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INTRODUCTION

The general framework of this volume is that of game theory, with multi-

ple participants (“players”) who interact repeatedly over time. The players

may be people, corporations, nations, computers—even genes. See the Hand-

book of Game Theory (Aumann and Hart 1994, 2002, 2004; Young and Zamir

2012).

Many of the standard concepts of game theory are static by their very

nature. This is certainly true of the central concept of strategic equilibrium,

both in its classical form of Nash equilibrium (Nash 1950) and in its extended

form of correlated equilibrium (Aumann 1974). Indeed, an equilibrium situa-

tion is such that, once the players happen to find themselves in it, no player

has an incentive to move away from it. However, these equilibrium concepts

say nothing about how such situations are reached, i.e., about their dynamic

basis.
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Yet, it is of utmost importance—theoretically as well as in applications—

to study dynamic processes, and relate them to appropriate static solutions.

This is so for at least two reasons. On the one hand, it is of interest in its

own right to analyze processes that to some degree reflect observed patterns

of behavior (we could call them “natural” dynamics). On the other hand,

the significance of an equilibrium solution has to depend on how easy it is to

reach: the justification of a concept that turns out to be dynamically hard

to reach is shaky.

In this volume we study the connections between dynamics and equilibria.

Our goal is to characterize interesting classes of natural dynamics for which

convergence to Nash or correlated equilibria can be guaranteed, and classes

for which it cannot (i.e., where “impossibility” results hold).

Simple Adaptive Strategies

A strategy in a long-term interaction provides instructions on what to do

after every possible history of play. It specifies what to do in the first period,

how to react in the second period to what happened in the first period,

and so on. Many (in fact, most) of these strategies are extremely complex

and therefore hardly practical. In this volume our interest is restricted to

strategies that are simple—and therefore easy to implement—and adaptive—

and therefore related to real behavioral traits. Note that we are not adding

an “optimality” requirement, and so we are placing ourselves in a bounded

rationality framework. In this context we are interested in studying what can

be reached, and what cannot be reached, by players who use simple adaptive

strategies.

Regret Matching

Our research has identified a salient class of strategies with some remark-

able properties, the leading element of which is the regret-matching strategy.

On the one hand, these strategies are based on natural measures of regret;

roughly speaking, the regret is the possible increase in the payoff that one

would have received had one used a different action in the past. These regret

measures are used to determine one’s propensity to switch to a different ac-

tion: the greater the regret for an action, the greater the propensity to switch
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to it. As such, these are very similar to strategies obtained in the behavioral

literature. They certainly qualify as instances of simple and adaptive strate-

gies. On the other hand, these strategies, despite their deceptive simplicity,

lead in the long run to behavior that is similar to that obtained from fully

rational considerations, namely, correlated equilibria (Aumann 1987).

Uncoupled Dynamics

One may well ask whether it is possible to use variants of regret-based

strategies to reach Nash equilibria. A long history of failure in the search

for dynamic procedures guaranteeing convergence to Nash equilibria should

indicate that the answer to this question is bound to be negative. And indeed

it is. Yet, the reason for the failure turns out to be quite instructive. It is not

due to some aspect of the adaptive property, but rather to one aspect of the

simplicity property: namely, that in the strategies under consideration play-

ers do not make use of the payoffs of the other players. While the actions of

the other players may be observable, their objectives and reasons for playing

those actions are not known (and at best can only be inferred). This simple

informational restriction—which we call uncoupledness—is the key property

that makes Nash equilibria very hard if not impossible to reach.

Dynamics and Equilibria

At this point the connections between static equilibrium concepts and

dynamics can be summarized as follows: Nash equilibrium is a “dynamically

hard” concept, whereas correlated equilibrium is a “dynamically easy” con-

cept. Indeed, regret matching and the general class of regret-based strategies—

which are simple, adaptive, and natural—lead to correlated equilibria, whereas

any strategies that are uncoupled cannot reasonably lead to Nash equilibria

in all games.

We now provide a more detailed overview of this volume.

PART I: Correlated Equilibria

A Nash equilibrium is a situation where “each player’s strategy is optimal

against those of the others” (Nash 1950). In other words, it is a combina-
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tion of strategies of all players such that no player can gain by unilaterally

changing his strategy.

A correlated equilibrium (Aumann 1974) is a Nash equilibrium where

players receive payoff-irrelevant information (“signals”) before playing the

game. But since this information does not affect the game itself, does it

matter? Yes, it does: it may well be used by the players when making their

strategic choices.

When the signals are (stochastically) independent across the players, the

resulting correlated equilibrium is clearly just a standard (mixed-strategy)

Nash equilibrium: the signals can only be used as a private randomizing

device. But when the signals are correlated, new equilibria emerge. In case

the information is public (i.e., the same signal is sent to every player, and

therefore it is commonly observed and commonly known), then, after each

realization of the signal, the resulting play has to be a Nash equilibrium of

the original game (with no signals). Thus, what we get overall is a proba-

bilistic mixture (i.e., a convex combination) of Nash equilibria of the original

game, with weights that are precisely the probabilities of the various possible

signals; call this a publicly correlated equilibrium. For example, let NE1 and

NE2 be two distinct Nash equilibria of the original game, and assume that

60% of the days are sunny and 40% are cloudy, and this is observed by all

players before they play the game. Then there is a (publicly) correlated equi-

librium consisting of playing NE1 on sunny days and NE2 on rainy days,

which means that NE1 is played with probability 60% and NE2 with prob-

ability 40% (in general, this behavior cannot be a Nash equilibrium of the

original game, since a Nash equilibrium requires the players’ choices to be

independent).

Even more interesting correlated equilibria can occur when the signals are

neither independent nor fully correlated. New phenomena emerge then. For

example, one may get correlated equilibria whose payoffs Pareto dominate

the payoffs of all Nash equilibria of the original no-signals game (e.g., in the

so-called Chicken game; see Section 6 in Chapter 11).

Existence of Correlated Equilibria
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Consider now a finite game; that is, there are finitely many players, each

having finitely many strategies. Does a correlated equilibrium necessarily

exist? The answer is clearly “yes,” since Nash equilibria exist (Nash 1950),

and every Nash equilibrium is also a correlated equilibrium.

While this provides a correct mathematical proof for the existence of

correlated equilibria, it has a drawback. The set of correlated equilibria

is characterized by a set of linear inequalities (the “incentive compatibil-

ity” constraints of the players), and is therefore a convex polytope in a

finite-dimensional Euclidean space. To prove nonemptiness of such a set

using fixed-point theorems (the use of a fixed-point theorem, such as that of

Brouwer or of Kakutani, is needed to prove the existence of Nash equilibria)

looks in such a context like “overkill.” One would like to prove this result

more elementarily, specifically, in a framework of linear algebra and linear

inequalities.

Such an elementary proof is provided by Sergiu Hart and David Schmei-

dler, “Existence of Correlated Equilibria,” Mathematics of Operations Re-

search 14 (1989), 18–25, which is Chapter 1 of this volume.1 It rests on an

appeal to the minimax theorem (which is essentially equivalent to the duality

theorem of linear programming). To wit: given a finite n-person game, one

constructs an auxiliary two-person zero-sum game, with the auxiliary row

player, call it ROW, choosing an n-tuple of strategies in the original game,

and the auxiliary column player, call it COL, choosing one of the incentive

constraints for a correlated equilibrium. It is seen that an optimal (mixed)

strategy for ROW is then precisely a correlated equilibrium in the original

game; its existence then follows by applying (twice) the minimax theorem of

two-person zero-sum games.

While providing the “right” proof is often a worthwhile formal exercise,

in this case it had the added advantage that it eventually led to the research

included in this volume. Our basic, first idea was to use the above auxil-

iary game and apply to it the simple dynamic of “fictitious play” (Brown

1951)—which, for two-person zero-sum games, converges and leads to opti-

mal strategies (Robinson 1951)—in order to obtain a dynamic that leads to

1Another elementary proof is provided by Nau and McCardle (1990).
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correlated equilibria of the original n-person game (which, as seen above, are

precisely the optimal strategies of ROW). However, the resulting dynamic

was unwieldy, as it required all the n players to move in a coordinated way.

It took many modifications and transformations until we succeeded in “un-

coupling” the players (cf. Part III) and getting the simple regret-matching

strategies (see Part II).

PART II: Regret Matching

We start by considering our basic simple adaptive strategy, “regret match-

ing,” introduced by Sergiu Hart and Andreu Mas-Colell, “A Simple Adap-

tive Procedure Leading to Correlated Equilibrium,” Econometrica 68 (2000),

1127–1150, which is Chapter 2 of this volume. Consider a game that is re-

peatedly played over time; regret matching is defined by the following rule:

Regret Matching : Switch next period to a different action with

a probability that is proportional to the regret for that action,

where regret is defined as the increase in the payoff had such a

change always been made in the past.

That is, consider a player deciding on his action (it is convenient to use the

term “action” for the choice in the underlying one-shot game, and “strategy”

for the choice in the repeated game) at a certain time period. Let U be the

average payoff the player has obtained up to now, and let j be the action

that he played in the previous period. For each alternative action k different

from j, let V (k) be the average payoff the player would have obtained had

he played k instead of j every time in the past that he actually played j.

The regret R(k) for action k is then defined as the amount, if any, by which

V (k) exceeds the actual payoff U ; i.e., R(k) = V (k) − U if V (k) ≥ U ,

and R(k) = 0 otherwise. Regret matching stipulates that each action k

different from the previous period’s action j is played with a probability that

is proportional to its regret R(k), and, with the remaining probability, the

same action j as in the last period is played again. (Formally, the probability

of playing action k equals cR(k) for every k different from j, and it equals

the remaining probability 1−
∑

k 6=j cR(k) for k = j; here, c is an appropriate
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fixed constant; see footnote 5 in Chapter 2.) We could thus say that the

player contemplates, first, whether to continue to play next period the same

action j as in the previous period, or to switch to a different action k. If

the latter, he looks at what would have happened to his average payoff had

he always replaced j by k in the past (since one is looking at the long-run

average payoff, it makes sense to consider replacing j by k not just in the

previous period, but also in all the other periods in the past when j was

played; after all, the effect of one period becomes negligible as the number of

periods increases). The player compares what he got, U , to what he would

have gotten, V (k). If the alternative payoff is no higher, i.e., if V (k) ≤ U ,

then he has no regret for k (the regret R(k) for k equals 0) and he does not

switch to action k. If the alternative payoff is higher, i.e., if V (k) > U , then

the regret for k is positive (R(k) equals the increase V (k)−U) and the player

switches to action k with a probability that is proportional to this regret.

The main result of Chapter 2 (Hart and Mas-Colell 2000) is:

Regret-Matching Theorem: If each player plays a regret-

matching strategy, then the joint distribution of play converges

to the set of correlated equilibria of the underlying game.

The term “joint distribution of play” (also known as the “empirical distri-

bution” or “sample distribution”) refers to the relative frequency with which

each combination of actions of all players has been played (more on this be-

low). The Regret-Matching Theorem says that, for almost every history of

play, the joint distribution of play converges to the set of correlated equi-

libria of the underlying (one-shot) game. This means that, from some time

on, the joint distribution is close (i.e., within ε) to a correlated equilibrium,

or, equivalently, that it is a correlated approximate (i.e., an ε-) equilibrium.

The convergence here is to the set of correlated equilibria, not necessarily to

a point in that set. Observe that it is the empirical distributions that be-

come essentially correlated equilibria—not the actual play. What our result

implies is that the long-run statistics of play of “regret-matchers,” and that

of fully rational players (who play a correlated equilibrium each period; see

Aumann 1987), become essentially indistinguishable.
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Clearly, regret matching, as well as its generalizations below, has the

character of an adaptive strategy; in fact, it embodies commonly used rules

of behavior. For instance, if all the regrets are zero (“there is no regret”),

then a regret-matching player will continue to play the same action of the

previous period (as in the common saying, “never change a winning team”).

When some regrets are positive, actions may change—with probabilities that

are proportional to the regrets: the higher the payoff would have been from

switching to another action in the past, the higher the tendency is to switch

to that action now. Again, this seems to fit standard behavior (recall ads

such as “Had you invested in A rather than B, you would have gained X

more by now. So switch to A now!”, the sense of urgency being related to

the magnitude of X). In the learning, experimental, and behavioral literature

there are various models that bear a likeness to regret matching; see Bush and

Mosteller (1955), Roth and Erev (1995), Erev and Roth (1998), Camerer and

Ho (1998, 1999), Selten, Abbink, and Cox (2005), and others; probably the

closest are the Erev–Roth models. Regret measures also feature in the recent

neuroeconomics literature on decision-making; see Camille et al. (2004) and

Coricelli, Dolan, and Sirigu (2007). Also, incorporating regret measures into

the utility function has been used to provide alternative theories of decision-

making under uncertainty; see Bell (1982) and Loomes and Sugden (1982).

Another interesting aspect captured by regret matching has to do with

the “sluggishness” of decision-making. It has been observed that people

tend to have too much “inertia” in their decisions: they stick to their current

action for a disproportionately long time (as in the “status quo bias”; see

Samuelson and Zeckhauser 1988 and Moshinsky 2003). Regret matching has

built-in inertia: the probability of not switching (i.e., of repeating the pre-

vious period’s action) is always strictly positive, and in fact regret matching

generates behavior where the same action is played over and over again for

long time intervals.

Regret matching is not just adaptive but also very simple (we could say

unsophisticated!). Players neither develop beliefs nor reply optimally. At

each time period there are “propensities” of play, which are adjusted over

time in a simple and natural way. The computation that determines these
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propensities involves at each period a straightforward additive updating of

the appropriate regret.

There are other dynamics leading to correlated equilibria: “calibrated

learning” (i.e., best-reply to calibrated forecasts: Foster and Vohra 1997),

and “conditional smooth fictitious play eigenvector strategy” (Fudenberg

and Levine 1999). However, these dynamics require the players to make

at each period a complex mathematical computation (specifically: compute

an eigenvector), which, in our view, makes them neither simple nor easily

interpretable in adaptive behavioral terms.

Now where does the “correlation” in the Regret-Matching Theorem come

from? The answer is, of course, that it arises from the commonly observed

history of play. Indeed, each player’s action is determined by his regrets,

which are in turn determined by the history. Thus, the exogenous signals in

the definition of correlated equilibria are now endogenously generated—by

the regret-matching strategies themselves.2

It is a standard hypothesis that the players observe the history of play

(“standard monitoring”), which determines the joint distribution of play.

Therefore, having players determine their actions based on the joint distri-

bution of play (rather than having each player consider only his own frequen-

cies of play, i.e., the coresponding marginal distribution) does not go beyond

the commonly used monitoring framework: it is information that the players

possess anyway. In fact—and this is a significant behavioral observation—

people react to the joint distribution, not only to the marginals: people are

very much aware of coincidences, signals, communications, and so on (even

to the point of overdoing it and interpreting random phenomena and spuri-

ous correlations as meaningful). It should be emphasized that while at each

stage the players randomize independently of one another, this does not im-

ply that the joint distribution of play should be independent across players

(i.e., the product of its marginal distributions), nor should it become so in

the long run.

2While the history of play is commonly observed, it does not follow that one obtains
publicly correlated equilibria; the reason is that each player plays according to his own
regrets. These regrets are correlated (since they are based on the common history), but
in general they are far from being fully correlated.

9



To summarize: reasonable models of play can—and should—take into

account the joint distribution of play.

Generalized Regret-Based Strategies

The regret-matching strategy appears to be very specific: the play prob-

abilities are directly proportional to the regrets. It is natural to enquire

whether this delicate construct is necessary for the result of the Regret-

Matching Theorem. What would happen were the probabilities proportional

to, say, the squares of the regrets? In another direction, we could also ask for

the connections between regret matching and other dynamics leading to cor-

related equilibria, particularly variants of conditional smooth fictitious play

(e.g., Fudenberg and Levine 1999a).

This leads us to consider a large class of adaptive heuristics that are

based on regrets. Specifically, instead of the switching probability being

proportional to the regret, i.e., equal to cR(k), we now allow this switching

probability to be given by a general function f(R(k)) of the regret R(k),

provided that f is sign-preserving (i.e., f(x) > 0 for x > 0 and f(0) = 0) and

regular (which here means Lipschitz continuous). Call the resulting strategies

generalized regret-matching strategies, or regret-based strategies.

The following result is based on Sections 3.2 and 5.1 of Sergiu Hart and

Andreu Mas-Colell, “A General Class of Adaptive Strategies,” Journal of

Economic Theory 98 (2001), 26–54, which is Chapter 3 of this volume,

and proved as Theorem 4.1 in3 Amotz Cahn, “General Procedures Leading

to Correlated Equilibria,” International Journal of Game Theory 33 (2004),

21–40, which is Chapter 6 of this volume:

Generalized Regret-Matching Theorem. If each player plays

some generalized regret-matching strategy then the joint distri-

bution of play converges to the set of correlated equilibria of the

underlying game.

In fact, the full class of generalized regret-matching strategies (for which

3Based on the master’s thesis of Amotz Cahn, written under the supervision of Sergiu
Hart.
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the above theorem holds) is even larger; see Section 3.2 in Chapter 3 and

Section 4 in Chapter 4.

As a special case, consider the family of functions f(x) = cxr, where r ≥ 1

and c > 0 is an appropriate constant. At one extreme, when r = 1, we have

regret matching. At the other extreme, the limit as r goes to infinity results

in the probability of switching being equally divided among those actions

k 6= j with maximal regret (i.e., those k with R(k) = maxℓ6=j R(ℓ)). This

yields a variant of fictitious play, which, however, no longer belongs to the

admissible class of generalized regret strategies (it is not continuous), and,

indeed, the result of the Generalized Regret-Matching Theorem above does

not hold for it (see Section 4 in Chapter 3). Of course, the result does hold

for any finite r ≥ 1, which for very large r leads to “smooth conditional

fictitious play”; see Section 4.5 in Chapter 6.

The case of the unknown game (“complete uncoupledness”)

Consider now the apparently hopeless situation where each player knows

initially only his own set of actions, and is informed, after each period of

play, of his realized payoff. He does not know what game he is playing,

that is, how many players there are and what their actions and payoffs are.

Moreover, he does not even know his own payoff function—but only the

payoffs he did actually receive every period. This is essentially a standard

stimulus-response setup, which we called “the case of the unknown game”

(also known in the literature as “payoff-based” and “radically uncoupled”;

the current terminology refers to this case as “complete uncoupledness”—see

Babichenko 2011).

While at each period the player knows his realized average payoff U ,

he cannot know his alternate payoffs V (k) and his regrets R(k): he knows

neither what the other players did, nor what his payoff would have been

had he played an alternative action k instead. Yet, we can still define a

proxy regret measure, by using the payoffs he got when he did actually play

k. In Sergiu Hart and Andreu Mas-Colell, “A Reinforcement Procedure

Leading to Correlated Equilibrium,” in Economic Essays, edited by Gerard

Debreu, Wilhelm Neuefeind, and Walter Trockel, Springer (2001), 181–200,
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which is Chapter 4 of this volume, we show exactly how to carry this out

(it involves certain adjustments and also a small degree of experimentation).

The surprising result is that convergence to correlated approximate equilibria

is obtained also for proxy-regret-matching strategies.

Unconditional Regrets and Hannan Consistency

The regret for action k has been defined relative to the action j of the

previous period. Consider instead a rougher measure, namely, the increase

in the average payoff, if any, were one to replace all past plays, and not just

the j-plays, by k. This yields the unconditional regret for action k, denoted

Ru(k) (see Section 4 (c) in Chapter 2; these regrets are also known as “ex-

ternal regret,” with “internal regrets” for the original regrets). The resulting

unconditional-regret-matching strategy prescribes play probabilities at each

period that are directly proportional to the vector of unconditional regrets;

i.e., the probability of playing k is Ru(k)/
∑

ℓ Ru(ℓ), the unconditional regret

of k divided by the sum of the unconditional regrets for all actions ℓ (un-

like regret matching, here we do not use a constant proportionality factor c,

but simply normalize the vector of unconditional regrets to get a probability

vector).

A strategy of a player is said to be Hannan-consistent if it guarantees, for

any strategies of the other players, that all the unconditional regrets vanish

in the limit with probability one. We have:

Unconditional Regret Theorem. Unconditional regret match-

ing is Hannan-consistent. Moreover, if all players play uncondi-

tional regret matching, then the joint distribution of play con-

verges to the Hannan set of the stage game.

This is Theorem B in Chapter 2 (Hart and Mas-Colell 2000). It is proved

via Blackwell’s Approachability Theorem (Blackwell 1956a, 1956b). The

Hannan set4 (see Hannan 1957, Moulin and Vial 1978, Hart and Mas-Colell

4Also known as the set of “coarse correlated equilibria.” The Hannan set refers to the
one-shot game (it is a set of joint distributions), whereas Hannan-consistency refers to the
repeated game (it is a long-run property of a strategy).
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2003a [Chapter 5]) is defined as the set of joint distributions of play where

no player can gain unilaterally by playing the same constant action at all

periods, irrespective of any signal he gets. Note the contrast with correlated

equilibrium, where the no-gain test would be for changes conditional on the

signal. The set of correlated equilibria is contained in the Hannan set (and

the two sets coincide when every player has at most two strategies); moreover,

the Hannan distributions that are independent across players are precisely

the Nash equilibria of the game.

Hannan-consistent strategies have been constructed, among others, by

Hannan (1957), Blackwell (1956b), Foster and Vohra (1993, 1998), Fudenberg

and Levine (1995), and Freund and Schapire (1999) (many of these strategies

are smoothed-out variants of fictitious play, which, by itself, is not Hannan-

consistent). It appears that in comparison our unconditional regret matching

is simpler.

Continuous Time

The regret-based dynamics up to this point have been discrete-time dy-

namics: the time periods were t = 1, 2, ... . It is natural to study also

continuous-time models, where the time t is a continuous variable, and the

changes in the players’ actions are governed by appropriate differential equa-

tions. In Sergiu Hart and Andreu Mas-Colell, “Regret-Based Continuous-

Time Dynamics,” Games and Economic Behavior 45 (2003), which is Chap-

ter 5 of this volume, we show that the results carry over to this framework.

In fact, some of the proofs become simpler.

Summary and Applications

For an extensive survey, with precise pointers to the relevant papers, of

the results on regret matching and general regret-based strategies, the reader

may consult Chapter 11 in Part IV.

Interestingly, regret matching is also successfully considered nowadays in

various areas of practical application. The fact that game-theoretic adaptive

procedures, such as the various regret-matching strategies in this volume,

are both simple and decentralized (i.e., they can be carried out “locally”

without the need to communicate with a “central authority”) makes them

13



appealing and useful in many setups where one needs to make efficient use

of limited resources. Some examples: “cognitive radio,” which refers to wire-

less transceivers that change their parameters dynamically in response to

their environment (Maskery, Krishnamurthy, and Zhao 2009; Wang, Wu, and

Liu 2010); traffic, congestion, and Voronoi diagrams (Arslan, Marden, and

Shamma 2007; Kalam, Gani, and Seneviratne 2008); sensor networks (Krish-

namurthy, Maskery, and Yin 2008); neural networks (Marchiori and Warglien

2008); statistical analysis of large datasets in medical diagnosis (Gambin et

al. 2009). In many of these cases regret matching (the extremely simple

unconditional regret matching, or the somewhat more sophisticated condi-

tional regret matching) turn out to yield quite efficient results. It would be

interesting to understand what exactly lies behind this apparent efficiency,

as it does not follow from the general results presented in this volume (while

there are correlated equilibria that are “better” than, say, Nash equilibria,

in general there are also “worse” correlated equilibria).

PART III: Uncoupled Dynamics

As explained so far, regret matching and its generalizations fit the equi-

librium concept of correlated equilibrium. What about Nash equilibrium?

Nash equilibria belong to the set of correlated equilibria but, unless this lat-

ter set happens to be a singleton, or there is a pure strict Nash equilibrium,

regret matching will not generate dynamics converging to Nash equilibrium.

This, we hasten to add, came as no surprise, since dynamic procedures ensur-

ing convergence to Nash equilibria—such as fictitious play—have only been

obtained for quite restricted classes of games (such as two-person zero-sum

games, potential games, 2 x 2 games). Intuitively speaking, regret matching

seemed much too simple and much too adaptive to hope for a convergence

result to Nash equilibria for general classes of games. But can this statement

be made precise? This is the question that motivated the line of work of Part

III, which we summarize now.

All the dynamic processes we have considered until now share the follow-

ing characteristic, which is part of the simplicity, rather than the adaptive-

ness, requirement: what a player does at any moment of time does not depend
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on the payoff or the utility functions of the other players. It is this property,

which we called uncoupledness, that we came to view as key and focused on

in our research. It is related to the notions of “privacy-preserving” in mech-

anism design, “decentralized” procedures in economics, and “distributed”

computations in computer science.

Uncoupledness for Deterministic Dynamics

In Sergiu Hart and Andreu Mas-Colell, “Uncoupled Dynamics Do Not

Lead to Nash Equilibrium,” American Economic Review 93 (2003), 1830–

1836, which is Chapter 7 of this volume, we defined the uncoupledness

notion and established its relevance to the issue of determining Nash conver-

gent mechanisms by means of a simple model of deterministic dynamics in

continuous time. Essentially, we exhibited a class of games where any such

dynamics (expressed by means of differential equations) on the state space

of (continuous) action combinations, which is uncoupled, will necessarily fail

to converge to (the unique) Nash equilibrium for some games.

Uncoupledness for Stochastic Dynamics

The above could not be the end of the story, however. One needed to

consider the standard framework of discrete time and stochastic dynamics

(which is also the context in which regret matching was originally formu-

lated). Now, it is not difficult to see that deterministic and stochastic vari-

ants of exhaustive search (“keep looking until you find a Nash equilibrium”)

can be embedded into an uncoupled framework. However, exhaustive search

is hardly an attractive adjustment mechanism. Thus the question was which

additional considerations are important and natural (and in particular rule

out exhaustive search and recover the impossibility result). These turned out

to be, on the one hand, “finite recall,” and on the other hand, the “speed of

convergence.”

An additional stimulus for our research at this point was the work of

Foster and Young (2003, 2006), Germano and Lugosi (2007), Kakade and

Foster (2004), Young (2004, 2009). They formulated stochastic, adaptive

mechanisms (that include some form of experimention) that yield trajectories

that are most of the time close to Nash equilibria. It was therefore important
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to clarify the relationships between these two lines of research and to find

the demarcation line, so to speak, between possibility and impossibility.

In Sergiu Hart and Andreu Mas-Colell, “Stochastic Uncoupled Dynamics

and Nash Equilibrium,” Games and Economic Behavior 57 (2006), 286–

303, which is Chapter 8 of this volume, we explore the implications of

recall restrictions—i.e., restrictions on how many past periods of play players

remember—in a stochastic dynamic context. These restrictions certainly

matter. We show, for example, that for the case where a pure strategy

Nash equilibrium exists, convergence cannot be assured in the case of one-

period recall. Thus, not only “best-replying to the last period” cannot lead

to Nash equilibrium in general, but no uncoupled dynamic where players

base their decisions only on the previous period’s play can do so. But, if

one increases the recall to two or more periods, then convergence to pure

Nash equilibria can be guaranteed (by strategies reminiscent of exhaustive

search). For the general case where all the Nash equilibria may be mixed, a

more refined analysis is required, yet, again, if the recall is short, convergence

is not assured, while if it sufficiently long (but still finite), then it is. However,

no finite length of recall turns out to be sufficient to obtain the convergence

to Nash equilibria of the period-by-period behavior probabilities; this can be

obtained only within the broader context of finite memory (which leads us

to the next chapter).

Uncoupledness for Finite Memory Dynamics

Recall limitations are just one way to capture the idea that the past

can influence the future only through a finite number of parameters. More

generally, one could appeal to the notion of finite memory, or, equivalently,

strategies that can be implemented by finite automata. In the present con-

text, this is explored in5 Yakov Babichenko, “Uncoupled Automata and Pure

Nash Equilibria,” International Journal of Game Theory 39 (2010), 483–502,

which is Chapter 9 of this volume. The finite recall results turn out to gen-

eralize nicely: for example, to reach a pure Nash equilibrium (assuming it

5Based on the master’s thesis of Yakov Babichenko, written under the supervision of
Sergiu Hart.
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exists), the number of states must be strictly larger than the number of

actions.

How Long to Equilibrium?

Next, consider the important issue of the time it takes to reach Nash

equilibria: can one estimate, or bound, the number of periods until an (ap-

proximate) equilibrium is reached? If that number of periods turns out to

be extremely large, then there may be little use for such dynamics.

This question is addressed in Sergiu Hart and Yishay Mansour, “How

Long to Equilibrium? The Communication Complexity of Uncoupled Equi-

librium Procedures,” Games and Economic Behavior 69 (2010), 107–126,

which is Chapter 10 of this volume.

The way one proceeds is by using a tool from theoretical computer sci-

ence: communication complexity. It turns out that an uncoupled dynamic

reaching an equilibrium is nothing but a so-called “distributed computational

procedure.” Informally, a distributed computational procedure consists of a

number of agents, each one initially possessing some private information (the

“inputs”), which through communication reach a situation where they all

agree on a certain result (the “output”). The communication complexity is

the minimal number of communication rounds that is needed to go from the

private inputs to the common output.

An uncoupled dynamic reaching an (approximate) equilibrium does in-

deed fit this framework. The private inputs are the payoff functions (each

player knows only his own), the communication phase consists of playing the

game repeatedly, and the end result is the (approximate) equilibrium reached.

The communication complexity of the uncoupled dynamics gives the mini-

mum number of periods needed to reach the (approximate) equilibrium (this

connection was made by Conitzer and Sandholm 2004 for two-person games;

for communication complexity in general, see Yao 1979 and Kushilevitz and

Nisan 1997).

In Chapter 10 it is shown that the number of periods needed to reach

a Nash equilibrium—pure or mixed—can be exponential in the number of

players n; when n is large, this becomes quickly unreasonably long. Since this
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is the time exhaustive search takes, the conclusion is that there are games

where any uncoupled dynamic will take essentially as long as exhaustive

search does to reach Nash equilibria. We emphasize that these exponential

lower bounds apply to any uncoupled dynamic; additional requirements on

the dynamics, such as finite recall and memory, or various incentives and

rationality desiderata, can only increase the number of periods required.

At this point one may wonder whether we are perhaps asking for too

much. After all, the description of the game is exponential in the number

of players n; even a single player’s payoff function is so (since the number

of action combinations, for each one of which we need to specify a payoff, is

exponential in n). It may thus seem unreasonable to expect a dynamic pro-

cess to lead to equilibrium in a number of periods that is significantly shorter

than the time it takes to describe the game. Yet, this is what happens for

correlated equilibria: regret-based strategies do reach correlated (approxi-

mate) equilibria in a time that is polynomial in the number of players n

(and one can also reach exact correlated equilibria in polynomial time; see

Theorems 17 and 30 in Chapter 10). Perhaps surprisingly, this implies, in

particular, that each player ends up looking only at a very small proportion

of the entries in his payoff matrix. The technically savvy will note that,

since correlated (approximate) equilibria are given by a linear (in n) number

of inequalities, there always exist solutions whose support is polynomial in

n; particular instances are the correlated approximate equilibria obtained in

polynomial time by the regret-based procedures.

Indeed, impossibility results of the kind discussed here in Part III show

why various past attempts to prove that certain dynamics always converge

to equilibria were doomed to fail.

PART IV: Dynamics and Equilibria

Part IV ties together the various results of the previous chapters.

Adaptive Heuristics

The paper of Sergiu Hart, “Adaptive Heuristics,” Econometrica 73 (2005),

1401–1430, which is Chapter 11 in this volume, starts with a rough but
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hopefully useful classification of various dynamics into three classes: learn-

ing dynamics, adaptive heuristics, and evolutionary dynamics. Learning dy-

namics refers to situations where players start with certain Bayesian beliefs

(on the game being played and on their opponents’ strategies), which they

update as the play progresses (e.g., see Kalai and Lehrer 1993 and the en-

suing literature); evolutionary dynamics refers to situations where forces of

selection and mutation change the populations’ composition; and adaptive

heuristics refers to simple rules of behavior that make a player move, roughly

speaking, in seemingly payoff-improving directions. One can understand the

distinctions in terms of the degree of rationality and cognitive optimization

of the participants: high for learning dynamics, low for evolutionary dynam-

ics, and in between for adaptive heuristics (see Section 2 in Chapter 11 for

further details and references).

Regret matching and the generalized regret dynamics of Part II are simple

rules of behavior, based on natural regret measures, and as such clearly

qualify as adaptive heuristics. On the one hand, they serve by their very

nature as a sort of bridge between rational and behavioral viewpoints. On

the other hand, they establish a solid connection to correlated equilibria

(rather than Nash equilibria). Thus simple adaptive behavior can lead in the

long run to outcomes that embody full rationality (i.e, correlated equilibria;

recall Aumann 1987).

Dynamics and Equilibria

More than sixty years after John Nash’s Ph.D. thesis (1950), where the

notion of strategic equilibrium—now known as “Nash equilibrium”—was in-

troduced, we have learned that there are no general, natural dynamics leading

to Nash equilibrium. This statement is proposed in the commentary of Sergiu

Hart, “Nash Equilibrium and Dynamics,” Games and Economic Behavior 71

(2011), 6–8, which is Chapter 12 of this volume. “General” refers to dy-

namics that operate in all games, rather than only in some specific class of

games (such as two-person zero-sum games, or two-person potential games,

where such dynamics do exist). “Leading to Nash equilibrium” means that

at some time the dynamic reaches a Nash equilibrium (or a neighborhood of
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a Nash equilibrium) and stays there from then on; therefore we do not in-

clude here the dynamics that spend most of the time (formally: 1− ε of the

time, for small ε > 0) near Nash equilibria, but never remain there. Finally,

we take “natural” to mean simple and adaptive.

The papers in this volume, particularly in Part III, show that the lack of

dynamics to which we pointed above is not a deficiency of the existing liter-

ature, but rather a result of the inherent difficulty and even impossibility of

reaching Nash equilibria. Uncoupledness—which is nothing but a simplicity

property concerning the amount of information players possess—severely re-

stricts the possibility of dynamics to lead to Nash equilibria. In Chapter 8 it

is shown that, with limited (small) recall, it is impossible for such dynamics

to always reach Nash equilibria, and in Chapter 10 we see that uncoupledness

by itself, without any further assumptions of simplicity or otherwise, already

makes, in some cases, the number of periods needed to reach Nash equilibria

unreasonably large.

In short, the evidence points to Nash equilibria as being a “dynamically

hard” concept, whereas correlated equilibria are, in contrast, “dynamically

easy.”6

Directions of Research

The general program to which the research presented in this volume be-

longs may be viewed as a two-pronged approach. On the one hand, one

tries to demarcate the border between those classes of dynamics where con-

vergence to a certain equilibrium concept can be obtained and those where

it cannot (i.e., where an “impossibility” result holds). On the other hand,

one looks for natural and interesting dynamics—dynamics that are related

to actual behavior and yield useful insights. While significant advances have

been made in both approaches (such as the research presented in this vol-

ume, and the line of work initiated by Foster and Young and discussed in

connection to Chapter 8 above), and these have increased our understanding

6This is certainly related to—though probably not fully explained by—Nash equilibria
being fixed points of nonlinear maps, whereas correlated equilibria are solutions of linear
inequalities.
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of the connections between dynamics and equilibria, the general picture is

still far from complete.

In particular, one needs to study the convergence and trajectories proper-

ties of the various dynamics, investigate various classes of dynamics, sharpen

further the distinctions between the equilibrium concepts on dynamical grounds,

and use all these insights in interesting applications.

We hope bringing these papers together into one volume will facilitate

further pursuit of this fascinating research.

Jerusalem and Barcelona, 2012
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