Eisenstein series, ac-
tually developing the laurent expansion on each side of the equation ℘′′(z) =
6℘(z)2 − g2

2 we have

6
z4 +

∞∑
n=1

(2n+1)(2n)(2n−1)G2n+2z
2n−2 = 6

z4

(
1 +

∞∑
n=1

(2n+ 1)G2n+2z
2n+2

)2

−g
2

2 .
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By comparing the coefficients of z2n−2 on each side of the equation, for n ≥ 3,
we obtain

(2n+1)(2n)(2n−1)G2n+2 = 6
(

2(2n+ 1)G2n+2 +
n−2∑
k=1

(2(n− k)− 1)(2k + 1)G2(n−k)G2k+2

)
,

that is

G2n+2 = 6
2(2n+ 3)(2n+ 1)(n− 2)

n−2∑
k=1

(2(n− k)− 1)(2k + 1)G2(n−k)G2k+2.

This is a very remarkable fact that shows how Eisenstein series are
related to each other, actually, G2k ∈ Q[G4, G6], that is they are rational
polynomials depending on G4 and G6.

Example 5. Let L = Z[i] be the lattice of Gaussian integers and
consider the Einsenstein series G6(L) and G4(L), if we choose any pair of
reduced periods then τ = i, that is ω2 = iω1, substituting in G6(L) we have

G6(L) =
∑

m,n∈Z

1
(m+ ni)6ω6

1
,

note that (m+ ni)6 + (−n+mi)6 = 0, thus G6(L) = 0. While

(m+ in)4 = (n− im)4 = (−m− in)4 = (−n+ im)4,

that is
G4(L) =

∑
ω∈L∗

1
ω4 = 4

∑
m≥0
n>0

1
(m+ in)4ω4

1
,

which is a non-zero number.
F

Example 6. Now let L be the lattice of the Eisenstein integers, let
ξ = e2πi/3 and consider the Einsenstein series G6(L) and G4(L), if we choose
any pair of reduced periods then τ = ξ, that is ω2 = ξω1, substituting in
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G4(L) we have

G4(L) =
∑

m,n∈Z

1
(m+ nξ)4ω4

1

=
∑
m≥0
n>0

{
1

(m+ ξn)4ω4
1

+ 1
(ξ(m+ ξn))4ω4

1
+ 1

(ξ2(m+ ξn))4ω4
1

}

=
∑
m≥0
n>0

1 + ξ + ξ2

(m+ ξn)4ω4
1

= 0.

Similarly, for G6(L) we have

G6(L) =
∑
m≥0
n>0

{
1

(m+ ξn)6ω6
1

+ 1
(ξ(m+ ξn))6ω6

1
+ 1

(ξ2(m+ ξn))6ω6
1

}

=
∑
m≥0
n>0

3
(m+ ξn)6ω6

1
.

Thus for the lattice L of the Einsenstein integers we have G4(L) = 0 and
G6(L) 6= 0.

F

1.3.2 Weierstrass’s ζ-function and σ-function
We have looked at the derivatives of the Weiestrass ℘−function so far, a

similar process can be carried out integrating. The Weierstrass zeta function
ζ(z) is the function defined by

dζ(z)
dz

= −℘(z) and lim
z→0

ζ(z)− z−1 = 0. (1.16)

Then using the definition

ζ(z)− z−1 = −
∫ z

0
℘(z)− z−2dz

= −
∑
ω∈L∗

∫ z

0
(z − ω)−2 − ω−2dz,
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that is
ζ(z) = 1

z
+
∑
ω∈L∗

1
z − ω

+ 1
ω

+ z

ω2 . (1.17)

The ζ-function is then a single-valued odd function which converges
absolutely and uniformly in every compact subset of C−L and it has simple
poles at the nodes of the lattice L. Now integrating the next equality ℘(z +
wi) = ℘(z) for i = 1, 2, we have that ζ satisfies the relation

ζ(z + wi) = ζ(z) + ηi, (1.18)

with ηi 6= 0 since ζ is not elliptic. We can find the value of the ηi substituting
z = −ωi/2 in (1.18) and using the fact that ζ is an odd function. We have

η1 = 2ζ
(
ω1

2

)
and η2 = 2ζ

(
ω2

2

)
. (1.19)

Now we prove a theorem that relates the periods ω1 and ω2 with the
the constants η1 and η2 known as the Legendre’s relation.

Theorem 11. Let ℘(z;ω1, ω2) be the Weierstrass elliptic function for
the periods ω1 and ω2 then

η1ω2 − η2ω1 = 2πi.

Proof. From one hand we have
1

2πi

∫
∂(Π+α)

ζ(z)dz = 1,

with α 6= 0, since ζ has a simple pole with residue 1. Now, in the other hand,
if we choose α = −ω1+ω2

2 (see Figure 1.7) we have
1

2πi

∫
∂(Π+α)

ζ(z)dz = 1
2πi

∫
c1+c2+c3+c4

ζ(z)dz

where the ci are the sides of the parallelogram. Then∫
c1
ζ(z)dz = −

∫
c3
ζ(z − ω2)dz

= −
∫
c3
ζ(z)dz +

∫
c3
η2dz

= −
∫
c3
ζ(z)dz + η2z|

ω2−ω1
2

ω1+ω2
2

= −
∫
c3
ζ(z)dz − η2ω1
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thus ∫
c1
ζ(z)dz +

∫
c3
ζ(z)dz = −η2ω1.

Similarly we have
∫
c2
ζ(z)dz = −

∫
c4
ζ(z + ω1)dz

= −
∫
c4
ζ(z)dz −

∫
c4
η1dz

= −
∫
c4
ζ(z)dz − η1z|

−ω2−ω1
2

ω2−ω1
2

= −
∫
c4
ζ(z)dz + η1ω2

thus ∫
c2
ζ(z)dz +

∫
c4
ζ(z)dz = η1ω2.

Therefore,
2πi = η1ω2 − η2ω1.

�

Figure 1.7: The fundamental parallelogram centered at 0.
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The integration can be carried one step further. The Weierstrass sigma
function σ(z) is the function defined by

d

dz
log(σ(z)) = σ′(z)

σ(z) = ζ(z) and lim
z→0

σ(z)
z

= 1. (1.20)

Then using the definition

ζ(z)− 1
z

= log′(σ(z))− 1
z

= log′(σ(z))− log′(z),

integrating we have ∫ z

0
ζ(z)− 1

z
dz =

∫ z

0
log′(σ(z))− log′(z)dz∫ z

0

∑
ω∈L∗

1
z − ω

+ 1
ω

+ z

ω2dz = log
(
σ(z)
z

)∣∣∣∣∣
z

0∑
ω∈L∗

log
(

1− z

ω

)
+ z

ω
+ z2

2ω2 = log
(
σ(z)
z

)
,

finally we use the exponential to eliminate the multiple-valuedness, and we
have

σ(z) = z
∏
ω∈L∗

(
1− z

ω

)
ez/ω+z2/2ω2

. (1.21)

The infinite product on the left side of (1.21) converges absolutely and
uniformly in a suitable circle. Thus the Weierstrass’s σ-function is an entire
odd function with simple zeros at the lattice points. For a fixed lattice and
any non-zero complex number λ we have

σ(λz;λω1, λω2) = λσ(z;ω1, ω2)

It is clear that the σ function is not elliptic, we are about to know its
behaviour in values which differ by a period. By integrating the relations
ζ(z + ωi) = ζ(z) + 2ηi for i = 1, 2, where the ηi come from (1.19), we have

log(σ(z + ωi))− log(σ(ωi)) = log(σ(z))− log(σ(0)) + 2ηiz,

exponentiating we have

σ(z + ωi) = Ciσ(z)e2ηiz,
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where Ci = σ(ωi)
σ(0) is a constant. Now, setting z = −ωi

2 we have

σ
(
ωi
2

)
= −Ciσ

(
ωi
2

)
e−ηiωi ,

since σ(z) is an odd function. It results that

Ci = −eηiωi .

Then we have proved that

σ(z + ω1) = −eη1(ω1+2z)σ(z), (1.22)
σ(z + ω2) = −eη2(ω2+2z)σ(z).

Example 7. Let f be a non-constant elliptic function with reduced
periods ω1 and ω2. Let {ai} and {bi} the list of its zeros and poles, repetitions
allowed according to their multiplicity. By Theorem 6, f has as many zeros
as poles, say n. Let Ω =

n∑
i=1

bi − ai. Theorem 7 implies Ω ∈ L, then consider
the ratio of sigma functions

g(z) =

n∏
i=1

σ(z − ai)

σ(z − bn + Ω)
n−1∏
i=1

σ(z − bi)
,

note that g is a meromorphic function with zeros at the ai’s and poles at the
bi’s. Moreover, equations (1.22) show that g is doubly-periodic since

g(z + wi) =
(−1)ne

2ηi(nz+n
ωi
2 −

n∑
i=1

ak) n∏
i=1

σ(z − ai)

(−1)ne
2ηi(nz+n

ωi
2 −

n∑
i=1

bk)+Ω
σ(z − bn + Ω)

n−1∏
i=1

σ(z − bi)

,(1.23)

= g(z), (1.24)

for i = 1, 2. Then f/g is an elliptic function without poles, then it must be
constant, that is f(z) = cg(z) for some c ∈ C. Therefore, we can express any
non-constant elliptic function f as a ratio of sigma functions.

F
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Example 8. Consider the function g(z) = ℘(z)−℘(u) for u ∈ C−L.
g is an elliptic function with zeros at z = {u,−u} and a double pole at z = 0,
then by the Example 7, we have that

σ(z − u)σ(z + u)
σ2(z)

is an elliptic function with the same zeros and poles as g(z), then they are
equal up to multiplication by a constant c which not depends on z. If we
compare the principal parts of the functions, we have that c = − 1

σ2(u) , that
is

℘(z)− ℘(u) = −σ(z − u)σ(z + u)
σ2(z)σ2(u) .

F

In the last examples we have seen how useful can be the sigma and
the zeta functions in order to build elliptic functions. Next, we study other
function which enable us to build elliptic functions too.

1.3.3 The theta-functions
In 1.3.1 we studied a method to construct elliptic functions, now we

give a somewhat different method to do so with the help of theta-functions.
Let (ω1, ω2) be a pair of reduced periods and τ = ω2/ω1, we define

θ(z) =
∞∑

n=−∞
eπi[n

2τ+2nz].

This series converges absolutely and uniformly on compact subsets of C,
namely, let c be a real positive constant and let |z| < c, the map eiπτ maps
τ ∈ H into the unit disk. Let q = eiπτ then |q| < 1, the absolute value of the
ratio of the consecutive terms of the series is equal to

|q2n+1e2πiz| ≤ |q|2n+1e2π|z|.

Since lim
n→∞

|q|2n+1 = 0, thus the series of entire functions converge uniformly
in the domain |z| < c. Hence the theta function is analytic on all of C.

Note that
θ(z + 1) = θ(z), (1.25)
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for every z ∈ C, that is θ is periodic and we expect it to be well behaved
respecting to τ , actually we have the next relation

θ(z + τ) =
∞∑

n−1=−∞
eπi[(n−1)2τ+2(n−1)(z+τ)]

= e−πi[2z+τ ]θ(z), (1.26)

for all z ∈ C. Then we have

θ(z − τ) = eπi[2z−τ ]θ(z), (1.27)

for all z ∈ C.
Then theta functions are entire functions with one genuine period and

one quasiperiod.

After equations (1.25) and (1.26) it follows that z0 is a zero of θ if and
only if z0 + Lτ are zeros, where Lτ = {m+ nτ |m,n ∈ Z}.

Further consequences of (1.25), (1.26) and (1.27) are that

θ′(z ± τ)
θ(z ± τ) = θ′(z)

θ(z) ∓ 2πi, and θ′(z +m)
θ(z +m) = θ′(z)

θ(z) for every m ∈ Z.

Lemma. The θ-function has a unique simple zero z0 = 1/2 + τ/2 in
the fundamental parallelogram Π for the lattice Lτ .

Proof. Consider the integral

1
2πi

∫
∂Π

θ′(z)
θ(z) dz,

which counts the number of zeros inside the fundamental parallelogram of
the entire functions. We have∫

∂Π

θ′(z)
θ(z) dz =

∫ 1

0

θ′(z)
θ(z) dz +

∫ τ+1

1

θ′(z)
θ(z) dz +

∫ τ

τ+1

θ′(z)
θ(z) dz +

∫ 0

τ

θ′(z)
θ(z) dz,

now, making some substitutions we have∫ τ+1

1

θ′(z)
θ(z) dz =

∫ τ

0

θ′(z + 1)
θ(z + 1) dz

= −
∫ 0

τ

θ′(z)
θ(z) dz,
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that is ∫ τ+1

1

θ′(z)
θ(z) dz +

∫ 0

τ

θ′(z)
θ(z) dz = 0,

and ∫ τ

τ+1

θ′(z)
θ(z) dz =

∫ 0

1

θ′(z + τ)
θ(z + τ) dz,

= −
∫ 1

0

(
θ′(z)
θ(z) − 2πi

)
dz,

that is ∫ 1

0

θ′(z)
θ(z) dz +

∫ τ

τ+1

θ′(z)
θ(z) dz = 2πi,

therefore there is a unique simple zero inside the fundamental parallelogram.
Now, to know where is the zero located, we consider the integral

1
2πi

∫
∂Π
z
θ′(z)
θ(z) dz,

and we apply a similar reasoning. We have
∫ τ

τ+1
z
θ′(z)
θ(z) =

∫ 0

1
(z + τ)θ

′(z + τ)
θ(z + τ) ,

= −
∫ 1

0
z
θ′(z)
θ(z) dz −

∫ 1

0
τ
θ′(z)
θ(z) dz +

∫ 1

0
(2πiz + 2πiτ)dz,

= πi+ 2πiτ −
∫ 1

0
z
θ′(z)
θ(z) dz,

similarly
∫ τ+1

1
z
θ′(z)
θ(z) dz =

∫ τ

0
(z + 1)θ

′(z + 1)
θ(z + 1) dz,

= −
∫ 0

τ
z
θ′(z)
θ(z) dz −

∫ 0

τ

θ′(z)
θ(z) dz,

= −
∫ 0

τ
z
θ′(z)
θ(z) dz + log

[
e−πiτθ(0)

]
− log[θ(0)],

= −
∫ 0

τ
z
θ′(z)
θ(z) dz − πiτ,
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since θ(τ) = e−πiτθ(0).
Therefore

1
2πi

∫
∂Π
z
θ′(z)
θ(z) dz = 1/2 + τ/2,

this proves our lemma.
�

Consider the translation

θ(x)(z) = θ(z − (1/2)− (τ/2)− x), (1.28)

which has simple zeros at the points x + Lτ . The next relations are direct
consequences of (1.25), (1.26) and (1.28). It is obvious that

θ(x)(z + 1) = θ(x)(z), (1.29)

now we find out how translates are behaved under the addition of τ ,

θ(x)(z + τ) = θ(z + τ − (1/2)− (τ/2)− x),

=
∞∑

n−1=∞
eπi[(n−1)2τ+2(n−1)(z+τ−(1/2)−(τ/2)−x)],

=
∞∑

n−1=∞
eπi[n

2τ+2n(z−(1/2)−(τ/2)−x)−2z+2x+1],

= −e−2πi[z−x]θ(x)(z). (1.30)

The next theorem is an important result which relates every elliptic
function with theta functions, it can be seen as equivalent to Theorem 10,
which relates ℘-function and its derivative with every elliptic function.

Theorem 12. Let N ∈ N fixed, choose two disjoint multisets of N
complex numbers {ai} and {bj} such that

N∑
i=1

ai −
N∑
j=1

bj ∈ Z. Then the ratio

of the translated theta functions

R(z) =

N∏
i=1

θ(ai)(z)
N∏
j=1

θ(bj)(z)

is an elliptic function. Furthermore, every elliptic function can be written in
this way.
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Proof. Let N ∈ N fixed, let {ai} and {bj} be two disjoint multisets of
N complex numbers such that

N∑
i=1

ai −
N∑
j=1

bj ∈ Z and consider the function

R(z) =

N∏
i=1

θ(ai)(z)
N∏
j=1

θ(bj)(z)
,

then R is a meromorphic function on C and R(z + 1) = R(z), thus it is
periodic. Now, we want to show that R is Lτ -periodic, observe that

R(z + τ) =

N∏
i=1

θ(ai)(z + τ)
N∏
j=1

θ(bj)(z + τ)
,

=

N∏
i=1
−e−2πi[z−ai]θ(ai)(z)

N∏
j=1
−e−2πi[z−bj ]θ(bj)(z)

,

=
(−1)Ne

−2πi
N∑
i=1

[z−ai] N∏
i=1

θ(ai)(z)

(−1)Ne
−2πi

N∑
j=1

[z−bj ] N∏
j=1

θ(bj)(z)

,

= e
2πi
[
N∑
j=1

[z−bj ]−
N∑
i=1

[z−ai]
] N∏
i=1

θ(ai)(z)
N∏
j=1

θ(bj)(z)
,

= e
2πi
[
N∑
i=1

ai−
N∑
j=1

bj

] N∏
i=1

θ(ai)(z)
N∏
j=1

θ(bj)(z)
,

= R(z),

since
N∑
i=1

ai−
N∑
j=1

bj ∈ Z. Then the function R has zeros at the points xi +Lτ ,
poles at the points yi + Lτ and it is Lτ -periodic, therefore R is an elliptic
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function.

To prove the second part of the Theorem, let f ∈ ELτ . By Theorem 6,
f has as many zeros as poles; let {ai} and {bi} with i = 1, ..., n be the sets of
the zeros and poles respectively, with repetitions allowed. And by Theorem
7 we have

n∑
i=1

ai ≡
n∑
i=1

bi mod(Lτ ), then form the ratio of translated theta
functions

R(z) =

n∏
i=1

θ(ai)(z)
n∏
j=1

θ(bj)(z)
,

and consideer the elliptic function g = R/f , since R and f have the same
zeros and poles g must be a nonzero constant. Then f can be written as a
ratio of theta functions multiplied by a constant.

�

1.3.4 Remarks

Trough all this section, we have discussed some non trivial examples
of elliptic and quasi-elliptic functions, namely the Weierstrass ℘-function, its
derivative ℘′, its integral function ζ and its exponential double integral σ,
all of them clearly related to the ℘ function; and the θ functions. We devote
the last part of this section to explain which are the relations between theta
functions and Weierstrass functions.

Given an elliptic function f ∈ EL, we can express it in terms of rational
functions of ℘ and its derivative just making inspection over the zeros and
poles of the two auxiliary even elliptic functions seen in Theorem 10. In a
similar way, knowing the zeros and poles of f we can reconstruct it as a
quotient of σ functions, see Example 7. The latter process can be applied in
a similar fashion for translated θ functions as shown in Teorem 12.

Thus, both the quotient of σ and translated θ functions are similar,
however notice that the σ function is defined as a product of functions and
the θ function as a function series.

Let L be a lattice generated by a pair of reduced periods (ω1, ω2). Set
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q = eπiτ with τ = ω2/ω1 and consider the function

ϑ(z) = 1
i

∞∑
n=−∞

(−1)nq(n+ 1
2 )2
e(2n+1)πiz, (1.31)

one can prove that

ϑ(z) = θ(z + 1
2 + τ

2)
(
q1/4eπiz

1
i

)
,

= θ(−1−τ)(z)
(
q1/4eπiz

1
i

)
;

thus ϑ is the product of a translated theta function by a periodic function.
Therefore it converges absolutely and it is an entire function with simple
zeros at Lτ = Z⊕ τZ. Moreover ϑ satisfies the relations

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −1
q
e2πizθ(z) and ϑ(z) = −ϑ(−z). (1.32)

These considerations allow us to state in a simple way the desired re-
lation in the next theorem.

Theorem 13. Let (ω1, ω2) be a pair of reduced periods, τ = ω2/ω1,
with Im(τ) > 0, η1 = ζ(ω1/2) and ϑ′(0) the derivative of ϑ with respect to z
at z = 0. Then

σ(z) = ϑ
(
z

ω1

)
ω1

ϑ′(0)e
η1z2/ω1 .

Finally, in Chapter 2, we will see applications of both kind of elliptic
and quasi-elliptic functions. First, the study of the Weierstrass ℘ function
will provide us a functional and deep isomorphism between elliptic curves
and complex tori. Secondly, theta-like functions are of especial interest when
computing the Hasse-Weil L function of an elliptic curve, since for an especial
theta function, the Mellin transform of such theta function turns out to be
the Riemann zeta-function.
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Chapter 2

Arithmetic Theory of Elliptic
Curves

The Weierstrass elliptic function is very special in its own right. The
℘-function gives an isomorphism between two mathematical objects: the
Complex Elliptic Curves and the Complex Tori. This means, we can take
profit from the geometrical structure of the complex torus, just as we defined
in Chapter 1 and take this properties to the algebraic language.

In this chapter, we define what an elliptic curve is and we give the an-
alytical isomorphism connecting them with the complex tori.

Complex tori are abelian groups with the addition of points modulo a
lattice L, it turns out that complex elliptic curves are abelian groups as well,
so given a pair of points in the elliptic curve the addition is well defined.

These results are generalized algebraically for every elliptic curve de-
fined over a field K. Further we make some investigation in the torsion group
of an elliptic curve, consisting in the points of finite order. We show that any
elliptic curve has at most N2 points of order N .

We shall make an inspection in the field extensions of the field K over
which an elliptic curve is defined, looking for extra points, some of them
being probably of finite order. So naturally, we study a couple of examples
involving the Galois group of a field extension K ′ and its relation with the
points on an elliptic curve defined over K.

Through all this chapter we discuss and show some examples concern-
ing a special elliptic curve, which is a substantial part of the approach to the

41
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problem exposed in Chapter 5.

2.1 Elliptic curves
Definition. An elliptic curve E is a smooth projective curve over a

field K of genus 1 together with a point O ∈ E.

An elliptic curve E over a field K can be given by the projective com-
pletition of an equation of the form

E : y2 = ax3 + bx2 + cx+ d, with a, b, c, d ∈ K; (2.1)

from now on, we will use indistinctly both notations.

The smoothness assumption is equivalent to ask that the cubic polyno-
mial in the right of (2.1)

f(x) = ax3 + bx2 + cx+ d, (2.2)

has different roots in some extension K ′ of K. In order to establish the point
O, we look at the plane algebraic curve, that is, at the homogeneus equation

E : y2z = ax3 + bx2z + cxz2 + dz3, with a, b, c, d ∈ K, (2.3)

which solutions are of the form

(x, y, 1) and (x, y, 0) ∈ P2
K ,

for the latter case there is only one solution, namely the point (0, 1, 0) := O
which is the point at infinity. We shall investigate the former case in more
detail and we use the affine notation when referring to these points, namely
(x, y) := (x, y, 1).

Example 9. Let n ∈ Z+ and K a field of characteristic p. Consider
the equation

En : y2 = x3 − n2x;
let F (x, y, z) be its projective completition

F (x, y, z) = y2z − x3 + n2xz2.
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The points P ∈ En(K) are of the form (x, y, 1) and (0, 1, 0). F is not singular
at (0, 1, 0) since

F (0, 1, 0) = ∂F

∂x
(0, 1, 0) = ∂F

∂y
(0, 1, 0) = 0,

but ∂F
∂z

(0, 1, 0) 6= 0.
Now, for the rest of the points we have

∂F

∂y
(x, y, 1) = 2y,

thus ∂F
∂y

(x, y, 1) = 0 if y = 0 or K has characteristic 2.
Suppose that char(K) = 2, then reduction modulus 2 yields

En : y2 = x(x+ 1)2,

thus (1, 0, 1) is always a singular point.
Now, suppose that y = 0, we have

F (x, 0, 1) = ∂F

∂z
(x, 0, 1) = ∂F

∂x
(x, 0, 1) = 0,

if and only if n ≡ 0modp and x = 0.
Therefore En defines an elliptic curve for every field K of characteristic

p, as long as p does not divide 2n.
F

Elliptic curves are abelian groups under addition of points, this is quite
easy to see for Complex Elliptic Curves. Define (0, 1, 0) ∈ P2

C to be the
identity of the Complex Elliptic Curve

E(C) : y2 = ax3 + bx2 + cx+ d

and let l be a line in P2
C with no common factors with E(C), say

l : y = mx+ βz,

by Bezout’s theorem l and E intersect in three points (multiplicities counted).
Then we say that collinear points sum zero, that is

P1 + P2 + P3 = 0↔ P1, P2, P3 ∈ l ∩ E,



44 Chapter 2. Arithmetic Theory of Elliptic Curves

and that two points of the curve which are on the same vertical line are
inverses, namely for P = (x, y) then −P = (x,−y) (even in the special case
when y = 0).

This geometric construction can be put in algebraic terms as well. let
P1 = (x1, y1) and P2 = (x2, y2) be different points lying in l ∩ E, then their
x coordinates are roots of the cubic polynomial

(mx+ β)2 − f(x) = 0, (2.4)

the x coordinate of the remaining point of intersection P3 = (x3, y3) must
satisfy 2.4, so

(mx+ β)2 − f(x) = (x− x1)(x− x2)(x− x3),

from which we deduce that

x3 = −x1 − x2 −
b−m2

a
,

and substitution in l yields

y3 = mx3 + β,

where β = y1 −mx1. Now, we must take the negative value of P3 in order
to determine the point P1 + P2, thus

P1 + P2 = −P3 =
(
−x1 − x2 −

b−m2

a
,−y1 +m(x1 − x3)

)
, (2.5)

where m = y2−y1
x2−x1

, furthermore if we allow P1 = P2, we obtain m by implicity
differentiating y2 = f(x) and we have m = f ′(x1)

2y1
.

If K is any field and if f(x) ∈ K[x] is like (2.2), we define

f ′(x) = 3ax2 + 2bx+ c,

and generalize the later construction. We summarize this in the next theo-
rem, which can be verified algebraically.

Theorem 14. Let E be an elliptic curve over a field K. For all P1
and P2 in E, we have

P1 + P2 = −P3 =
(
−x1 − x2 −

b−m2

a
,−y1 +m(x1 − x3)

)
,

in other words, every elliptic curve is an abelian group under addition of
points.
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We will use the former theorem in the end of the next section, when
we have all the tools to enounce the addition theorem for the ℘-function as
corollary.

2.2 Complex elliptic curves as complex tori
Every Complex Elliptic Curve can be reduced by linear changes of

homogeneous coordinates to the following normal form

y2z = 4x3 − Axz2 −Bz3 Weierstrass’ Form; (2.6)

the polynomial on the right side having distinct roots, equivalently, its cubic
discriminant

∆ = A3 − 27B2 (2.7)
is not zero.

We shall show that there exists a lattice L for which the invariants
g2(L) and g3(L) as in (1.13) satisfy

g2(L) = A;

g3(L) = B.

First note that if A = 0 then B 6= 0, we deduce from Example 6 that
L = ω1L(1, e2πi/3), that is, the lattice of the Eisenstein Integers multiplied
by a non zero complex number ω1. Similarly if B = 0 then A 6= 0, we
deduce from Example 5 that L = ω1Z[i], the lattice of the Gaussian Integers
multiplied by a non zero complex number ω1. Finally it remains to study the
case where A and B are both nonzero.

In the later case set ∆ = A3−27B2, we have that ∆ 6= 0 by hypothesis.
Then A = g2(L) and B = g3(L) for some L if and only if

g2(L)
g3(L) = A

B
, and g3

2(L)
g3

2(L)− 27g2
3(L) = A3

∆ . (2.8)

If we replace τ = ω1/ω2, i.e. normalize L to Lτ , the equation on the right of
(2.8) can be written as

J(τ) = g3
2(Lτ )

g3
2(Lτ )− 27g2

3(Lτ )
= A3

∆ ,
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but the equation J(τ) − a = 0 has exactly one solution in the fundamental
domain B showed in Figure 1.5, wether a is real or non-real. Then, in order
to find ω1 we rewrite the left side of (2.8) as follows

ω2
1 = Ag3(Lτ )

Bg2(Lτ )
,

and we have ω2 = τω1.
Therefore, given an elliptic curve in Weierstrass form we can find a

lattice L such that g2(L) = A and g3(L) = B.

Now, let ℘(z;L) the Weierstrass elliptic function for a lattice L. Recall
that ℘ satisfies the differential equation (1.14), this enable us to state the
following theorem.

Theorem 15. The map

F : C/L→ E(C) : y2 = 4x3 − g2x− g3

z 7→ (℘(z), ℘′(z), 1) (2.9)
0 7→ (0, 1, 0)

is an analytic isomorphism between the Complex Torus C/L and the Complex
Elliptic Curve E.

Proof. The image of any nonzero point z is well defined because ℘
satisfies the differential equation (1.14). Moreover, the map is analytic since
it is given by a triple of analytic functions near of non-lattice points and near
of the lattice points is given by

z 7→ (℘(z)/℘′(z), 1, 1/℘′(z)),

which is a triple of analytic functions as well.
Let (x, y, 1) ∈ E(C), for every point x there are one or two preimages. In the
first case x is a root of the cubic polynomial and therefore the corresponding
y coordinate is y = ℘′(z) = 0. In the second case there are two two points
in C/L say z and z′ such that z + z′ ≡ 0mod L and the corresponding two
y’s coordinates are opposites in sign, leading different points in E(C). Thus
the correspondence is one-to-one.

Finally, the inverse map from the elliptic curve to the torus is done by
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means of path integrals, this is explained in Appendix 1.
�

The former theorem together with the fact that every complex elliptic
curve can be reduced to an elliptic curve in the Weierstrass form enable us to
use the terms complex elliptic curve and complex torus indistinctly, in this
way one may think elliptic curves over finite fields as discrete tori.

The next corollary is a consequence of Theorem 14 and Theorem 15.

Corollary 1. Let L be a lattice and ℘(z, L) its Weierstrass elliptic
function. Then for u and v complex numbers we have

℘(u+ v) = −℘(u)− ℘(v)− 1
4

(
℘′(u)− ℘′(v)
℘(u)− ℘(v)

)2

. (2.10)

2.3 Points of finite order
Let P = (x, y) be a point in an elliptic curve E(K), let N ≥ 2 be a

positive integer and consider the map

[N ] : E(K)→ E(K),

P 7→ NP = P + · · ·+ P︸ ︷︷ ︸
N times

;

we say that P is a point of order N if P ∈ Ker[N ]. The group ⋃
N≥2

Ker[N ]
is called the torsion subgroup of the elliptic curve. For N > 2 we mean by
a nontrivial point of order N a point such that P 6= 0, NP = 0 and in the
case of N even 2P 6= 0.

It follows from Theorem 15 that Pz = (x, y) ∈ E(C) is a point of order
N if and only if Nz ∈ L.

Obviously, there may be points of infinite order. Complex elliptic curves
are isomorphic to R/Z × R/Z, from the analog case of the circle we know
that the group of points of finite order of R/Z is isomporphic to Q/Z, then
the torsion subgroup of complex elliptic curves is isomorphic to Q/Z×Q/Z.
Moreover, the group of points of order N on a complex elliptic curve is
isomorphic to Z/NZ× Z/NZ.

For any elliptic curve defined over the rationals, we have the following
useful and special theorem due to Mordell.
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Theorem 16. The group E(Q) of Q−points on an elliptic curve E
defined over Q is a finitely generated abelian group. That is

E(Q) ' E(Q)tors ⊕ Zr,

where the torsion subgroup E(Q)tors is finite and the nonnegative integer r is
called the rank of E(Q).

The group of points of order N of an elliptic curve E(K ′) is invariant
under the action of the Galois group of a field extension K ′ of K, we denote
Gal(K ′/K) the Galois group of the field extension K ′/K.

Let K be a subfield of C and denote KN the field obtained by adjoining
both the x- and the y-coordinates and Kx

N the field obtained by adjoining
just the x-coordinates, of all points of order N . Then KN and Kx

N are finite
Galois extensions of K, for in both cases we are adjoining a finite set of com-
plex numbers which are permuted under the action of Gal(C/K).

Compute the points of order 2 for every elliptic curve E(K) is quite
simple, these points are: the point at infinity 0 and the points (ei, 0) with
i = 1, 2, 3, where the ei’s are the roots of the cubic polynomial which defines
E(K). The ei’s may be in some extension K ′ of K, this yields that K2 = Kx

2
is the splitting field of the cubic polynomial which defines E(K).

Since any σ ∈ Gal(KN/K) permutes the points of order N and respects
point addition, i.e. σ(P1 +P2) = σ(P1)+σ(P2), then σ is an automorphism of
Z/NZ×Z/NZ, thus Gal(KN/K) is isomorphic to a subgroup of GL2(Z/NZ),
the group of the 2× 2 matrices with entries in Z/NZ and determinant in the
subgroup of units of Z/NZ.

Example 10. The group GL2(Z/2Z) is isomporphic to S3 the group of
permutations of {1, 2, 3}, since GL2(Z/2Z) permutes the elements of Z/2Z×
Z/2Z fixing (0, 0).

Consider the following elliptic curves over the rational numbers Q:

(a) y2 = x3 − nx
If n is a perfect square, then x3 − nx = x(x− a)(x+ a) where a ∈ Z+,
then the points of order 2 are the point at infinity 0, (0, 0), (a, 0) and
(−a, 0), all of them having coordinates at Q, thus for this case we have
Q = Q2 and Gal(Q2) = {IQ}.
If n is not a perfect square, then x3 − nx = x(x −

√
n)(x +

√
n) and
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the points of order 2 being the point at infinity 0, (0, 0), (−
√
n, 0) and

(
√
n, 0). The field extension generated by the coordinates of the points

of order 2, i.e. Q2 is simply Q(
√
n), since Gal(Q(

√
n)) permutes (

√
n, 0)

and (−
√
n, 0), we conclude that Gal(Q(

√
n)) is isomorphic to a sub-

group of GL2(Z/2Z) of order 2.

(b) y2 = x3 − n
If n is a perfect cube, the splitting field of f(x) = x3 − n = x3 − a3,
where a ∈ Z+, is Q(i

√
3), since

f(x) = (x− a)
(
x− a

(
−1

2 + i

√
3

2

))(
x− a

(
−1

2 − i
√

3
2

))
,

and therefore i
√

3 generates all the roots of f . We have two roots which
coordinates do not belong to Q, thus Gal(Q(i

√
3)) is isomorphic to a

subgroup of GL2(Z/2Z) of order 2.
If n is not a perfect cube, let α be the positive cubic root of n. The roots
of f(x) = x3 − n are α, α

(
−1

2 + i
√

3
2

)
and α

(
−1

2 − i
√

3
2

)
. Now since α

and i
√

3 generate all the roots of f, the splitting field of f is Q(α, i
√

3).
In this case, the three points of order 2 different from infinity do not
have coordinates in Q, thus the resulting Galois group Gal(Q(α, i

√
3))

is isomorphic to the entire group GL2(Z/2Z).

F

The process to find the x-coordinates of the points of order N is simple
for elliptic curves in the Weierstrass form over some extension K of the
rational numbers which includes g2 and g3, i.e. elliptic curves

E(K) = y2 = f(x) = 4x3 − g2x− g3.

This process is carried out by means of a polynomial for which Kx
N will be

the splitting field. The way we construct such a polynomial has been already
studied in The field of elliptic functions 1.3.1 and it is a direct consequence
of Theorem 15.

Consider a nontrivial point u of exact order N , then ℘(u) corresponds
to the x-coordinate of a point of exact order N in the elliptic curve metioned
above. Since ℘ is an even function, ℘(−u) is also a point of exact order N
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and u 6= −u. So, we can form pairs of points {u,−u} of exact order N .
Define the function

fN(z) = N
∏

(℘(z)− ℘(u)); (2.11)

where the product is taken over a point u for each pair {u,−u} of points of
exact order N . Now consider the two following cases:

(a) Let N be odd. There are N2 − 1 points of exact order N . Then
fN(z) = FN(℘(z)), FN(x) ∈ C[x] is a polynomial of degree N2−1

2 . The
even elliptic function fN(z) has N2 − 1 simple zeros and a single pole
of order N2 − 1 at z = 0 with leading term N

zN2−1 .

(b) Let N be even. There are N2−4 points of exact order N . Then FN(x)
is a polynomial of degree N2−4

2 . The even elliptic function fN(z) has
N2 − 4 simple zeros and a single pole of order N2 − 4 at z = 0 with
leading term N

zN2−4 .

Therefore, a point (x, y) = (℘(u), ℘′(u)) has odd order N if and only if
FN(x) = 0. It has even order if and only if either y = 0 or FN(x) = 0, since
the remaining nontrivial points of order N are the roots of 4x3 − g2x − g3,
namely e1 = ℘(ω1/2), e2 = ℘(ω2/2) and e3 = ℘(ω1 + ω2/2).

Example 11. To find the x−coordinates of the points of order three
of a complex elliptic curve in the Weierstrass form we can proceed in either
of the two following ways

(i) We can simply apply the method just described below and we will have

f3(z) = 3
(
℘(z)− ℘

(
ω1

3

))(
℘(z)− ℘

(
ω2

3

))
(
℘(z)− ℘

(
ω1 + ω2

3

))(
℘(z)− ℘

(2ω1 + ω2

3

))
,

rewriting it as a polynomial in ℘(z) = x we have

FN(x) = 3x4 − ax3 + bx2 − cx+ d,

where

a

3 = ℘
(
ω1

3

)
+ ℘

(
ω2

3

)
+ ℘

(
ω1 + ω2

3

)
+ ℘

(2ω1 + ω2

3

)
,
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...
d

3 = ℘
(
ω1

3

)
℘
(
ω2

3

)
℘
(
ω1 + ω2

3

)
℘
(2ω1 + ω2

3

)
;

and we can find explicity the values of each coefficient. Obviously this
can be a hard long calculation without a computer.

(ii) It turns out that for a complex elliptic curve, the inflection points are
precisely the points of order three. Then, consider an elliptic curve
E(C) in the Weierstrass form.
Implicity differentiating twice we have

y2 = f(x),

2y dy
dx

= f ′(x),

2
(
dy

dx

)2

+ 2y d
2y

dx2 = f ′′(x);

then if x is a point of order three the latter equation holds and d2y
dx2 = 0,

multiplying it by 2y2 we have

2f(x)f ′′(x)− f ′(x)2 = 0;

finally substituting f(x) = 4x3 − g2x − g3 and dividing both sides by
16, we have

FN(x) = 3x4 − 3
2g2x

2 − 3g3x−
1
16g

2
2,

which is the polynomial whose roots are the x−coordinates of order
three.

F

If we want to find the x−coordinates of the points of order N of an
elliptic curve not necessarily in Weierstrass form over a field K, we can re-
peatedly apply the formulas viewed in Theorem 14 to compute a rational
function depending on x and y which is the x−coordinate of NP . Thus
P = (x, y) is a point of order N if and only if x is a pole of such a function.

While in the case of a complex elliptic curve it contains all its points of
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order N it could happen that for a general field K some of its points may lie
in the algebraic closure of K, and even worse, if K has characteristic p the
rational function which is the x−coordinate of NP may have less poles than
expected.

Even in that cases, however, algebraically one can prove that the poly-
nomial on the denominator of the rational function mentioned above will be
of degree N2−1

2 when N is odd, otherwise of the form y ·p(x), where p ∈ K[x]
is of degree N2−4

2 .
This can be summarized in the following theorem.

Theorem 17. Let E be an elliptic curve over a field K. Then the
subgroup of points of order N has at most N2 elements over any extension
K ′ of K.

As an example of applications of the latter theorem, we will calculate
the number of points on certain kind of elliptic curves over some finite fields.
Further, since elliptic curves over finite fields are finite abelian groups, then
we will see what are the possible prime group decomposition of the Fq−points
on the elliptic curve.

Example 12. Let q = pr, p - 2n and suppose that q ≡ 3 mod(4).
Consider the elliptic curve

En : y2 = x3 − n2x;

we want to calculate |En(Fq)|.
The curve contains all its points of order 2, namely the point at infinity,

(0, 0), (n, 0) and (−n, 0). Now consider the pairs {x,−x} with x 6= 0,±n;
there are q−3

2 such different pairs. Consider the function

f(x) = x3 − n2x,

notice that f(−x) = −x3 + n2x = −f(x), thus f is an odd function. Thus
for each pair of x’s we have four possibilities

y = ±
√
±f(x),

however if f(x) is a square in Fq then −f(x) is not a square and vice versa
(Since −1 is not a square in Fq with q ≡ 3 mod4, for q−1

2 ≡ 1 mod2). Thus
for each pair {x,−x} we have exactly two solutions. Therefore there are q+1
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points in all.
Notice that the number of points does not depend on n.
Let q = 32r+1, r ≥ 1, then q ≡ 3 mod4. We have the following isomor-

phisms
En(F33=27) ∼= Z2 ⊕ Z2 ⊕ Z7,

En(F35=243) ∼= Z2 ⊕ Z2 ⊕ Z61,

En(F37=2187) ∼= Z2 ⊕ Z2 ⊕ Z547;

we see that there are not nontrivial points of order three, this agrees with
the fact that the x−coordinates of the points of order three can obtained
as in the Example 11, that is the x−coordinates are the solutions to the
polynomial

−3x4 + 6n2x2 + n4,

and since F32r+1 is of characteristic 3, the nonconstant terms of the polyno-
mial vanish, thus there are not nontrivial points of order 3 in the elliptic
curves En(F32r+1) with r ≥ 1.

F
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Chapter 3

Number of points in
hypersurfaces over finite fields

In this chapter we will investigate how to calculate the number of points
in certain hypersurfaces in finite fields.

Historically there has been many mathematicians devoted to compute
the number of solutions in certain equations defined over finite fields. Gauss,
Jacobi, Hasse, Davenport and Weil among them, and their contributions are
so remarkable that have been named after them.

Trough all this section we consider a field Fq of q elements, with q a
prime power, and its extensions Fqr/Fq of degree r. We denote F∗q the mul-
tiplicative group of Fq.

Consider the equation
xm = u,

for u ∈ Fq.
If u = 0 then it has only one solution, namely x = 0.
If u ∈ F∗q, since F∗q is a cyclic multiplicative group of order q − 1, then

x is a solution to xm = u if and only if u is a d = gcd(m, q − 1) power. No-
tice that if gcd(m, q−1) = 1 then the equation xm = u has only one solution.

A character is a group homomorphism from a groupG to the multiplica-
tive group of the complex numbers. A character is said to be multiplicative
or additive if the group law is multiplicative or additive respectively. We

55
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denote Ĝ the set of the characters defined in G.

For instance, consider the multiplicative group F∗q, every multiplicative
character χ maps to a subset of the q − 1 roots of the unity because F∗q
has finite order q − 1. We denote χ0 the trivial multiplicative character
which takes every element in the field to 1, we can expand our definition
and set χ0(0) = 1, while for every nontrivial character χ(0) = 0. Nontrivial
multiplicative characters are totally defined once whe chose the image of a
generator w of F∗q.

Let < w >= F∗q, we denote χα the multiplicative character such that

χα(w) = e2πiα,

where α is a rational number such that α(q − 1) is an integer, that is e2πiα

is a q − 1 root of the unity determined by α. This machinery motivates the
next lemma.

Lemma. The number of solutions Nm(u) = |{x ∈ Fq|xm = u}| equals∑
α
χα(u) where α·m is an integer, equivalently the sum over all the characters

for which χm = χ0.

Proof. If u = 0 then both sides equal 1. Now, if u is a m power there
are d = gcd(m, q − 1) solutions, then∑

α

χα(u) =
∑
α

χmα (x) = d = Nm(u),

since there are d characters χα such that χmα = χ0; while if u is not a m
power both sides equal zero.

�

3.1 Jacobi sums
We have considered equations of the form axm = u so far. Next, we

want to compute the number of solutions of equations involving several vari-
bles, we will see how Jacobi sums arise naturally in the way.
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Let’s first consider an easy example, let’s compute the number of solu-
tions of

xm + ym = 1.

From the above lemma we have that the number N of solutions is

N =
∑

u+v=1
Nm(u)Nm(v),

=
∑

u+v=1

(∑
α

χα(u)
)∑

β

χβ(v)
 with α ·m, β ·m ∈ Z,

=
∑
α,β

( ∑
u+v=1

χα(u)χβ(v)
)

with α ·m, β ·m ∈ Z. (3.1)

The sum between brackets motivates the following definition.

Definition. Let Fq be the field with q elements. For any α ∈ Qk such
that αi(q − 1) ∈ Z. The Jacobi sum attached to α is defined by

J(α) = J(α1, ..., αk) :=
∑

u1+...+uk=1
χα1(u1) · · ·χαk(uk). (3.2)

We also introduce the following sum

J0(α) :=
∑

u1+...+uk=0
χα1(u1) · · ·χαk(uk). (3.3)

Continuing with the equation xm + ym = 1, we express its number N
of Fq-points as follows

N =
∑
α,β

J(α, β) with α ·m, β ·m ∈ Z.

Now we shall prove some general properties of the Jacobi sums in the
next proposition.

Proposition 1. 1. If α = 0 ∈ Qk, then J(α) = J0(α) = qk;

2. If α = (α1, ..., αl, 0, ..., 0) ∈ Qk, αi 6= 0 for i = 1, ..., l, then J(α) =
J0(α) = 0;
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3. If α 6= 0 ∈ Qk, then
J0(α) = χα1+...+αk−1(−1)J(α1, ..., αk−1)

∑
u6=0

χα1+...+αk(u)

=

 (q − 1)χαk(−1)J(α1, ..., αk−1) if
k∑
i=1

αi ∈ Z,

0 otherwise.

Proof.
1. This follows immediatly because for b ∈ Fq the linear variety u1 + ...+
uk = b has qk−1 points.

2. We have ∑
u1+..+uk=b

χα1(u1) · · ·χαl(ul)χ0(ul+1) · · ·χ0(uk)

= qk−l−1 ∑
u1,...,ul∈Fq

χα1(u1) · · ·χαl(ul)

= qk−l−1
( ∑
u1∈Fq

χα1(1)
)
· · ·

( ∑
ul∈Fq

χαl(l)
)

;

notice that the first equality holds since the variety ∑ui = b has qk−1

points and we chose arbitrarily the points for which α = 0. Also notice
that the terms on the latter profuct is zero since the sum is taken over
all the values in Fq.

3. We have
J0(α1, ..., αk) =

∑
u1+...+uk=0

χα1(u1) · · ·χαk(uk)

=
∑
u6=0

(χαk(u))
 ∑
u1+...+uk−1=−u

χα1(u1) · · ·χαk−1(uk−1)


=
∑
u6=0

(χαk(u))
 ∑
v1+...+vk−1=1

χα1(−u · v1) · · ·χαk−1(−u · vk−1)


=
∑
u6=0

(χαk(u))
 ∑
v1+...+vk−1=1

χα1+...+αk−1(−u)χα1(v1) · · ·χαk−1(vk−1)


=
∑
u6=0

χα1+...+αk(u)χα1+...+αk−1(−1)J(α1, ..., αk−1)

= χα1+...+αk−1(−1)J(α1, ..., αk−1)
∑
u6=0

χα1+...+αk(u).
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�

3.2 Gauss sums
Now we investigate Gauss sums which are closely related to Jacobi

sums. Both of these sums allow us to continue our exploration of the num-
ber of solutions of equations in finite fields. For this we show some properties
involving both Gauss sums and Jacobi sums.

Let Fqr/Fq be a field extension of the finite field with q = pr elements,
with p prime.

Definition. We define the trace and the norm by

Tr : Fqr → Fq,

x 7→ x+ xq + ...+ xq
r−1 ;

Nm : Fqr → Fq,

x 7→ x · xq · · ·xqr−1 ;
respectively.

The trace is an onto Fq-linear map and the norm is an onto multiplica-
tive map.

Consider the following additive character given by

ψ : Fqr → C;

x 7→ e
2πi
q

Tr(x),

since Tr is onto, we obtain in this way a non trivial additive character.

Definition. Let χ ∈ F̂∗q and ψ the additive character defined above.
We define the Gauss sum of χ depending on t ∈ Fq by the relation

gt(χ) =
∑
x∈Fq

χ(x)ψ(tx).

We denote g1(χ) simply as g(χ).
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Lets denote χ0 the trivial character and the χ denote a nontrivial char-
acter; and χ̄ denotes the complex conjugate character of χ, whose value at x
is the complex conjugate of χ(x). We have the following proposition

Proposition 2. 1. g(χ0) = 0;

2. g(χ̄) = g(χ−1) = χ(−1)g(χ);

3. g(χ) · g(χ) = q;

4. Let α ∈ Qk. If α1, ..., αk and ∑αi /∈ Z, then

J(α1, ..., αk) = g(χα1) · · · g(χαk)
g(χα1 · · ·χαk)

,

and therefore

|J(α1, ..., αk)| = q
k−1

2 .

5. Let α ∈ Qk. If α1, ..., αk are nonzero and ∑αi ∈ Z, then

J(α1, ..., αk) = −g(χα1) · · · g(χαk)
q

= −χαk(−1)J(α1, ..., αk−1), (3.4)

and therefore

|J(α1, ..., αk)| = q
k−2

2 .

Proof.

1. g(χ0) = ∑
x∈Fq

ψ(x) = 0.

2. The first equality holds since |χ̄(x)| = 1, thus χ̄(x) = χ−1(x). The
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second runs as follows

χ(−1)
∑
x∈Fq

χ(x)ψ(x) = χ(−1)
∑
x∈Fq

χ(x)ψ(x)

= χ(−1)
∑
x∈Fq

χ−1(x)ψ−1(x)

=
∑
x∈Fq

χ(−1)χ(x−1)ψ(−x)

=
∑
x∈Fq

χ−1(−x)ψ(−x)

=
∑
−x∈Fq

χ(x)ψ(x)

= g(χ).

3. In the Gauss sums we will sum over the nonzero elements in Fq since
the terms containing 0 are 0 as well. Then we have

g(χ) · g(χ) =
∑
x∈F∗q

χ(x)ψ(x)
∑
y∈F∗q

χ(y)ψ(y)

=
∑

x,y∈F∗q

χ(xy−1)ψ(x− y),

now making x = xy, we have
=

∑
x,y∈F∗q

χ(x)ψ(y(x− 1))

=
∑
x∈F∗q

χ(x)
∑
y∈F∗q

ψ(y(x− 1))

= χ(1)
∑
y∈F∗q

ψ(0)−
∑
x 6=0,1

χ(x)

= q.

(3.5)



62 Chapter 3. Number of points in hypersurfaces over finite fields

4. First notice that

g(χα1) · · · g(χαk) =
 ∑
u1∈F∗q

χα1(u1)ψ(u1)
 · · ·

 ∑
uk∈F∗q

χαk(uk)ψ(uk)


=
∑
u

χα1(u1) · · ·χαk(uk)ψ(u1 + ...+ uk)

=
∑
v

 ∑
u1+...+uk=v

χα1(u1) · · ·χαk(uk)
ψ(v)

= J0(α1, ..., αk) +
∑
v 6=0

 ∑
u1+...+uk=v

χα1(u1) · · ·χαk(uk)
ψ(v)

= J0(α1, ..., αk) +
∑
v 6=0

 ∑
u′1+...+u′

k
=1
χα1(u′1v) · · ·χαk(u′kv)

ψ(v)

= J0(α1, ..., αk) + J(α1, ..., αk)
∑
v 6=0

χα1(v) · · ·χαk(v)ψ(v)

= J0(α1, ..., αk) + J(α1, ..., αk)g(χα1 · · ·χαk)
= J(α1, ..., αk)g(χα1 · · ·χαk).

In the fifth equality we make ui = u′iv for i = 1, ..., k, since v 6= 0.
We also have J0(α1, ..., αk) = 0 by property (3) of Proposition 1, since∑
αi /∈ Z. Finally the norm |J(α)| = q

k−1
2 follows from property (3) of

the current proposition.

5. From the past property we have

g(χα1) · · · g(χαk) = J0(α1, ..., αk)+J(α1, ..., αk)
∑
v 6=0

χα1(v) · · ·χαk(v)ψ(v),

notice that ∑
v 6=0

χα1(v) · · ·χαk(v)ψ(v) = −1,

because we are summing over all nonzero v ∈ Fq and χα1 · · ·χαk is the
trivial character. So we have

J(α1, ..., αk) = J0(α1, ..., αk)− g(χα1) · · · g(χαk),

from property (3) of Proposition 1 we have

J0(α) = (q − 1)χαk(−1)J(α1, ..., αk−1), (3.6)
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using properties (2) and (3) of the current proposition we deduce

χαk(−1) = g(χαk)g(χαk)
q

,

substituting this last equation in (3.6) we get

J0(α) = (q − 1)J(α1, ..., αk−1)g(χαk)g(χαk)
q

,

notice that since χα1 · · ·χαk = χ0 then χα1 · · ·χαk−1 = χαk , that is

J(α1, ..., αk) = −g(χα1) · · · g(χαk)
q

.

Finally the norm |J(α)| = q
k−2

2 follows from property (3) of the current
proposition.

�

3.3 Weil’s Theorem
In this subsection we state and reproduce the proof of a result due to

the french mathematician André Weil. The theorem gives a formula for the
number of points in certains hypersurfaces in finite fields, an estimate will
be given as well.

Theorem 18. Consider the equation

a1x
n1
1 + ...+ akx

nk
k = b, (3.7)

with ai, b ∈ Fq and ni|q − 1.
1. If b = 0, then the number N of Fq-points in (3.7) is given by

N = qk−1 +
∑
α

χα1(a−1
1 ) · · ·χαk(a−1

k )J0(α1, ..., αk),

with α ∈ Qk ∩ (0, 1)k and αi · ni ∈ Z for all i. If

M0 = |{α ∈ Qk ∩ (0, 1)k|αi · ni ∈ Z for all i; and
∑

αi ∈ Z}|

then
|N − qk−1| ≤M0(q − 1)q

k−2
2 .



64 Chapter 3. Number of points in hypersurfaces over finite fields

2. If b 6= 0, then the number N of Fq-points in (3.7) is given by
N = qk−1 +

∑
α

χα1 · · ·χαk(b)χα1(a−1
1 ) · · ·χαk(a−1

k )J(α1, ..., αk),

with α ∈ Qk ∩ (0, 1)k, αi · ni ∈ Z for all i. If
M = |{α ∈ Qk ∩ (0, 1)k|αi · ni ∈ Z for all i; and

∑
αi /∈ Z}|

then
|N − qk−1| ≤M0q

k−2
2 +Mq

k−1
2 .

Proof.
1. If b = 0, let N the number of solutions to (3.7), thus

N =
∑

a1u1+...+akuk=0
Nn1(u1) · · ·Nnk(uk)

=
∑

a1u1+...+akuk=0

(∑
α1

χα1(u1)
)
· · ·

(∑
αk

χαk(uk)
)

=
∑

a1u1+...+akuk=0
α

χα1(u1) · · ·χαk(uk)

= qk−1 +
∑

a1u1+...+akuk=0
α 6=0

χα1(u1) · · ·χαk(uk)

= qk−1 +
∑

u1+...+uk=0
α 6=0

χα1(a−1
1 ) · · ·χαk(a−1

k )χα1(u1) · · ·χαk(uk)

= qk−1 +
∑
α 6=0

χα1(a−1
1 ) · · ·χαk(a−1

k )J0(α1, ..., αk).

In the penultimate equation we replace ui by ui
ai
; by properties (2) and

(3) of Proposition 1 we may ask αi 6= 0 and ∑αi ∈ Z. This proves the
first part.
In the next development we use properties (3) and (5) of Proposition
1 and 2 respectively,

|N − qk−1| =

∣∣∣∣∣∣
∑
α 6=0

χα1(a−1
1 ) · · ·χαk(a−1

k )J0(α1, ..., αk)

∣∣∣∣∣∣
≤ M0 |J0(α1, ..., αk)|
= M0 |(q − 1)χαk(−1)J(α1, ..., αk−1)|
= M0(q − 1) |J(α1, ..., αk)|
= M0(q − 1)q

k−2
2 .
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2. Similarly, if b 6= 0 we get

N = qk−1 +
∑

a1u1+...+akuk=b
α 6=0

χα1(u1) · · ·χαk(uk),

we replace ui by vib
ai

and we get

N = qk−1 +
∑

v1+...+vk=1
α6=0

χα1 · · ·χαk(b)χα1(a−1
1 ) · · ·χαk(a−1

k )χα1(v1) · · ·χαk(vk)

= qk−1 +
∑
α 6=0

χα1 · · ·χαk(b)χα1(a−1
1 ) · · ·χαk(a−1

k )J(α1, ..., αk).

Now the inequality follows from the properties (4) and (5) of Proposi-
tion 2, we get

|N − qk−1| =

∣∣∣∣∣∣
∑
α 6=0

χα1 · · ·χαk(b)χα1(a−1
1 ) · · ·χαk(a−1

k )J(α1, ..., αk)

∣∣∣∣∣∣
≤

∑
α 6=0

∣∣∣χα1 · · ·χαk(b)χα1(a−1
1 ) · · ·χαk(a−1

k )J(α1, ..., αk)
∣∣∣

=
∑
α 6=0
|J(α1, ..., αk)|

= M0q
k−2

2 +Mq
k−1

2 .

This proves the theorem.

�

Now we compute the number of points in Fq of a particular equation.

Example 13. Let q = pr be a prime power and p - 2n, consider the
equation

x2
1 − x4

2 = 4n2; (3.8)
denote N the number of its Fq-points. Let w be a generator of F∗q.

First suppose that q ≡ 3 mod 4. Then we have

N =
∑

u1−u2=4n2

N2(u1)N4(u2),
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notice that gcd(2, q − 1) = gcd(4, q − 1) = 2, then

N =
∑

u1−u2=4n2

∑
i=0,1

χi/2(u1)
∑

j=0,1
χj/2(u2)


= q +

∑
u1−u2=4n2

χ1/2(u1)χ1/2(u2)

= q +
∑

v1+v2=1
χ1/2(4n2)χ1/2(v1)χ1/2(−1)χ1/2(4n2)χ1/2(v2),

(3.9)

where in the last equation we replaced u1 = 4n2v1 and u2 = −4n2v2. We get

N = q + χ1/2(−1)J(1/2, 1/2),

by property (5) of Proposition 2 we have that J(1/2, 1/2) = −χ1/2(−1), thus

N = q − 1.

Now if q ≡ 1 mod 4 by Theorem 18 we have

N = q +
∑

j=1,2,3
χ 1

2
(4n2)χ j

4
(4n2)χ 1

2
(1)χ j

4
(−1)J

(1
2 ,
j

4

)

= q +
∑

j=1,2,3
χ j

4
(−4n2)J

(1
2 ,
j

4

)

= q + χ 1
4
(−4n2)J

(1
2 ,

1
4

)
+ χ 2

4
(−4n2)J

(1
2 ,

2
4

)
+ χ 3

4
(−4n2)J

(1
2 ,

3
4

)
= q + χ 1

4
(−4n2)J

(1
2 ,

1
4

)
+ J

(1
2 ,

2
4

)
+ χ 3

4
(−4n2)J

(1
2 ,

3
4

)
,

notice that χ 2
4
(4n2) = χ 1

2
(4n2) = 1; because of χ 1

2
(w) = eπi = −1 we

compute that χ 1
2
(−1) = χ 1

2
(w q−1

2 ) = (−1) q−1
2 = 1 since q−1

2 is even; and
χ 3

4
= χ 2

4
χ 1

4
. By property (5) of Proposition 2 we have that J

(
1
2 ,

1
2

)
=

−χ 1
2
(−1) = −1. Therefore

N = q − 1 + χ 1
4
(−4n2)J

(1
2 ,

1
4

)
+ χ 1

4
(−4n2)J

(1
2 ,

3
4

)
,

= q − 1 + χ 1
4
(−4n2)

(
J
(1

2 ,
1
4

)
+ J

(1
2 ,

3
4

))
.
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If q ≡ 1 mod 8 choosing a generator w of F∗q such that χ1/4(w) = i we
have

χ1/4(−1) = χ1/4(w
q−1

2 ) = i4k = 1,

for some k ∈ Z.
Similarly, if q ≡ 5 mod 8 we have that χ1/4(−1) = −1.
By quadratic reciprocity we have

χ1/4(4) = χ1/2(2) =
{

1 if q ≡ 1 mod 8
−1 if q ≡ 5 mod 8.

Therefore χ1/4(−4n2) = χ1/2(n) and we have

N = q − 1 + χ1/2(n)(J(1/2, 1/4) + J(1/2, 3/4)),

finally replacing µ = µn,q = −χ1/2(n)J(1/2, 1/4) we have

N = q − 1− µ− µ.

In the next chapter we will pursue the investigations on this equations, espe-
cially on the nature of the variable µ. F

3.4 The Hasse-Davenport Relation
We have investigated the number of solutions of equations in a fixed

finite field so far, but we have not yet dealed with extensions of such a fixed
field, we do not have any information about the behaviour of the number of
points in such equations.

The next result is due to two mathematicians: Hasse and Davenport,
whose result is of considerable interest, enabling us to compare the number
of solutions of an equation in a given finite field and in all the extensions of
finite degree of that field. We will prove the theorem of Hasse and Davenport
and apply it to the equations we are considering.

Let χα be a multiplicative character of Fq, such that χα(w) = e2πiα for
a generator w of F∗q. Consider a finite extension of Fq, say Fqr , then there
exists a generator z of F∗qr such that Nm(z) = w. Then χα,r(z) = χα(Nm(z))
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defines a multiplicative character in Fqr , when the α is fixed we just write
χr. Similarly ψr(z) = ψ(Tr(z)) defines an additive character in Fqr . Let now
define the next gauss sum in Fqr

g(χr) =
∑
x∈Fqr

χr(x)ψr(x).

Theorem 19. Let χr be a multiplicative character of Fqr , then we
have

− g(χr) = (−g(χ))r. (3.10)

Proof. Let S ⊂ Fq[x] be the set of all monic polynomials over Fq, and let
S̃ ⊂ S be the set of all those irreducible polynomials (Subscrips will indicate
the degree of the polynomials). Fqr is the splitting field for the polynomial
xq

r − x thus
xq

r − x =
∏
a∈Fqr

(x− a),

furthermore
xq

r − x =
∏
f∈S̃

deg f |r

f, (3.11)

for if g(x) is any monic irreducible factor of F (x) = xq
r − x over Fq, all its

roots lie in Fqr and the extension Fq(a)/Fq generated by one of its roots must
have degreem = deg(g) withm|r. Conversely, let g(x) be a monic irreducible
polynomial over Fq with degree m that divides r. Then Fqr has a subfield
with qm elements, and this field is isomorphic to Fq(a), with a ∈ Fqr . Then
we have g(a) = F (a) = 0, and since g(a) is the minimal polynomial of a over
Fq, g(x) divides F (x). The roots of F (x) are all distinct, so no irreducible
factor can appear more than once.

Now consider a multiplicative character χ and an additive character ψ
of Fq. We define the map

λ : S → C,
f(x) = xd − c1x

d−1 + ...+ (−1)dcd 7→ χ(cd)ψ(c1); (3.12)

this map is multiplicative, since for

f(x) = xd − c1x
d−1 + ...+ (−1)dcd and g(x) = xd

′ − c′1xd
′−1 + ...+ (−1)d′c′d′
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we have

λ(fg) = xd+d′ − (c1 + c′1)xd+d′−1 + ...+ (−1)d+d′cdcd′

= χ(cdcd′)ψ(c1 + c′1)
= χ(cd)ψ(c1)χ(cd′)ψ(c′1)
= λ(f)λ(g).

We can express the Gauss sum of a character χ in terms of f ∈ S1 as
follows ∑

f∈S1

λ(f) =
∑
f∈S1

χ(c)ψ(c) =
∑
c∈Fq

χ(c)ψ(c) = g(χ). (3.13)

Next we prove some equalities that enable us to prove a similar assertion
about Gauss sums of a character χr in terms of irreducible polynomials.

Suppose that a ∈ Fqr is a root of f ∈ S̃d where d divides r. Then

Fq(a) ' Fq[x]/f(x) ' Fqd ,

that is a generates a field extension of degree d. Now if

f(x) = xd − c1x
d−1 + ...+ (−1)dcd

then Tr(a) = c1 and Nm(a) = cd. So we have

λ(f) = χ(Nm(a))ψ(Tr(a)),

where Tr and Nm denote the trace and the norm from Fqd to Fq respectively.
On the other hand we have that

Fqr ' F(qd)m ' Fqd/g(x),

with r = dm and g(x) ∈ Fqd [x] is of degree m, that is Fqr is an extension of
Fqd of degree m. Then if we consider the map

λ′ : S ′ → C;

where S ′ is the set of the monic polynomials over Fqr we have that

λ′(x− a) = χr(a)ψr(a)
= χ(Nmr,1(a))ψ(Trr,1(a))
= χ(Nmd,1 ◦ Nmr,d(a))ψ(Trd,1 ◦ Trr,d(a))
= χ(Nmd,1(am))ψ(Trd,1(ma))
= χ(Nmd,1(a)m)ψ(mTrd,1(a))
= χ(Nmd,1(a))mψ(Trd,1(a))m,
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here Nmi,j and Tri,j denote the norm and the trace from Fqi to Fqj for j|i;
therefore

λ(f)r/d = χr(a)ψr(a). (3.14)
A polynomial f ∈ S̃d with d|r has d differet roots in Fqr (each of them

satisfying (3.14)) and the roots of all those polynomials coincide with the
elements Fqr by (3.11), thus

g(χr) =
∑
d|r

∑
f∈S̃d

dλ(f)r/d. (3.15)

For an indeterminate T the power series identity∑
f∈S

λ(f)T deg f =
∏
f∈S̃

(1− λ(f)T deg f )−1, (3.16)

holds. For the right side we have∏
f∈S̃

(1− λ(f)T deg f )−1 =
∏
f∈S̃

∑
n≥0

(
λ(f)T deg f

)n
=

∏
f∈S̃

∑
n≥0

λ(f)nT n deg f

=
∏
f∈S̃

∑
n≥0

λ(fn)T deg fn

=
∑
f∈S

λ(f)T deg f ,

the last equation holds since every monic polynomial is the product of irre-
ducible monic polynomials.

We can simplify the expression on the left of the equation (3.16) as
follows∑
f∈S

λ(f)T deg f = 1 +
∑
f∈S1

λ(f)T +
∑
f∈S2

λ(f)T 2 +
∑
f∈S3

λ(f)T 3 + ...

= 1 + g(χ)T +
∑
n≥2

qn−2

 ∑
cn∈Fq

χ(cn)
 ∑

c1∈Fq
χ(c1)

T n


= 1 + g(χ)T.

Then the equation (3.16) becomes

1 + g(χ)T =
∏
f∈S̃

(1− λ(f)T deg f )−1. (3.17)
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Taking the logarithmic derivative in both sides of (3.17) and multiplying by
T we have

g(χ)T
1 + g(χ)T =

∑
f∈S̃

deg(f)λ(f)T deg(f)

1− λ(f)T deg(f) ,

expanding the geometric series in both sides of the latter equation we get∑
n≥0

(−1)ng(χ)n+1T n+1 =
∑
f∈S̃

∑
n′≥0

deg(f)λ(f)n′+1T (n′+1) deg(f),

then we equate the coefficients of T r

(−1)r−1g(χ)r =
∑
d|r

∑
f∈S̃d

dλ(f)r/d,

finally substituting the right side as in equation (3.15) and multiplying by
−1 we have the desired result

(−g(χ))r = −g(χr).

�

3.5 Remarks on Gauss sums
Until now we have considered characters over finite fields. Although we

can expand our definition to some rings. We will see now how to do this and
prove some properties about these characters, especially those which concern
their Gauss sums.

Let R be the ring of integers in a number field K, and let I be a nonzero
ideal of R. Then R/I is a finite ring.

Let
ψ : R/I → C∗

be an additive character which is nontrivial on any additive subgroup of R/I
of the form J/I for any strictly larger ideal J ⊃ I, including the improper
ideal R, which will be the only such J if I is a prime ideal.

Define the norm Nm(I) = |R/I| and let

χ : (R/I)∗ → C∗
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be any multiplicative character, with χ(x) = 0 for x ∈ R/I not prime to I.
Finally define the Gauss sum of a multiplicative character χ of R/I as

g(χ) = g(χ, ψ) =
∑
x∈R/I

χ(x)ψ(x).

We say that a multiplicative character χ is primitive modulo I if for
any strictly larger ideal J ⊃ I, χ is nontrivial on the subgroup of (R/I)∗
consisting of elements congruent to 1 modulo J .

Proposition 3. Let R and I be as before, for any a ∈ (R/I)∗ we
have ∑

x∈R/I
χ(x)ψ(ax) = χ(a)g(χ, ψ).

Moreover if χ is primitive then the equation holds for any a ∈ R/I.

Proof. First let x = x/a, then∑
x∈R/I

χ(x)ψ(ax) =
∑
x∈R/I

χ(x)χ(a)ψ(x)

= χ(a)g(χ, ψ).

For the second part let a ∈ R/I and let χ be primitive. Denote J the ideal
of elements x ∈ R such that ax ∈ I.

Suppose that a is not prime with I, then the right side of the equality
vanishes since χ(a) = 0.

For instance if a ∈ I then J = R and ψ(a) = 1, we have∑
x∈R/I

χ(x)ψ(ax) =
∑
x∈R/I

χ(x) = 0,

therefore both sides equal zero.
Since χ(x) = 0 if x is not prime to I then the left side becomes∑

x∈R/I
χ(x)ψ(ax) =

∑
x∈(R/I)∗

χ(x)ψ(ax),

now we can decompose the right side of the later equation as follows∑
x∈(R/I)∗

χ(x)ψ(ax) = ψ(a)
∑

x∈(R/I)∗
x≡1 mod J

χ(x) + ψ(−a)
∑

x∈(R/I)∗
x≡−1 mod J

χ(x)

=
(
ψ(a) + ψ(a)χ(−1)

) ∑
x∈(R/I)∗

x≡1 mod J

χ(x);
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where the sum

∑
x∈(R/I)∗

x≡1 mod J

χ(x)

is taken over a multiplicative subgroup then it must be zero, this proves our
assertion.

�

In the same fashion we did for Gauss sums of multiplicative characters
of a finite field, we can calculate the norm of a Gauss sum of a primitive
character of R/I. We resume this in the next proposition.

Proposition 4. For any χ primitive

g(χ, ψ)g(χ, ψ) = χ(−1)Nm(I),

and

g(χ, ψ)g(χ, ψ) = Nm(I).

Proof. First we have

g(χ, ψ) = g(χ, ψ)
=

∑
x∈R/I

χ(x)ψ(−x)

= χ(−1)g(χ, ψ).

Then it suffices to prove one of the equalities. We shall prove the second one.
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We have that

|g(χ, ψ)|2 = g(χ, ψ)g(χ, ψ)
=

∑
x∈R/I

χ(x)ψ(x)
∑
y∈R/I

χ(y)ψ(y)

=
∑

x,y∈R/I
χ(x)χ(y)ψ(x− y)

=
∑

x,y∈R/I
χ(x)χ(xy)ψ(x− (xy))

=
∑

x,y∈R/I
χ(y)ψ(x(1− y))

=
∑

x,y 6=1∈R/I
χ(y)ψ(x(1− y)) +

∑
x∈R/I

χ(1)

=
∑

x,y 6=1∈R/I
χ(y)ψ(x(1− y)) + Nm(I).

(3.18)

Finally notice that the following sum vanishes

∑
x,y 6=1∈R/I

χ(y)ψ(x(1− y)) =
∑

y 6=1∈R/I
χ(y)

 ∑
x∈R/I

ψ(x(1− y))
 ,

since ψ is not trivial and therefore ∑
x∈R/I

ψ(x(1 − y)) = 0. This proves our

proposition.
�



Chapter 4

The Hasse-Weil L-Function

In this chapter we study two number theoretic functions which encode
information about varieties via their reduction to finite fields.

Zeta functions are defined as a sort of generating function for the num-
ber of points in an algebraic variety over the finite extensions of a finite field
Fq. The Hasse-Weil L-function is defined as the inverse product of all the
zeta functions over the extensions of the reduction of the variety modulo p,
with p prime.

Such functions have given rise to many conjectures, some of them have
been already proved and some of them are still waiting for a proof.

For instance, zeta functions were studied by André Weil, he stated his
famous Weil Conjectures which would be proved some years later.

Nevertheless, the main conjecture in the frame of this work is the one
made by Birch and Swinnerton-Dyer which relates the number of points in
an elliptic curve defined over the rationals and the behavior of the L-function
of the elliptic curve at one.

We compute the zeta function of the elliptic curve En : y2 = x3 − n2x
for all primes p in a long example and we enunciate a theorem due to Coates
and Wiles which could be seen as a weak proof of one side of the Birch and
Swinnerton-Dyer conjecture.

75
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4.1 Zeta Functions
A zeta function is a function whose logaritmic derivative is a generating

function for the number of points of an algebraic variety V over the extensions
of a finite field Fq. In other words, given an algebraic variety V and a prime
power q, we define a local zeta function with parameter T as

Z(V (Fq);T ) = exp
( ∞∑
r=1

Nr
T r

r

)
, (4.1)

where Nr is the number of points of V (Fqr).

Now we prove a couple of lemmas which will be useful to investigate
zeta functions.

Lemma. Suppose that Nr = βr1 + ...+ βrt −αr1− ...−αrs for a fixed set
α1, ..., αs, β1, ..., βt, then

Z(T ) = (1− α1T ) · · · (1− αsT )
(1− β1T ) · · · (1− βtT ) .

Proof.

Z(T ) = exp
( ∞∑
r=1

(βr1 + ...+ βrt − αr1 − ...− αrs)
T r

r

)

= exp
( ∞∑
r=1

(β1T )r
r

+ ...+ (βtT )r
r
− (α1T )r

r
− ...− (αsT )r

r

)
,

the Taylor development of log(1− x) is

log(1− x) = −x− x2

2 −
x3

3 − ...;

then substituting we have

Z(T ) = exp (− log(1− β1T )− ...− log(1− βtT ) + log(1− α1T ) + ...+ log(1− αsT )) ,

= (1− α1T ) · · · (1− αsT )
(1− β1T ) · · · (1− βtT ) .

�
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Lemma. Suppose that Nr < cAr for c and A constants, then the power
series Z(T ) converges in the open disc of radius 1/A in the complex plane.

Proof. ∣∣∣∣∣
∞∑
r=1

Nr
T r

r

∣∣∣∣∣ ≤
∞∑
r=1

Nr
|T |r

r
< c

∞∑
r=1

(A|T |)r
r

,

where the last sum converges to −c log(1− A|T |) if |T | < 1/A.
�

In the next example we compute the zeta function for them−dimensional
affine and projective space over the extensions of Fq.

Example 14. Let Am
K denote the m−dimensional affine space over

the field K and PmK the projective space over the field K. We have

Z(Am
Fq(Fq);T ) = exp

( ∞∑
r=1

(qr)m T r

r

)

= exp
( ∞∑
r=1

(qmT )r
r

)

= 1
(1− qmT ) .

Similarly for the projective space we get

Z(PmFq(Fq);T ) = exp
( ∞∑
r=1

(qr)m+1 − 1
q − 1

T r

r

)

= exp
( ∞∑
r=1

(
(qr)m + (qr)m−1 + ...+ (qr)2 + 1

) T r
r

)

= exp
( ∞∑
r=1

(
(qm)r + (qm−1)r + ...+ (q2)r + 1

) T r
r

)

= 1
(1− T )(1− qT ) · · · (1− qmT ) .

F

Zeta functions gave rise to Weil Conjectures. They say that zeta func-
tions for an algebraic variety over finite field extensions of a finite field should
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be rational functions, should satisfy a form of functional equation, and should
have their zeros in restricted places. These conjectures were proved by Dwork
(1960), Grothendieck (1965) and Deligne (1974). Next we state them in the
case of smooth projective curves.

Theorem 20. Let V be a smooth projective curve, then

1. The zeta function of V over the finite extensions of Fq have the form

Z(V (Fq);T ) = P (T )
(1− T )(1− qT ) ,

where P (T ) ∈ Z[T ] have constant term 1, and if V is the reduction
modulo p of Ṽ (Q) then deg(P ) = 2g, where g is the genus of Ṽ (C).

2. If α is a reciprocal root of P (T ) so is q
α
. Thus if deg(P ) = 2g then

P (T ) = (1− α1T )
(

1− q

α1
T
)
· · · (1− αgT )

(
1− q

αg
T

)
;

moreover all reciprocal roots of P have norm √q.

In particular, the zeta function of any elliptic curve E defined over Fq has
the form

Z(E(Fq);T ) = 1− 2aET + qT 2

(1− T )(1− qT ) ,

where the integer aE depends on E.

In the next example, we compute the zeta function of the elliptic curve
En ⊂ P2

Fp , for every p prime.

Example 15. Let En : y2 = x3 − n2x with n a square free integer,
and let Fp the finite field with p elements.

(i) First suppose that p|2n. Then the curve reduction becomes simply

y2 = x3.

If 2 and 3 (the powers of the equation) divide pr − 1 we use Theorem
18 and get

N = pr +
∑
i=1,2

χ1/2(1)χi/3(−1)J0(1/2, i/3),
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but 1
2 + i

3 /∈ Z for i = 1, 2. Then by property 3 of the Proposition 1 we
have J0(1/2, i/3) = 0 for i = 1, 2. Therefore N = pr.

Now if 2 or 3 do not divide pr − 1, there are pr points again, corre-
sponding to the solutions of the linear variety u− v = 0.

Once counted the affine points, it remains to count how many points
there are in the whole projective space, but the projective completi-
tion of En when p|2n is zy2 = x3, thus there is only one missing point
(0, 1, 0).

Then if p divides 2n, we conclude that

Z(E(Fp);T ) = exp
( ∞∑
r=1

(1 + pr)T
r

r

)

= 1
(1− T )(1− pT ) . (4.2)

(ii) Suppose that p - 2n. We construct a one-to-one correspondence be-
tween the elliptic curves En and Ẽn : u2 = v4 +4n2, the correspondence
is

En → Ẽn,

(x, y) 7→ (2x− y2

x2 ,
y

x
);

and
Ẽn → En,

(u, v) 7→ (1
2(u+ v2), 1

2v(u+ v2));

the correspondence maps affine nonzero points in En to affine points in
Ẽn.

Then the points of Ẽn are the points in En minus 2, i.e. the point at
infinity (0, 1, 0) and (0, 0).

The advantage of computing the points of Ẽn instead of En, is that
the equation Ẽn is in the form of equation (3.7) and we can apply the
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Theorem 18.

We have already done this in Example 13 for prime powers q congruent
to 1 or 3 modulo 4, moreover for q ≡ 3 mod 4 we have done it twice
(see Example 12).

Therefore we have two cases, p ≡ 1 mod 4 or p ≡ 3 mod 4.

Before computing the number of points for each kind of prime, we prove
the next proposition.

Proposition 5. Let q ≡ 1 mod 4. Then

1 + J(1/2, 1/4) ≡ 0 mod 2 + 2i,

in the ring of the Gaussian integers Z[i].

Proof. First notice that

J(1/2, 1/4) = χ1/2(−1)J(1/4, 1/4),

by properties 2, 3 and 4 of Proposition 2. We rewrite the Jacobi sum
in the right side as follows

J(1/4, 1/4) =
∑

u+v=1
χ1/4(u)χ1/4(v)

=
∑
u6=0,1

χ1/4(u)χ1/4(1− u)

= χ1/4

(
p+ 1

2

)
χ1/4

(
p+ 1

2

)
+

∑
u6=1,0, p+1

2

χ1/4(u)χ1/4(1− u)

= χ2
1/4

(
p+ 1

2

)
+ 2

∑
{u,1−u}
u6=0, p+1

2

χ1/4(u)χ1/4(1− u).

We have χ1/4(x) ≡ 1 mod (1 + i) since χ1/4(x) is a power of i, then
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2χ1/4(u)χ1/4(1− u) ≡ 2 mod (2 + 2i), which implies that

J(1/4, 1/4) = χ2
1/4

(
p+ 1

2

)
+ 2

∑
{u,1−u}
u6=0, p+1

2

χ1/4(u)χ1/4(1− u)

≡ χ2
1/4

(
p+ 1

2

)
+ q − 3

≡ 2 + χ1/4(4) mod (2 + 2i),

since q−3 ≡ ±2 mod (4) and 2+2i|4. Having this on mind, we deduce
that

1 + J(1/2, 1/4) = 1 + χ1/4(−1)J(1/4, 1/4)
≡ 1 + χ1/4(−1)(2 + χ1/4(4))
≡ 1 + 2χ1/4(−1) + χ1/4(−4)
= 2 + 2χ1/4(−1) mod (2 + 2i),

where χ1/4(−4) = 1 by quadratic reciprocity. Then the last equation
2(1+χ1/4(−1)) is either 0 or 4, both being multiples of 2+2i. Therefore
1 + J(1/2, 1/4) ≡ 0 mod (2 + 2i).

�

1. Suppose p ≡ 1 mod 4. Then pr ≡ 1 mod 4 for every r ≥ 1.

By Example 13, we have that |Ẽn(Fp)| = p− 1−µn,p−µn,p where
µn,p = µn = −χ1/2(n)J(1/2, 1/4). Then

N1 = |En(Fp)| = p+ 1− µn,p − µn,p.

Using a multiplicative character χα,r = χα◦Nm of Fpr we compute
Nr for r ≥ 2, we get

Nr = |En(Fpr)| = pr + 1− µn,pr − µn,pr ,

where
µn,pr = −χ1/2,r(n)g(χ1/2,r)g(χ1/4,r)

g(χ3/4,r)
,
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notice that χ1/2,r(n) = χ1/2(Nm(n)) = χr1/2(n) and by Theorem
19 we have that

µn,pr = (−1)rχr1/2(n)g(χ1/2)rg(χ1/4)r
g(χ3/4)r

= µrn,p.

Therefore

Nr = |En(Fpr)| = pr + 1− µrn,p − µrn,p;

finally from Lemma 4.1 we have that the zeta function when p ≡ 1
mod 4 is

Z(En(Fp);T ) = (1− µnT )(1− µnT )
(1− T )(1− pT ) . (4.3)

Now we determine the nature of the gaussian integer µ = a +
ib. Since Jacobi sums can be written in terms of gauss sums by
property 4 of Proposition 2, we have that |µ|2 = a2 + b2 = p, this
yields eight possibilities to µ, i.e. ±a± ib and ±b± ia. From the
Proposition 5 we have that

1+J(1/2, 1/4) ≡ 0 mod (2+2i)⇔ 1 ≡ −J(1/2, 1/4) mod (2+2i)

⇔ χ1/2(n) ≡ −χ1/2(n)J(1/2, 1/4) mod (2 + 2i),
where µn = −χ1/2(n)J(1/2, 1/4), taking in count that χ1/2(n) is
simply the Dirichlet character

(
n
p

)
, we conclude that µ is a gaus-

sian integer of norm √p congruent to
(
n
p

)
modulo 2 + 2i.

2. Suppose p ≡ 3 mod 4. In this case we have p2r+2 ≡ 1 mod 4
and p2r+1 ≡ 3 mod 4 for r ≥ 0.

In Example 12 we have seen that

N2r+1 = p2r+1 + 1,

for r ≥ 0.
As seen in the Example 13, explicitly for Fp2 we have

N2 = |En(Fp2)| = |Ẽn(Fp2)|+ 2 = p2 + 1− µn,p2 − µn,p2 ,



4.2. The Hasse-Weil L-function 83

we can see that χ1/2(n) = 1 since n ∈ Fp and any polynomial
x2 − a ∈ Fp[x] has a root in Fp2 . µ is a gaussian integer of norm
p, there are four possibilities ±p or ±ip, but by Proposition 5 we
have

1 ≡ µ mod (2 + 2i)⇔ 1 + ikp ≡ 0 mod (2 + 2i),

for some k satisfying 1 ≤ k ≤ 4. It is easy to check that k can not
be 1 or 3, then it remains to verify 2 and 4, but p ≡ 3 mod (4),
this implies that k = 4. Therefore µ = −p.

Finally we apply the Theorem 19 to

N2r+2 = |En(Fp2r+2)| = p2r+2 + 1− µn,p2r+2 − µn,p2r+2 ,

for r ≥ 1. We get

N2r+2 =
(
p2
)r+1

+ 1− µn,(p2)r+1 − µn,(p2)r+1

=
(
p2
)r+1

+ 1− µr+1
n,p2 − µr+1

n,p2

= p2r+2 + 1− (−p)r+1 − (−p)r+1.

We have for any r ≥ 1

Nr = pr + 1− (i√p)r − (−i√p)r.

Finally from Lemma 4.1 we have that the zeta function when p ≡ 3
mod 4 is

Z(En(Fp);T ) =
(1− i√pT )(1 + i

√
pT )

(1− T )(1− pT ) . (4.4)

F

4.2 The Hasse-Weil L-function
Let E be an elliptic curve, we will define a function which incorporates

all the numbers of solutions of E over every finite extension Fpr for almost1

1The word almost comes from the fact that the reduction modulo p of a curve could
let to a singular curve.
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every prime p.
The Theorem 20 establishes that the zeta function of an elliptic curve

over Fp, with p a good2 prime, has the form

Z(E(Fp);T ) = 1− 2aE,pT + pT 2

(1− T )(1− pT ) ,

where the integer aE,p depends on E and p. Now, if we replace T = p−s

where s is a complex variable, we have

Z(E(Fp); p−s) = 1− 2aE,pp−s + p1−2s

(1− p−s)(1− p1−s) .

We define the Hasse-Weil L-function L(E, s) as

L(E, s) = ζ(s)ζ(1− s)∏
p prime

Z(E(Fp); p−s)
, (4.5)

where
ζ(s) =

∞∑
n=1

1
ns

=
∏

p prime

1
1− p−s

is the Riemann ζ-function. If

(1− p−s)(1− p1−s)Z(E(Fp); p−s) = 1

when the reduction modulo p is singular, we can simplify the function (4.5)
obtaining

L(E, s) =
∏

p prime

1
1− 2aE,pp−s + p1−2s . (4.6)

For every elliptic curve E the meromorphic function L(E, s) is well
defined on the right half plane Re(s) > 3

2 , in some cases as we will see in the
next chapter, it can be extended to the whole complex plane.

The value at s = 1 (even when it does not make sense to speak about
it) is called the critical value, since the L functions of some curves satisfy a
functional equation relating L(E, s) to L(E, 2−s), i.e. the point s = 1 is the
center of the functional equation.

Moreover L functions gave rise to a famous conjecture called the Birch
and Swinnerton-Dyer Conjecture (usually denoted BSD Conjecture) which
shows the importance of the critical value.

2We suppose that E(Fp) is a nonsingular projective curve.
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Conjecture 1. Let E be an elliptic curve defined over Q.

The order of the zero of L(E, s) at s = 1 equals the rank of E(Q).

A complex elliptic curve E is said to have complex multiplication if
there is an automorphism of its lattice given by multiplication by some com-
plex numbers others than integers.

It turns out that curves with complex multiplication behave well be-
cause their L functions can be extended to the whole complex plane and
Coates and Wiles were able to make an advance in proving the BSD conjec-
ture.

Theorem 21. Let E be an elliptic curve defined over Q having com-
plex multiplication. If E has infinitely many Q-points, then L(E, 1) = 0.

The scope of the proof goes beyond our investigation for the moment,
since it is a rather difficult result to prove.
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Chapter 5

Application

In this chapter we apply the tools studied trough all this work towards
a solution to the ancient problem of the Congruent Number.

Some of the results were already showed as examples mainly through
chapters 2, 3 and 4.

This is a very nice classical example, which illustrates the power of
some of the most sophisticated tools developed in modern mathematics.

We start this chapter giving a couple of characterizations of the Con-
gruent Number Problem which lead us to an elliptic curve. According to
Mordell, the elliptic curve seen as a group over the rationals can be decom-
posed in its free part and its torsion part (see Theorem 16). It turns out
that a Q-point of infinite order on such a curve implies the existence of a
congruent number. In fact, we show that the torsion subgroup of the curve
consists of the points of order 2 only.

Therefore our main task will be to compute wether the curve has free
part or not. For this we consider the reduction of the curve modulo every
prime p and then count the number of points in the reductions and over all
their finite extensions, this is made using mainly Weil’s Theorem (18) and
the Hasse-Davenport Relation (19).

Then we use this information and construct the zeta functions for the
elliptic curve over the finite extensions of a finite field. We will give two
equivalent forms of the zeta function, one considering a prime p in Z and
the other one considered as a product of the prime ideals P in the ring Z[i]
which divide the ideal generated by p, i.e. (p).

87
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Finally we construct the Hasse-Weil L-function for this curve, we show
some of its properties and we also give two equivalent forms to express it.

We state the so called weak Birch Swinnerton-Dyer conjecture and re-
late it to the Congruent Number Problem.

5.1 The Congruent Number Problem
Consider the next problem:

Given a fixed natural number n determine wether or not n is the area of
some right triangle all of whose sides are rational numbers.

If there exists such a triangle we call n a congruent number. In other words,
n is a congruent number if the two equations

X2 + Y 2 = Z2

XY = 2n,

have a simultaneous solution X, Y, Z ∈ Q.

For example, 6 and 30 are congruent numbers since they are the areas
of right triangles generated by the Pythagorean triples (3, 4, 5) and (5, 12, 13)
respectively. Every Pythagorean triple gives rise to a congruent number. All
the Pythagorean triples (X,Y,Z) can be generated by the relations

X = a2 − b2, Y = 2ab, Z = a2 + b2, with a > b ∈ N,

and therefore congruent numbers coming from Pythagorean triples are of the
form

(a2 − b2)ab. (5.1)

This gives us an idea of which kind of congruent numbers could come
from right triangles generated by Pythagorean triples. For instance, at a first
glance we do not know if a prime p could be a congruent number using (5.1)
even if there exists a simple algorithm using Pythagorean triples that will
eventually list all congruent numbers (of course not in increasing order).

It has been proved by Fermat that 1 is not a congruent number, neither
2, 3 and 4, but 5, 6, 7 are. 6 is the smallest congruent number coming from a
Pythagorean triple, while 5 is the smallest congruent number since the right
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triangle with sides (3
2 ,

20
3 ,

41
6 ) has area 5; Euler was the first to show that 7 is

a congruent number.

Our first step on trying to give a criterion is to reduce the set of search.
Suppose that n is a congruent number for (X, Y, Z) ∈ Q3, then k2n is a
congruent number for (kX, kY, kZ) ∈ Q3 and k ∈ Z. Therefore, from now
on when speaking of congruent numbers, we shall always assume that the
number is a square free positive integer.

We derive an alternate condition for n to be a congruent number. If
(X, Y, Z) ∈ Q3 is a triple corresponding to a right triangle with hypotenuse
Z, we fix an order of such triples requiring that X < Y < Z. The next
proposition is due to the Arab scholars of the tenth century.

Proposition 6. The maps

(X, Y, Z) →
((

X − Y
2

)2
,
(
Z

2

)2
,
(
X + Y

2

)2)
(5.2)

(x− n, x, x+ n) →
(√

x+ n−
√
x− n,

√
x+ n+

√
x− n, 2

√
x
)

give rise to a one-to-one correspondence between rational triples of solutions
(X, Y, Z) to (5.1) and triples of rational numbers (x−n, x, x+n) all of their
entries being the squares of rational numbers.

Thus, n is a congruent number if and only if there exists x such that
x, x− n and x+ n are squares of rational numbers.

Proof. Let n be a natural number. First suppose that (X, Y, Z) is a
rational triple which solves

X2 + Y 2 = Z2

XY = 2n,
then ±2XY = ±4n, if we complete the quadratic binomials we have(

X ± Y
2

)2
=
(
Z

2

)2
± n,

letting x =
(
Z
2

)2
we have that x, x − n and x + n are squares of rational

numbers.
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Now suppose that x, x− n and x + n are squares of rational numbers
and let

X =
√
x+ n−

√
x− n, Y =

√
x+ n+

√
x− n and Z = 2

√
x,

we have X2 + Y 2 = Z2 and XY = 2n.
Finally, let x and n be fixed, then Z is fixed as well since Z = 2

√
x.

The equations
X2 + Y 2 = 4x2 and XY = 2n,

are satisfied by the points (±X,±Y ) and (±Y,±X), thus the triple (X, Y, Z)
is the same in the four cases.

�

It is time to put our problem in the language we developed through all
this work, that is, we will find another characterization of congruent numbers
in terms of an elliptic curve.

The system of equations (5.1) is equivalent to the system of the com-
pleted squares (

X ± Y
2

)2
=
(
Z

2

)2
± n,

multiplying both equations we get(
X2 − Y 2

4

)2

=
(
Z

2

)4
− n2,

if we replace
(
Z
2

)
by u and

(
X2−Y 2

4

)
by v we get

v2 = u4 − n2,

multiplying both sides by u2, we get

(uv)2 = u6 − n2u2,

finally we make x = u2 and y = uv

En : y2 = x3 − n2x. (5.3)

That is, given a right triangle with rational sides X, Y, Z and area n we ob-
tain a point (x, y) having rational coordinates and lying on (5.3).
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The next question to solve is wether a point (x, y) with rational coordi-
nates which satisty (5.3) come from such a triangle. We answer this question
with the following result.

Proposition 7. Let (x, y) be a point with rational coordinates on the
curve (5.3). If x is the square of a rational number and its denominator is
even. Then there exists a right triangle with rational sides and area n.

Proof. Let x ∈ (Q+)2 and u = r
t
∈ Q+ with gcd(r, t) = 1 and r, t ∈ Z,

such that x = u2 = r2

t2
. t is an even integer since t2 is even by hyphotesis.

Now let y = uv then v2 = y2

u2 = x3−n2x
x

= x2 − n2, that is

x2 = v2 + n2.

From the latter equation we deduce that t4v2 ∈ Z since n ∈ Z. Thus

t4x2 = t4v2 + t4n2,

which implies that (t2v, t2n, t2x) is a primitive Pythagorean triple, for we have
that t2v and t2x are both odd integers and t2n is an even integer. Therefore,
there exist integers a and b such that

t2v = a2 − b2, t2n = 2ab, and t2x = a2 + b2.

We obtain that n = 2ab
t2
, making X = 2a

t
and Y = 2b

t
we get

X2 + Y 2 = 4a
2 + b2

t2
= 4x = 4u2,

so Z = 2u. Then the right triangle with sides

X = 2a
t
, Y = 2b

t
and Z = 2u,

has area n.
The image of the triangle under the correspondence in the Proposition

6 is x =
(
Z
2

)2
= u2.

�

The Chapter 2 starts with the definition of an elliptic curve. According
to Example 9 the cubic equation En (5.3) defines an elliptic curve over any
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field K of characteristic p as long as p - 2n. Then it make sens to talk about
the addition of its points. It turns out that another chacarterization of the
congruent numbers is obtained by means of the elliptic curve defined by En.

Consider the points P = (x, y) not of order 2 with x and y rational, then
the x−coordinate of the point 2P is a square in Q with even denominator,
thus it gives rise to a congruent number n by Proposition 7.

For let P = (x, y) be a point not of order 2 with rational coordinates
on the curve En. By Theorem 14 the x−coordinate of 2P is given by(

x2 + n2

2y

)2

,

clearly it belongs to (Q+)2.
It remains to prove that the denominator of this x−coordinate is even.

For this we define for every nonzero rational number r the function

Ord2 : Q∗ → Z,

r 7→ k;
where k is such that r = 2ks with s ∈ Q having both odd numerator and
denominator, i.e. k is the exponent of the greatest power of 2 that factors r.

It follows that Ord2(r1 ± r2) = min{Ord2(r1),Ord2(r2)}, Ord2(r1r2) =
Ord2(r1) + Ord2(r2) and that Ord2(r1/r2) = Ord2(r1)−Ord2(r2).

Then we have

Ord2

(x2 + n2

2y

)2
 = 2Ord2(x2 + n2)−Ord2(4y2)

= 2 min{Ord2(x2),Ord2(n2)} − 2−Ord2(y2)
= min{Ord2(x2),Ord2(n2)} − 2−Ord2(x)
= 2 min{Ord2(x),Ord2(n)} − 2−Ord2(x),

notice that
Ord2(n) =

{
0 if n is odd
1 if n is even,

since n is square free. Consider the following three cases
1. Suppose Ord2(x) = Ord2(n), then

Ord2

(x2 + n2

2y

)2
 = Ord2(x)− 2 < 0.
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2. Suppose Ord2(x) > Ord2(n), then

Ord2

(x2 + n2

2y

)2
 = 2Ord2(n)− 2−Ord2(x) < 2Ord2(n)− 3 < 0.

3. Finally suppose Ord2(x) < Ord2(n), then

Ord2

(x2 + n2

2y

)2
 = Ord2(x)− 2 < Ord2(n)− 2 < 0.

This proves our assertion about the x−coordinates of the rational points not
of order 2 in En.

According to the Theorem 16 of Chapter 2, the Q−points of our special
curve En form a finitely generated abelian group: En(Q) ' En(Q)tors ⊕ Zr
where r ≥ 0. It turns out that

En(Q)tors = {(0, 0), (±n, 0), 0∞},

where 0∞ is the point at infinity (which acts as zero in the addition of points
in the curve). We prove this in the next proposition.

Proposition 8. |En(Q)tors| = 4.

Proof. Let P1 = (x, y, z) ∈ En(Q) ⊂ P2
Q, without lose of generality we

may assume that x, y, z are integeres with no common factor.
Consider the reduction map

ϕ : En(Q) → En(Fp);

P1 = (x, y, z) ∈ P2
Q 7→ P̄1 = (x̄, ȳ, z̄),

where the bar denotes reduction modulo p.
For two Q-points P1 and P2 in En we have

ϕ(P1 + P2) = ϕ(P1) + ϕ(P2),

since algebraically the reduction modulo p of the addition formula in Theorem
14 concides with the addition of the Fp-points defined by the same formula.

The map ϕ is thus a group homomorphism. We want to prove that it
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is injective for most p.
Let P1 and P2 be considered as vectors in R3, then ϕ(P1) = ϕ(P2) if

and only if ϕ(P1 × P2) = 0, i.e. the reduction modulo p of its cross product
is zero.

First suppose that ϕ(P1) = ϕ(P2), with out loss of generality suppose
that p - x1, automatically p - x2, then

ϕ(P1) = x̄2P̄1 = x̄1P̄2 = ϕ(P2),

where the equality in the middle can be written as follows

x2x1 − x1x2 ≡ 0 mod p

x2y1 − x1y2 ≡ 0 mod p

x2z1 − x1z2 ≡ 0 mod p,

that is p|x2z1−x1z2 and p|x1y2−x2y1 it remains to prove that p|y1z2− y2z1.
If p divides both y1 and z1 it is over. With out loss of generality suppose

that p - y1, then p - y2, then

ϕ(P1) = ȳ2P̄1 = ȳ1P̄2 = ϕ(P2),

and in the same fashion as before we write

y2x1 − y1x2 ≡ 0 mod p

y2y1 − y1y2 ≡ 0 mod p

y2z1 − y1z2 ≡ 0 mod p,

therefore p|y1z2 − y2z1.
We conclude that p|P1 × P2 and therefore ϕ(P1 × P2) = 0.

Conversely, ϕ(P1 × P2) = 0 if and only if p divides the entries of

(y1z2 − y2z1, z1x2 − x1z2, x1y2 − y1x2).

Suppose that p|x1, then p|x2 since p must divide z1x2 − y1x2 and we
established that the entries of P1 has no common factor. Then

ϕ(P1) = (0, ȳ1, z̄1)
= (0, ȳ1ȳ2, z̄1ȳ2)
= (0, ȳ1ȳ2, ȳ1z̄2)
= (ȳ1x̄2, ȳ1ȳ2, ȳ1z̄2)
= ϕ(P2).
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Now if p - x1 then p|z2 and p - x2, therefore ϕ(P1) = x̄2P̄1 = x̄1P̄2 =
ϕ(P2).

Now suppose that En(Q) has a subgroup of odd order or even order
greater than 2. Let H = {P1, P2, ..., Pm} ⊂ En(Q)tors be such a subgroup.
The points Pi ∈ En(Q) ⊂ P2

Q are all distinct as vectors in R3 for i = 1, ..,m;
then the cross product Pi × Pj is nonzero for all i 6= j.

Let
di,j = gcd(yizj − yjzi, zixj − xizj, xiyj − yixj),

then if p|di,j we have that ϕ(Pi) = ϕ(Pj). Then if p - 2n and p ≥ ni,j for all
1 ≤ i < j ≤ m, then p - di,j, i.e. the map ϕ gives an injection from H to
En(Fp). This implies that the order of ϕ(H) which is the order of H divides
the order of En(Fp).

Suppose that p is a prime with p ≡ 3 mod 4. Then by Example 12
we have p + 1 points in En(Fp), then |H| = m divides p + 1 or equivalently
p ≡ −1 mod m. But we have that if gcd(a,m) = 1 for a,m positive integers,
by Dirichlet’s theorem on arithmetic progressions there are infinitely many
primes p of the form p ≡ a mod m, then there are infinitely many primes p
such that m - p+ 1. Then there is not a subgroup of En(Q) of odd order or
even order greater than 2.

�

Then our elliptic curve En(Q) over the rationals decomposes in four
points which are the only points of finite order (the points of order two) and
a free part which could not exist.

Proposition 9. Let n be a square free integer. n is a congruent
number if and only if En(Q) has positive rank.

Proof. If n is a congruent number, then there exists a Q-point not of
order two in En(Q), by Mordell Theorem and Proposition 8 this point must
have infinite order, that is r ≥ 1.
Conversely if En(Q) has positive rank, then there exists a point P ∈ En(Q)
of infinite order and the x−coordinate of 2P is the square of a rational num-
ber with even denominator.

�
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Now, our main task abording the congruent number problem becomes
in determine wether the group of Q points of an elliptic curve En for a fixed
squarefree integer n has positive rank in its group decomposition.

To do this first we give the zeta function of En over the finite extensions
of Fp for every prime p.

The following theorem is a direct consequence of the Example 15.

Theorem 22. Let En be the elliptic curve given by y2 = x3 − n2x
defined over Fp, where p - 2n. Then

Z(En(Fp);T ) = 1− 2aEn,pT + pT 2

(1− T )(1− pT ) = (1− µpT )(1− µpT )
(1− T )(1− pT ) ,

where a = Re(µp); µp = i
√
p if p ≡ 3 mod 4; and if p ≡ 1 mod 4, then µp

is an element of Z[i] of norm √p which is congruent to
(
n
p

)
modulo 2 + 2i.

Moreover, if p|2n then the zeta function is simply

Z(En(Fp);T ) = 1
(1− T )(1− pT ) .

We can express the zeta function of En as product of prime ideals of
the Gaussian integers.

Let Z[i] be the ring of the Gaussian integers. There are two types
of prime ideals, namely the ideals P generated by a prime congruent to 3
modulo 4; and the ideals P generated by a gaussian integer of norm √p, with
p prime congruent to 1 modulo 4. That is, if a prime number p ≡ 3 mod (4)
there is a unique prime ideal containing p and if p ≡ 1 mod (4) there are
two prime ideals P = (a + ib) and P̄ = (a − ib) where a2 + b2 = p. Now if
p = 2 then there is only one ideal containing 2, i.e. the ideal P = (1 + i), for
which P 2 = (2).

We define the degree of a prime ideal P dividing the ideal (p) as the
degree of the field extension Z[i]/P of Fp, hence

deg(P ) =
{

1 if P |(p) for p ≡ 1 mod (4),
2 if P = (p) for p ≡ 3 mod (4).

We can rephrase the Theorem 22 as follows.

Theorem 23.

(1− T )(1− pT )Z(En(Fp);T ) =
∏
P |(p)

(1− (µPT )degP ),
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where the product is over the prime ideals of Z[i] dividing (p), and where
µP = i

√
p if P = (p); and µP = a+ ib if (p) = PP̄ , where a+ ib is the unique

generator of P which is congruent to
(
n
p

)
modulo 2 + 2i.

Moreover if p|2n, we take µP = 0, thus the product on the right equals one.

Once we know how the zeta functions of En look like for every prime p
(actually we have two maners to express them), we want to multiply those
functions in order to find the L(En, s) function.

Let s be a complex variable. We substitute the T = p−s, then we have
according to Theorem 22 and to Theorem 23 the next equalities

L(En, s) =
∏
p-2n

1
1− 2aEn,pp−s + p1−2s , (5.4)

=
∏
P |(p)
p-2n

1
1− µdegP

P (Nm(P ))−s
. (5.5)

In the equality (5.5) the function Nm(P ) = |Z[i]/P | is the norm of an
ideal in a ring, it simply count the different cosets of P .

We have that Nm(P ) = p if P is a prime ideal generated by a gaussian
integer of squared norm p congruent to 1 mod (4). And Nm(P ) = p2 if
P = (p) for p prime congruent to 3 mod (4).

Notice that this agrees with the substitution made for the equality (5.5).
We now prove the convergence of the series product for L(En, s).

Proposition 10. The series product for L(En, s) converges in the
right half of the s-plane for Re(s) > 3

2 .

Proof. We have

L(En, s) =
∏

P -(2n)

1
1− µdegP

P (Nm(P ))−s
,

the product converges if and only if∑
P

|µP |degP (Nm(P ))−s

converges.
Now if P = (a + ib) we have Nm(P ) = p, degP = 1 and |µP | = √p,
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then |µP |degP = √p = Nm(P )1/2. Similarly, if P = (p) then Nm(P ) = p2,
degP = 2 and |µP | =

√
p, then |µP |degP = p = Nm(P )1/2. Therefore in both

cases we have |µP |degP = Nm(P )1/2, this yields∑
P

|µP |degP (Nm(P ))−s =
∑
P

(Nm(P )) 1
2−s,

furthermore (Nm(P )) 1
2−s ≤ p

1
2−s for s ≥ 1

2 , then since there are at most two
prime ideals P for each prime p, we have the bound∑

P

|µP |degP (Nm(P ))−s ≤ 2
∑

p prime

1
ps−

1
2
,

where the sum in the right converges for s − 1
2 > 1, thus in the s-plane for

Re(s) > 3
2 .

�

In the next theorem we state some properties concerning the L(En, s)
function. Those properties will be useful for the main result concerning the
Congruent Number Problem.

Theorem 24. The Hasse-Weil L-function L(En, s) for the elliptic
curve En : y2 = x3 − n2x, which for Re(s) > 3

2 is defined by (5.4), extends
analitically to an entire function on the whole complex s-plane. In addition,
let

N =
{

32n2, n odd;
16n2, n even. (5.6)

Let
Λ(s) =

(√
N

2π

)
Γ(s)L(En, s), (5.7)

where Γ(s) is the usual Gamma function defined by

Γ(s) =
∫ ∞

0
e−tts−1dt.

Then L(En, s) satisfies the functional equation

Λ(s) = ±Λ(2− s), (5.8)

where the sign is plus if n ≡ 1, 2, 3 mod (8) and is minus if n ≡ 5, 6, 7
mod (8).
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We will not prove the former theorem, since some of the contents go
beyond the purpose of this work. Nevertheless we make some remarks in-
volving the theorem.

Since the function L(En, s) extends analytically to the whole complex
plane, it make sense to speak about the behavior of the L-function at the
critical value s = 1.

The curve En has complex multiplication because of its lattice, which
is a multiple of the lattice of the gaussian integers Z[i], some of the preceding
results are possible thanks to this fact.

The complex multiplication of En and the analitical continuation of the
function L(En, s) allow us to compute the critical value of L(En, s) for some
n, proving in some cases that L(En, 1) 6= 0, thus by Theorem 21, En has only
finitely many points Q-points.

The functional equation satisfied by the function L(En, s) is of the same
style as the functional equation for the Riemann ζ-function, that is, if

Λζ(s) = π−s/2Γ
(
s

2

)
ζ(s),

then
Λζ(s) = Λζ(1− s).

Both functions have certain symmetry with respect to vertical stripes in the
complex plane.

The next conjecture is commonly called the weak Birch Swinnerton-
Dyer conjecture, since it does not assert nothing about the order of the zero
of the L-function.

Conjecture 2. Let E be an elliptic curve defined over Q. Then
L(E, 1) = 0 if and only if E has infinitely many rational points.

The following proposition reveals an application for which a proof of
the BSD conjecture will end in good hands.

Proposition 11. If n ≡ 5, 6 or 7 mod (8), and if the weak Birch
Swinnerton-Dyer conjecture holds for En, then n is a congruent number.

Proof. From Theorem 24 we have that if n ≡ 5, 6 or 7 mod (8) then
Λ(s) = −Λ(2− s), now if s = 1 we get

2Λ(1) = 2
(√

N

2π

)
L(En, s) = 0
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since Γ(1) = 1. Since
(√

N
2π

)
6= 0, it follows that L(En, s) = 0, then the

weak Birch Swinnerton-Dyer conjecture tell us that En has infinitely many
Q-points, thus n is a congruent number.

�

Some advances have been made in trying to prove either the weak or the
whole BSD conjecture. Until now, efforts have not been totally successful,
but significant advances have been made using the Modularity Theorems and
in general the Theory of Automorphic Forms, from which Modular Forms are
examples.

In this fashion, Tunnell used the theorems of Shimura, Waldspurger and
himself, to give a nice characterization of the Congruent Number Problem.
The statement is

Theorem 25. If n is a congruent number then the number of integer
solutions of the first equation is twice the number of solution of the second
equation, for one of the next systems of equations depending if n is odd or
even.

n odd

n = 2x2 + y2 + 32z2,

n = 2x2 + y2 + 8z2.

n even
n

2 = 4x2 + y2 + 32z2,

n

2 = 4x2 + y2 + 8z2.

Conversely, if the weak Birch Swinnerton-Dyer conjecture is true for the
elliptic curves En, then these equations imply that n is a congruent number.

More recently B. H. Gross, D. Zagier and R. Greenberg have made
advances towards the proof of the BSD conjecture. The first two of them
showed it for a family of elliptic curves En, Greenberg showed that if the
conjecture were to fail for an elliptic curve of the kind of En, then it would
imply a very improbable result for elliptic curves.
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