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ADAPTIVE HEURISTICS

BY SERGIU HART1

We exhibit a large class of simple rules of behavior, which we call adaptive heuristics,
and show that they generate rational behavior in the long run. These adaptive heuris-
tics are based on natural regret measures, and may be viewed as a bridge between ra-
tional and behavioral viewpoints. Taken together, the results presented here establish
a solid connection between the dynamic approach of adaptive heuristics and the static
approach of correlated equilibria.
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matching, uncoupled dynamics, joint distribution of play, bounded rationality, behav-
ioral, calibration, fictitious play, approachability.

1. INTRODUCTION

CONSIDER DYNAMIC SETTINGS where a number of decision-makers interact
repeatedly. We call a rule of behavior in such situations an adaptive heuristic
if, on the one hand, it is simple, unsophisticated, simplistic, and myopic (a so-
called “rule of thumb”), and, on the other, it leads to movement in seemingly
“good” directions (like stimulus-response or reinforcement). One example of
adaptive heuristic is to always choose a best reply to the actions of the other
players in the previous period—or, for that matter, to the frequency of their
actions in the past (essentially, the well-known “fictitious play”).

Adaptive heuristics are boundedly rational strategies (in fact, highly
“bounded away” from full rationality). The main question of interest is whether
such simple strategies may in the long run yield behavior that is nevertheless
highly sophisticated and rational.

This paper is based mainly on the work of Hart and Mas-Colell (2000, 2001a,
2001b, 2003a, 2003b), which we try to present here in a simple and elementary
form (see Section 10 and the pointers there for the more general results). Sig-
nificantly, when the results are viewed together new insights emerge—in par-
ticular, into the relations of adaptive heuristics to rationality on the one hand,
and to behavioral approaches on the other. See Section 9, which may well be
read immediately.

The paper is organized as follows. In Section 2 we provide a rough classifica-
tion of dynamic models. The setting and notations are introduced in Section 3,
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Yaari, and Peyton Young, as well as the editor and the anonymous referees, for useful discussions,
suggestions, and comments. Research partially supported by the Israel Science Foundation.
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and the leading adaptive heuristic, regret matching, is presented and analyzed
in Section 4. Behavioral aspects of our adaptive heuristics are discussed in Sec-
tion 5, and Section 6 deals with the notion of correlated equilibrium, to which
play converges in the long run. Section 7 presents the large class of generalized
regret matching heuristics. In Section 8 we introduce the notion of “uncou-
pledness” (which is naturally satisfied by adaptive heuristics) and show that
uncoupled dynamics cannot be guaranteed to always lead to Nash equilibria.
A summary together with the main insights of our work are provided in Sec-
tion 9. Section 10 includes a variety of additional results and discussions of
related topics, and the Appendix presents Blackwell’s approachability theory,
a basic technical tool in this area.

2. A RATIONAL CLASSIFICATION OF DYNAMICS

We consider dynamic models where the same game is played repeatedly over
time. One can roughly classify dynamic models in game theory and economic
theory into three classes: learning dynamics, evolutionary dynamics, and adap-
tive heuristics.

2.1. Learning Dynamics

In a (Bayesian) learning dynamic, each player starts with a prior belief on the
relevant data (the “state of the world”), which usually includes the game being
played and the other players’ types and (repeated-game) strategies.2 Every pe-
riod, after observing the actions taken (or, more generally, some information
about these actions), each player updates his beliefs (using Bayes’ rule). He
then plays optimally given his updated beliefs.

Such dynamics are the subject of much study; see, for example, the books
of Fudenberg and Levine (1998, Chapter 8) and Young (2004, Chapter 7).
Roughly speaking, conditions like “the priors contain a grain of truth” guar-
antee that in the long run play is close to the Nash equilibria of the repeated
game; see Kalai and Lehrer (1993) and the ensuing literature.3

2.2. Evolutionary Dynamics

Here every player i is replaced by a population of individuals, each playing
the given game in the role of player i. Each such individual always plays the
same one-shot action (this fixed action is his “genotype”). The relative fre-
quencies of the various actions in population i may be viewed as a mixed action

2To distinguish the choices of the players in the one-shot game and those in the repeated game,
we refer to the former as actions and to the latter as strategies.

3Under weaker assumptions, Nyarko (1994) shows convergence to correlated equilibria.
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of player i in the one-shot game (for instance, one third of the population hav-
ing the “gene” L and two thirds the “gene” R corresponds to the mixed action
(1/3�2/3) on (L�R)); one may think of the mixed action as the action of a
randomly chosen individual.

Evolutionary dynamics are based on two main “forces”: selection and muta-
tion. Selection is a process whereby better strategies prevail; in contrast, muta-
tion, which is rare relative to selection, generates actions at random, whether
better or worse. It is the combination of the two that allows for natural adap-
tation: new mutants undergo selection, and only the better ones survive. Of
course, selection includes many possible mechanisms: biological (the payoff
determines the number of descendants, and thus the share of better strategies
increases), social (imitation, learning), individual (experimentation, stimulus-
response), and so on. What matters is that selection is “adaptive” or “improv-
ing,” in the sense that the proportion of better strategies is likely to increase.

Dynamic evolutionary models have been studied extensively; see, for exam-
ple, the books of Fudenberg and Levine (1998, Chapters 3 and 5), Hofbauer
and Sigmund (1998), Weibull (1995), and Young (1998).

2.3. Adaptive Heuristics

We use the term heuristics for rules of behavior that are simple, unsophis-
ticated, simplistic, and myopic (unlike the “learning” models of Section 2.1
above). These are “rules of thumb” that the players use to make their decisions.
We call them adaptive if they induce behavior that reacts to what happens in
the play of the game, in directions that, loosely speaking, seem “better.” Thus,
always making the same fixed choice, and always randomizing uniformly over
all possible choices, are both heuristics. But these heuristics are not adaptive,
since they are not at all responsive to the situation (i.e., to the game being
played and the behavior of the other participants). In contrast, fictitious play
is a prime example of an adaptive heuristic: at each stage one plays an action
that is optimal against the frequency distribution of the past actions of the
other players.

Adaptive heuristics commonly appear in behavioral models, such as rein-
forcement, feedback, and stimulus-response. There is a large literature, both
experimental and theoretical, on various adaptive heuristics and their rela-
tive performance in different environments; see, for example, Fudenberg and
Levine (1998, Chapters 2 and 4) and the literature in psychology (where this is
sometimes called “learning”; also, the term “heuristics and biases” is used by
Kahneman and Tversky—e.g., see Kahneman, Slovic, and Tversky (1982)).

2.4. Degrees of Rationality

One way to understand the distinctions between the above three classes of
dynamics is in terms of the degree of rationality of the participants; see Fig-
ure 1. Rationality is viewed here as a process of optimization in interactive
(multiplayer) environments.
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FIGURE 1.—A classification of dynamics.

Learning dynamics require high levels of rationality. Indeed, repeated-game
strategies are complex objects; even more so are beliefs (i.e., probability distri-
butions) over such objects; moreover, in every period it is necessary to update
these beliefs, and, finally, to compute best replies to them.

At the other extreme are evolutionary dynamics. Here the individuals in each
population do not exhibit any degree of rationality; their behavior (“pheno-
type”) is completely mechanistic, dictated by their “genotype.” They do not
compute anything—they just “are there” and play their fixed actions. What
may be viewed as somewhat rational is the aggregate dynamic of the popula-
tion (particularly the selection component), which affects the relative propor-
tions of the various actions.

Adaptive heuristics lie in between: on the one hand, the players do perform
certain usually simple computations given the environment, and so the behav-
ior is not fixed as in evolutionary dynamics; on the other hand, these computa-
tions are far removed from the full rationality and optimization that is carried
out in learning models.

3. PRELIMINARIES

The setup is as follows. The basic game Γ is an N-person game in strategic
(or normal) form. N is a positive integer, the players are i = 1�2� � � � �N , and
to each player i there corresponds a set of actions Si and a payoff (or utility)
function ui :S → R, where S := S1 × S2 × · · · × SN is the set of N-tuples of
actions (“action combinations” or “action profiles”) and R denotes the real
line. When dealing with a fixed player i� it is at times convenient to take his set
of actions to be4 Si = {1�2� � � � �m}.

The game Γ is repeatedly played over time. In a discrete-time dynamic model,
the time periods are t = 1�2� � � � � and the action played by player i at time t
is denoted sit , with st = (s1

t � s
2
t � � � � � s

N
t ) standing for the N-tuple of actions at

period t (these are the actual realized actions when randomizations are used).
In a continuous-time dynamic model, the time t becomes a continuous variable.
We will refer to Γ as the stage (or one-shot) game.

A standard assumption is that of perfect monitoring: at the end of each pe-
riod t� all players observe st , the actions taken by everyone.

4The number of actions m≡mi may be different for different players.
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Some notations: when s = (s1� s2� � � � � sN) ∈ S is an N-tuple of actions, we
write si for its ith coordinate and s−i for the (N − 1)-tuple of coordinates of all
players except i (so s−i ∈ S−i := S1 ×· · ·×Si−1 ×Si+1 ×· · ·×SN and s = (si� s−i)).
When randomized strategies are used, σit denotes the mixed action of player i at
time t; thus σit ≡ (σit (1)�σit (2)� � � � �σit (m)) ∈ ∆(Si) := {x ∈ Rm

+ :
∑m

k=1 x(k)= 1}
is a probability distribution over Si = {1�2� � � � �m}� with σit (k) denoting, for
each k in Si� the probability that the action sit taken by player i at time t is k.

4. REGRET MATCHING

We start by considering our basic adaptive heuristic, “regret matching,” in-
troduced in Hart and Mas-Colell (2000). While it may appear to be quite spe-
cial, we will see later (in Sections 7 and 10) that the results generalize to a wide
class of heuristics—and our comments and interpretations in Sections 4 and 5
apply to all of them.

Regret matching is defined by the following rule:

Switch next period to a different action
with a probability that is

proportional to the regret for that action,
where regret is defined as the increase in payoff

had such a change always been made in the past.

That is, consider player i at time T + 1. Denote by5 U the average payoff
that i has obtained up to now, i.e.,

U := 1
T

T∑
t=1

ui(st)�(1)

and let j = siT in Si be the action that i played in the previous period T . For
each alternative action k �= j in Si� let V (k) be the average payoff i would have
obtained had he played k instead of j every time in the past that he actually
played j; i.e.,

V (k) := 1
T

T∑
t=1

vt�(2)

where

vt :=
{
ui(k� s−it )� if sit = j,
ui(sit� s

−i
t )≡ ui(st)� if sit �= j.

(3)

5We drop the indices for readability (thus Ui
T is written U� and similarly for V i

T (k), v
i
t(j�k),

RiT (k)� and so on).
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The regret R(k) for action k is defined as the amount, if any, by which V (k)
exceeds the actual payoff U :

R(k) := [V (k)−U]+�(4)

where [x]+ := max{x�0} is the “positive part” of x� (The actual computation
of the regrets consists of a simple updating from one period to the next; see
Section 10.7.)

Regret matching stipulates that each action k different from the previous pe-
riod’s action j is played with a probability that is proportional to its regret
R(k)� and, with the remaining probability, the same action j as last period is
played again. That is, let c > 0 be a fixed constant;6 then the probability of
playing the action k at time T + 1 is given by

σT+1(k) :=
{
cR(k)� if k �= j,
1 − ∑

k : k �=j cR(k)� if k= j.(5)

There are no requirements on the action in the first period: σ1 is arbitrary.
Thus, player i considers whether to continue to play next period the same ac-

tion j as in the previous period, or to switch to a different action k. Specifically,
he looks at what would have happened to his average payoff had he always re-
placed j by k in the past:7 he compares what he got, U� to what he would have
gotten, V (k)� If the alternative payoff is no higher, i.e., if V (k) ≤ U� then he
has no regret for k (the regret R(k) equals 0) and he does not switch to ac-
tion k� If the alternative payoff is higher, i.e., if V (k) > U , then the regret for
k is positive (R(k) equals the increase V (k)− U) and i switches to action k
with a probability that is proportional to this regret.

In particular, if i has no regret (i.e., all regrets R(k) equal 0), then i plays
for sure the same action j as last period. If some regrets are positive, then the
higher the regret for some action, the higher the probability of switching to
that action next period.

The main result of Hart and Mas-Colell (2000) is:

THEOREM 1—Regret Matching: Let each player play regret matching. Then
the joint distribution of play converges to the set of correlated equilibria of the stage
game.

6For instance, any c less than 1/(2mM) will do, where m is the number of actions of i and
M = maxs∈S |ui(s)| bounds the possible payoffs. Such a c guarantees that (5) yields a probability
distribution over Si and, moreover, that the probability of j is strictly positive.

7Since one is looking at the long-run average payoff, it makes sense to consider replacing j
by k not just in the previous period, but also in all other periods in the past when j was played;
after all, the effect of one period goes to zero as T increases. (Interestingly, one-period-regret
matching yields essentially the evolutionary “replicator dynamic”; see Schlag (1998).)
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The “joint distribution of play” (also known as the “empirical distribution”
or “sample distribution”) measures the relative frequency of each N-tuple of
actions being played; i.e., the joint distribution of play for the first T periods is
a probability distribution zT on S, where, for each s in S,

zT (s) := 1
T

∣∣{1 ≤ t ≤ T : st = s}
∣∣

is the proportion of periods up to T in which the combination of actions s has
been played.8 See Section 4.1 for a discussion of the role of the joint distribu-
tion of play.

The concept of correlated equilibrium was introduced by Aumann (1974); it
is a Nash equilibrium where the players may receive payoff-irrelevant signals
before playing the game. This is discussed in Section 6.

The Regret Matching Theorem says that, for almost every history of play, the
sequence of joint distributions of play z1� z2� � � � � zT � � � � converges to the set
of correlated equilibria CE of Γ� This means that zT is close to a correlated
equilibrium, or, equivalently, is a correlated approximate equilibrium, for all T
large enough. The convergence is to the set CE, not necessarily to a point in
that set. See Section 10.8 for formal statements.

Note that it is the empirical distributions that become essentially correlated
equilibria—not the actual play. Our results imply that the long-run statistics
of play of heuristics-playing players (such as “regret-matchers”) and of fully
rational players (who play a correlated equilibrium each period) are indistin-
guishable.

The proof of the Regret Matching Theorem consists in showing, first, that
all regrets vanish in the limit (this uses arguments suggested by Blackwell’s
approachability; see the Appendix) and, second, that such “no regret” situa-
tions precisely correspond to correlated equilibria; see Section 10.2 for further
details.

It is interesting to note that as the regrets become small, so does the prob-
ability of switching (see (5)). Therefore, regret matching leads to longer and
longer stretches of time in which the action is constant, and the play exhibits
much “inertia” and infrequent switches. (This is similar to the behavior of ficti-
tious play in the classic 3 × 3 example of Shapley (1964), where the play cycles
among six outcomes with increasingly longer time intervals in each cycle.)

Finally, where does the “correlation” come from? The answer is, of course,
from the commonly observed history of play. Indeed, each player’s action is
determined by his regrets, which are in turn determined by the history.9

8For a finite set A� we denote by |A| the number of elements of A.
9At this point one may be tempted to conclude that, since the signal is common (all players

observe the history of play), the convergence is in fact to publicly correlated equilibria (cf. Sec-
tion 6). That is not so however: our players are not fully rational; they apply heuristics, whereby
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4.1. Joint Distribution of Play

At each stage the players randomize independently of one another. This
however does not imply that the joint distribution of play should be indepen-
dent across players (i.e., the product of its marginal distributions) or that it
should become independent in the long run.10 The reason is that the probabil-
ities the players use may change over time. To take a simple example, assume
that in odd periods player 1 chooses T or B with probabilities (3/4�1/4) and,
independently, player 2 chooses L or R with probabilities (3/4�1/4), whereas in
even periods these probabilities become (1/4�3/4) for each player. The joint
distribution of play will then converge almost surely to (5/16�3/16�3/16�5/16)
(for TL, TR, BL, and BR, respectively)—which is not the product of its marginals,
(1/2�1/2) on (T�B) and (1/2�1/2) on (L�R).

The joint distribution of play is fully determined by the history of play, which
players standardly observe. So having players determine their actions based on
the joint distribution of play (rather than just the marginal distributions) does
not go beyond the “standard monitoring” assumption that is commonly used.
It is information that the players possess anyway.

Finally—and this is a behavioral observation—people do react to the joint
distribution. Think of a two-person Matching Pennies game, where, say, half
the time they play HH, and half the time TT. The players will very quickly no-
tice this, and at least one of the players (the “mismatching” player in this case)
will change his behavior; but, if he were to look only at the marginal distribu-
tions of play, he would see (1/2�1/2) for each player, and have no reason to
change. In general, people are very much aware of coincidences, signals, com-
munications, and so on (even to the point of interpreting random phenomena
as meaningful)—which just goes to show that they look at the joint distribution,
and not only at the marginals.

To summarize: reasonable models of play can—and should—take into ac-
count the joint distribution of play.

5. BEHAVIORAL ASPECTS

Regret matching, as well as its generalizations below, embodies commonly
used rules of behavior. For instance, if all the regrets are zero (“there is no
regret”), then a regret matching player will continue to play the same action of
the previous period. This is similar to common behavior, as expressed in the
saying “Never change a winning team.”

When some regrets are positive, actions may change—with probabilities that
are proportional to the regrets: the higher the payoff would have been from

each one uses the history to determine only his own regrets. Since all regrets are based on the
common history, they are correlated among the players—but except for special cases they are far
from being fully correlated.

10This point is, of course, not new; see, for instance, Fudenberg and Kreps (1988, 1993).
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switching to another action in the past, the higher the tendency is to switch to
that action now. Again, this seems to fit standard behavior; we have all seen
ads of the sort “Had you invested in A rather than B, you would have gained
X more by now. So switch to A now!” (and, the larger X is, the larger the size
of the ad).

It has been observed that people tend to have too much “inertia” in their de-
cisions: they stick to their current state for a disproportionately long time (as
in the “status quo bias”; see Samuelson and Zeckhauser (1988) and, recently,
Moshinsky (2003)). Regret matching has “built-in” inertia: the probability of
not switching (i.e., repeating the previous period’s action) is always strictly pos-
itive (see footnote 6). Moreover, as we saw in Section 4, regret matching leads
to behavior where the same action is played over and over again for long time
intervals.

Regret matching is not very sophisticated; players neither develop beliefs
nor reply optimally (as in the learning dynamics of Section 2.1). Rather, their
rule of behavior is simple and defined directly on actions; “propensities” of play
are adjusted over time. In the learning, experimental, and behavioral literature
there are various models that bear a likeness to regret matching; see Bush
and Mosteller (1955), Roth and Erev (1995), Erev and Roth (1998), Camerer
and Ho (1998, 1999), and others; probably the closest are the models of Erev–
Roth. Also, incorporating regret measures into the utility function has been
used to provide alternative theories of decision-making under uncertainty; see
Bell (1982) and Loomes and Sugden (1982).

Recently, the study of Camille et al. (2004) has shown that certain measures
of regret influence choices, and that the orbitofrontal cortex is involved in ex-
periencing regret.

In summary, while we have arrived at regret matching and the other heuris-
tics of this paper from purely theoretical considerations, it turns out that they
have much in common with actual rules of behavior that are frequently used in
real decisions.

6. CORRELATED EQUILIBRIA

In this section we leave the dynamic framework and discuss the notion of
correlated equilibrium. Its presentation (which may well be skipped by the ex-
pert reader) is followed by a number of comments showing that this concept,
belonging to the realm of full rationality, is particularly natural and useful.

We thus consider the one-shot game Γ . Assume that, before playing the
game Γ , each player i receives a signal θi� These signals may be correlated: the
combination of signals θ = (θ1� θ2� � � � � θN) occurs according to a joint proba-
bility distribution F� commonly known to all players. Moreover, the signals do
not affect the payoffs of the game. Can this affect the outcome?

Indeed, it can: the players may use these signals to correlate their choices.
For a simple example, take the Battle of the Sexes game (see Figure 2). Con-
sider a public coin toss (i.e., the common signal θ1 = θ2 is either H or T, with
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FIGURE 2.—The Battle of the Sexes game (left) and a (publicly) correlated equilibrium (right).

probabilities (1/2�1/2)), after which both go to the hockey game if H and to
the theater if T; this constitutes a Nash equilibrium of the extended game (with
the signals)—which cannot be achieved in the original game.

Formally, a correlated equilibrium (introduced by Aumann (1974)) of the
game Γ is a Nash equilibrium of a “pregame signals extension” of Γ . Clearly,
only the probability distribution of the signals matters. Let thus ψ be the in-
duced probability distribution on the N-tuples of actions; i.e., for each action
combination s in S, let ψ(s) be the probability of all those signal combinations
after which the players choose11 s. The conditions for ψ to be a correlated
equilibrium are that∑

s−i∈S−i
ψ(j� s−i)ui(j� s−i)≥

∑
s−i∈S−i

ψ(j� s−i)ui(k� s−i)(6)

for all players i and all actions j�k in Si� Indeed, if there are no deviations,
then the expected payoff of player i when he chooses action j is the expression
on the left-hand side; if i were the only one to deviate and choose instead
of j some other action k� then his expected payoff would be the expression
on the right-hand side. As a canonical setup, think of a “referee” who chooses,
according to the distribution ψ, anN-tuple of actions s = (s1� s2� � � � � sN) for all
players, and then sends to each player i the message “si” (a “recommendation
to play si”); a correlated equilibrium ensues if for each player it is always best
to follow the recommendation (i.e., to play the recommended si), assuming
that all other players also do so.

We denote by CE the set of correlated equilibria; it is a subset of ∆(S), the
set of probability distributions on S. If the inequalities (6) hold only within
some ε > 0� we will say that ψ is a correlated approximate equilibrium; more
precisely, a correlated ε-equilibrium.

In the special case where the signals are independent across players (i.e.,
when the joint distribution ψ satisfies ψ(s) = ψ1(s1) · ψ2(s2) · � � � · ψN(sN) for
all s, with ψi denoting the ith marginal of ψ), a correlated equilibrium is just
a Nash equilibrium of Γ . At the other extreme, when the signals are fully cor-
related (i.e., common, or public—like “sunspots”), each signal must necessarily
be followed by a Nash equilibrium play; hence such correlated equilibria—

11In general, since players may randomize their choices, ψ(s) is the corresponding total prob-
ability of s.
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FIGURE 3.—A correlated equilibrium in the Chicken game.

called publicly correlated equilibria—correspond to weighted averages (convex
combinations) of Nash equilibria of Γ , as in the Battle of the Sexes example of
Figure 2.

In general, when the signals are neither independent nor fully correlated,
new equilibria arise. For example, in the Chicken game, there is a correlated
equilibrium that yields equal probabilities of 1/3 to each action combination
except (STAY� STAY) (see Figure 3). Indeed, let the signal to each player be
L or S; think of this as a recommendation to play LEAVE or STAY, respectively.
When the row player gets the signal L, he assigns a (conditional) probability
of 1/2 to each one of the two pairs of signals (L�L) and (L� S); so, if the column
player follows his recommendation, then the row player gets an expected pay-
off of 4 = (1/2)5 + (1/2)3 from playing LEAVE, and only 3 = (1/2)6 + (1/2)0
from deviating to STAY. When the row player gets the signal S, he deduces
that the pair of signals is necessarily (S�L), so if the column player indeed plays
LEAVE then the row player is better off choosing STAY. Similarly for the column
player.

For examples of correlated equilibria in biology, see Hammerstein and
Selten (1994, Section 8.2 and the references there) and Shmida and Peleg
(1997) (speckled wood butterflies, studied by Davies (1978), “play” the
Chicken game). Other examples can be found in team sports, like basketball
and football. Teams that are successful due to their so-called “team play” de-
velop signals that allow correlation among their members but yield no informa-
tion to their opponents.12 For a stylized example, consider a signal that tells the
team members whether to attack on the left or on the right—but is unknown
(or unobservable) to the opposing team.

In fact, signals are all around us—whether public, private, or mixed. These
signals are mostly irrelevant to the payoffs of the game that is being played.
Nevertheless, it is hard to exclude the possibility that they may find their way
into the equilibrium—so the notion of correlated equilibrium becomes all the
more relevant.

Finally, Aumann (1987) shows that all players always being “Bayesian ratio-
nal” is equivalent to their playing a correlated equilibrium (under the “com-

12These signals may well be largely inexplicit and unconscious; they are recognized due to the
many repeated plays of the team.
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mon prior” or “consistency” assumption of Harsanyi (1967–1968)).13 Corre-
lated equilibrium is thus a concept that embodies full rationality.

7. GENERALIZED REGRET MATCHING

The regret matching strategy of Section 4 appears to be very specific: the play
probabilities are directly proportional to the regrets. It is natural to enquire
whether this is necessary for our result of Theorem 1. What would happen
were the probabilities proportional to, say, the square of the regrets? Another
issue is the connection to other dynamics leading to correlated equilibria, par-
ticularly variants of conditional smooth fictitious play (Fudenberg and Levine
(1999a); see Section 10.4 below).

This leads us to consider a large class of adaptive heuristics that are based on
regrets. Specifically, instead of cR(k) in (5), we now allow functions f (R(k))
of the regret R(k) that are sign-preserving, i.e., f (x) > 0 for x > 0 and f (0)= 0.

A strategy σ of player i is called a generalized regret matching strategy if the
action at time T + 1 is chosen according to probabilities

σT+1(k) :=
{
f (R(k))� if k �= j,
1 − ∑

k : k �=j f (R(k))� if k= j,(7)

where f is a Lipschitz continuous sign-preserving real function,14 j = siT is the
previous period’s action, and R(k) is the regret for action k (as given in Sec-
tion 4); again, the play in the first period is arbitrary. The following result is
based on Hart and Mas-Colell (2001a, Sections 3.2 and 5.1) and proved in
Cahn (2004, Theorem 4.1):

THEOREM 2—Generalized Regret Matching: Let each player play a general-
ized regret matching strategy.15 Then the joint distribution of play converges to the
set of correlated equilibria of the stage game.

In fact, the full class of generalized regret matching strategies (for which
Theorem 2 holds) is even larger; see Section 10.3. In particular, one may use a
different fk�j for each pair k �= j, or allow fk�j to depend on the whole vector of
regrets and not just on the kth regret.

As a special case, consider the family of functions f (x) = cxr� where r ≥ 1
and c > 0 is an appropriate constant.16 At one extreme, when r = 1� this is

13In this light, our result may appear even more surprising: non-Bayesian and far-from-rational
behavior leads in the long run to outcomes that embody full Bayesian rationality and common
prior.

14There is L such that |f (x)− f (y)| ≤L|x− y| for all x�y , and also
∑

k f (R(k)) < 1.
15Different players may use different such strategies.
16The condition r ≥ 1 is needed for Lipschitz continuity.
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regret matching. At the other extreme, the limit as r → ∞ is such that the
switching probability 1 − σ(j) is equally divided among those actions k �= j
with maximal regret (i.e., with R(k) = max	�=j R(	)). This yields a variant of
fictitious play, which however no longer satisfies the continuity requirement;
therefore this strategy does not belong to our class and, indeed, the result of
Theorem 2 does not hold for it (see Section 10.4). To regain continuity one
needs to smooth it out, which leads to smooth conditional fictitious play; see
Cahn (2004, Section 5).

8. UNCOUPLED DYNAMICS

At this point it is natural to ask whether there are adaptive heuristics that
lead to Nash equilibria (the set of Nash equilibria being, in general, a strict
subset of the set of correlated equilibria).

The answer is positive for special classes of games. For instance, two-person
zero-sum games, two-person potential games, dominance-solvable games, and
supermodular games are classes of games where fictitious play or general
regret-based strategies make the marginal distributions of play converge to the
set of Nash equilibria of the game (see Hofbauer and Sandholm (2002) and
Hart and Mas-Colell (2003a) for some recent work). But what about general
games? Short of variants of exhaustive search (deterministic or stochastic),17

there are no general results in the literature. Why is that so?
A natural requirement for adaptive heuristics (and adaptive dynamics in

general) is that each player’s strategy not depend on the payoff functions of the
other players; this condition was introduced in Hart and Mas-Colell (2003b)
and called uncoupledness. Thus, the strategy may depend on the actions of the
other players—what they do—but not on their preferences—why they do it.
This is an informational requirement: actions are observable, utilities are not.
Almost all dynamics in the literature are indeed uncoupled: best-reply, better-
reply, payoff-improving, monotonic, fictitious play, regret-based, replicator dy-
namics, and so on.18 They all use the history of actions and determine the play
as some sort of “good” reply to it, using only the player’s own utility function.

Formally, we consider here dynamic systems in continuous time,19 of the gen-
eral form

ẋ(t)= F(x(t);Γ )�(8)

17See Foster and Young (2003a, 2003b), Kakade and Foster (2004), Young (2004), Hart and
Mas-Colell (2004), and Germano and Lugosi (2004).

18One example of a “non-uncoupled” dynamic is to compute a Nash equilibrium x̄ =
(x̄1� x̄2� � � � � x̄N) and then to let each player i converge to x̄i; of course, the determination of x̄
generally requires knowing all payoff functions.

19The results up to now on regret matching and generalized regret matching carry over to the
continuous-time setup—see Section 10.6. For a discrete-time treatment of “uncoupledness,” see
Hart and Mas-Colell (2004).
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where Γ is the game and the state variable is x(t)= (x1(t)�x2(t)� � � � � xN(t)),
an N-tuple of (mixed) actions in ∆(S1) × ∆(S2) × · · · × ∆(SN); equivalently,
this may be written as

ẋi(t)= Fi(x(t);Γ ) for each i ∈N�(9)

where F = (F 1�F 2� � � � �FN). Various dynamics can be represented in this way;
the variable xi(t)may be, for instance, the choice of i at time t, or the long-run
average of his choices up to time t (see Hart and Mas-Colell (2003b, foot-
note 3)).

To state the condition of “uncoupledness,” fix the set of players N and the
action spaces S1� S2� � � � � SN; a game Γ is thus given by its payoff functions
u1�u2� � � � � uN . We consider a family of games U (formally, a family ofN-tuples
of payoff functions (u1�u2� � � � � uN)). A general dynamic (9) is thus

ẋi(t)= Fi(x(t);u1�u2� � � � � uN
)

for each i ∈N�
We will call the dynamic F = (F 1�F 2� � � � �FN) uncoupled on U if each Fi de-
pends on the game Γ only through the payoff function ui of player i, i.e.,

ẋi(t)= Fi(x(t);ui) for each i ∈N�
That is, let Γ and Γ ′ be two games in the family U for which the payoff function
of player i is the same (i.e., ui(Γ )= ui(Γ ′)); uncoupledness requires that, if the
current state of play of all players, x(t)� is the same, then player i will adapt his
action in the same way in the two games Γ and Γ ′.

To study the impact of uncoupledness, we will deal with games that have
unique Nash equilibria; this eliminates difficulties of coordination (different
players may converge to different Nash equilibria). If there are dynamics that
always converge to the set of Nash equilibria, we can apply them in particular
when there is a unique Nash equilibrium.

We thus consider families of games U such that each game Γ in U possesses
a unique Nash equilibrium, which we denote x̄(Γ )� A dynamic F is Nash-
convergent on U if, for each game Γ in U� the unique Nash equilibrium x̄(Γ )
is a rest-point of the dynamic (i.e., F(x̄(Γ );Γ )= 0), which is moreover stable
for the dynamic (i.e., limt→∞ x(t) = x̄(Γ ) for any solution x(t) of (8); some
regularity assumptions are used here to facilitate the analysis).

The result of Hart and Mas-Colell (2003b) is:

THEOREM 3—Uncoupled Dynamics: There exist no uncoupled dynamics that
guarantee Nash convergence.

It is shown that there are simple families of games U (in fact, arbitrarily small
neighborhoods of a single game), such that every uncoupled dynamic on U is
not Nash-convergent; i.e., the unique Nash equilibrium is unstable for every



ADAPTIVE HEURISTICS 1415

uncoupled dynamic. The properties of uncoupledness and Nash-convergence
are thus incompatible, even on simple families of games (and thus, a fortiori,
on any larger families).

It follows that there can be no uncoupled dynamics that always converge to
the set of Nash equilibria, or, for that matter, to the convex hull of Nash equi-
libria (which is the set of publicly correlated equilibria), since, in our games,
both sets consist of the single Nash equilibrium.

The result of Theorem 3 indicates why dynamics that are to some extent
“adaptive” or “rational” cannot always lead to Nash equilibria (see the refer-
ences in Hart and Mas-Colell (2003b, Section IV(d))). In contrast, correlated
equilibria may be obtained by uncoupled dynamics, such as regret matching
and the other adaptive heuristics of this paper.20

9. SUMMARY

Our results can be summarized as follows:

1. There are simple adaptive heuristics that always lead to correlated equilibria
(the Regret Matching Theorem in Section 4).

2. There is a large class of adaptive heuristics that always lead to correlated
equilibria (the Generalized Regret Matching Theorem in Section 7).

3. There can be no adaptive heuristics that always lead to Nash equilibria, or to
the convex hull of Nash equilibria (the Uncoupled Dynamics Theorem in
Section 8).

Taken together, these results establish a solid connection between the dy-
namic approach of adaptive heuristics and the static approach of correlated
equilibria.

From a more general viewpoint, the results show how simple and far-from-
rational behavior in the short run may well lead to fully rational outcomes in
the long run. Adaptive heuristics are closely related to behavioral models of
what people do, whereas correlated equilibria embody fully rational consid-
erations (see Sections 5 and 6, respectively). Our results show that rational
behavior, which has been at times quite elusive and difficult to exhibit in single
acts, may nevertheless be obtained in the long run.21

In short, adaptive heuristics may serve as a natural bridge connecting “be-
havioral” and “rational” approaches.

20This suggests a “Coordination Conservation Law”: some form of coordination must be
present, either in the equilibrium concept (such as correlated equilibrium) or, if not (as in the case
of Nash equilibrium), then in the dynamics leading to it (see Hart and Mas-Colell (2003b)). As a
further illustration, consider the learning dynamics of Section 2.1; while they are usually uncou-
pled, the convergence to Nash equilibria is obtained there only under certain initial conditions—
such as “beliefs that contain a grain of truth”—which are in fact a form of coordination.

21Aumann, in various lectures since the late nineties (e.g., Aumann (1997); see also his inter-
view in Hart (2005)), has argued that rationality should be examined in the context of rules rather
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9.1. Directions of Research

There are many interesting questions that arise in connection with this re-
search. We will mention a few.

First, we need to further understand the relations between dynamics and
equilibria. Which equilibria are obtained from adaptive heuristics and which
are not? At this point, we only know that the joint distribution of play converges
to the set of correlated equilibria, and that it converges to a point only when it
is a pure Nash equilibrium.22 We do not know if all correlated equilibria are
obtained from adaptive heuristics, or if only a strict subset of them are; recall
that the Uncoupled Dynamics Theorem implies that the set of limit points
can be neither the set of Nash equilibria nor its convex hull. A more refined
question is to characterize which dynamics lead to which equilibria. Finally,
one needs to understand the behavior of these dynamics not just in the limit,
but also along the way.

Second, alternative notions of regret—in particular, those that are ob-
tained by different ways of time-averaging, like discounting, and finite recall
or memory—should be analyzed. For such an analysis of approachability, see
Lehrer and Solan (2003).

Third, one needs to strengthen the ties between the behavioral, experimen-
tal, and empirical approaches on the one hand, and the theoretical and rational
approaches on the other. Adaptive heuristics that arise from theoretical work
may be tested in practice, and theoretical work may be based on the empirical
findings.

Fourth, some of the focus needs to be shifted from Nash equilibria to the
more general class of correlated equilibria—in both static and dynamic setups.
Problems of coordination, correlation, and communication have to be studied
extensively.

Finally, we emphasize again (see Section 4.1) that looking at what each
player does separately—i.e., considering the mixed actions independently—
misses much relevant information; one needs to look at the joint distribution
of play.23

10. ADDITIONAL RESULTS

This final section is devoted to a number of additional results and discussions
of related issues.

than acts; “rational rules” (i.e., rules of behavior that are best when compared to other rules) may
well lead to single acts that are not rational. Here, we argue that rationality should be examined
also in the long run; single acts that are not rational may nevertheless generate long-run behavior
that is rational.

22See Hart and Mas-Colell (2000, p. 1132, comment (4)).
23Unfortunately, almost all the experimental and behavioral literature deals only with the mar-

ginal distributions. (Two books where the joint distribution appears are Suppes and Atkinson
(1960) and Rapoport, Guyer, and Gordon (1976).)
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10.1. Hannan Consistency and the Hannan Set

The regret for action k has been defined relative to the previous period’s
action j. One may consider a rougher measure instead: the increase in average
payoff, if any, were one to replace all past plays, and not just the j-plays, by k.
We thus define the unconditional regret for action k as

R̃(k) := [Ṽ (k)−U]+�(10)

where

Ṽ (k) := 1
T

T∑
t=1

ui(k� s−it )(11)

and U is the average payoff (see (1)). Unconditional regret matching prescribes
play probabilities at each period that are directly proportional to the vector of
unconditional regrets; i.e.,

σT+1(k) := R̃(k)∑m

	=1 R̃(	)
for each k= 1�2� � � � �m

(of course, this applies only when there is some positive unconditional regret,
i.e., R̃(k) > 0 for some k; σT+1 is arbitrary otherwise). Unlike with regret
matching, here we do not use a constant proportionality factor c� but rather
normalize the vector of unconditional regrets to get a probability vector.

A strategy of player i is said to be Hannan-consistent (following Hannan
(1957)24) if it guarantees, for any strategies of the other players, that all the
unconditional regrets of i become nonnegative in the limit, i.e., R̃(k)→ 0 (al-
most surely) as T → ∞ for all k= 1�2� � � � �m� We have:

PROPOSITION 4: Unconditional regret matching is Hannan-consistent. More-
over, if all players play unconditional regret matching, then the joint distribution
of play converges to the Hannan set of the stage game.

Proposition 4 is Theorem B in Hart and Mas-Colell (2000). The proof
applies Blackwell’s Approachability Theorem 5 (see the Appendix) to the
m-dimensional vector of unconditional regrets (R̃(1)� R̃(2)� � � � � R̃(m)): the
negative orthant is shown to be approachable, and unconditional regret match-
ing is the corresponding Blackwell strategy.

The Hannan set (see Hart and Mas-Colell (2003a) and Moulin and Vial
(1978)), like the set of correlated equilibria, consists of joint distributions of

24Fudenberg and Levine (1995) call this “universal consistency.”
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play (i.e., it is a subset of ∆(S)).25 In contrast to correlated equilibria, the re-
quirement now is that no player can gain unilaterally by playing a constant
action (regardless of his signal). The set of correlated equilibria is contained in
the Hannan set (and the two sets coincide when every player has at most two
strategies); moreover, the Hannan distributions that are independent across
players are precisely the Nash equilibria of the game.

Hannan-consistent strategies have been constructed by Hannan (1957),
Blackwell (1956b) (see also Luce and Raiffa (1957, pp. 482–483)), Foster and
Vohra (1993, 1998), Fudenberg and Levine (1995), and Freund and Schapire
(1999).26 Many of these strategies are smoothed-out variants of fictitious play,
which, by itself, is not Hannan-consistent; see Section 10.4.27 For a general
class of Hannan-consistent strategies, which includes the unconditional re-
gret matching of Proposition 4—apparently the simplest Hannan-consistent
strategy—as well as smooth fictitious play, see Section 10.3.

10.2. Regret Eigenvector Strategies

Returning to our (“conditional”) setup where regrets are defined relative to
the previous period’s action, Blackwell’s approachability (see the Appendix)
leads to the following construction (see Hart and Mas-Colell (2000, Sec-
tion 3)).28 Start by defining the regret R(j�k) from j to k using the same for-
mulas (1)–(4) of Section 4 for every pair j �= k (i.e., j need no longer be the
previous period’s action). Take as payoff vector them(m−1)-dimensional vec-
tor of signed regrets (i.e., before taking the positive part [·]+ in (4)). The negative
orthant turns out to be approachable, and the Blackwell strategy translates into
playing at each stage a randomized action σ that satisfies∑

k : k �=j
σ(j)R(j�k)=

∑
k : k �=j

σ(k)R(k� j) for all j = 1�2� � � � �m�(12)

That is, σ is a “regret-invariant vector”: for all j� the average regret from j
equals the average regret to j� Equivalently, put q(j�k) := cR(j�k) for j �= k
and q(j� j) := 1−∑

k : k �=j q(j�k)� where c > 0 is large enough to guarantee that
q(j� j) > 0 for all j; thenQ= (q(j�k))j�k=1�2�����m is a stochastic (or Markov) ma-
trix and (12) is easily seen to be equivalent to σ = σQ� Thus σ is a left
eigenvector of Q (corresponding to the eigenvalue 1); or, regarding Q as the
one-step transition probability matrix of a Markov chain, σ is an invariant vec-
tor of Q.

25Hannan-consistency is a property of strategies in the repeated game, whereas the Hannan set
is a concept defined for the one-shot game.

26See also the references in Hart and Mas-Colell (2001a, footnote 6) for related work.
27The original strategy of Hannan (1957) essentially uses at each stage an average of the best

replies to a small neighborhood of the distribution of the opponents’ past play.
28Interestingly, similar “regrets” (on probabilistic forecasts) as well as formula (12) appear in

the earlier work—not based on approachability—of Foster and Vohra (1998); see Section 10.9.
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We will call a strategy satisfying (12) a regret eigenvector strategy. By compar-
ison, regret matching is defined by σ(k)= q(j�k)� which amounts to using Q
as a Markov one-step transition probability matrix (from the previous period’s
action j to the current period’s action k).29

Hart and Mas-Colell (2000, Corollary to Theorem A) show that if every
player plays a regret eigenvector strategy, then, again, the joint distribution
of play converges almost surely to the set of correlated equilibria. While the
proof of this result is much simpler than that of Theorem 1, we do not regard
the regret eigenvector strategies as heuristics (since they require computing
each period an eigenvector of a matrix Q that moreover changes over time).

10.3. Generalized Regret Matching Strategies

It is convenient to consider first the “unconditional” Hannan setup of Sec-
tion 10.1. Hart and Mas-Colell (2001a) characterize the class of generalized
unconditional regret strategies, which are Hannan-consistent, as follows. For
each k= 1�2� � � � �m there is a function fk defined on the m-dimensional vec-
tor of signed regrets x = (Ṽ (1) − U� Ṽ (2) − U� � � � � Ṽ (m) − U)� such that
fk is continuous,

∑m

k=1 xkfk(x) > 0 for all x � 0, and the vector of functions
f = (f1� f2� � � � � fm) is integrable (i.e., there exists a continuously differen-
tiable function P : Rm → R� a “potential function,” such that fk = ∂P/∂xk for
all k, or f is the gradient ∇P of P). Finally, the strategy is given by σ(k) =
fk(x)/

∑m

	=1 f	(x) for each k= 1�2� � � � �m� (Unconditional regret matching is
obtained when P(x) = ∑m

k=1([xk]+)2.)30 The proof is based on characterizing
universal approachability strategies.

Next, in the “conditional” setup, the generalization proceeds in two steps.
The first step yields generalized regret eigenvector strategies, which are ob-
tained by replacing each R(j�k) in (12) with a function fj�k(R) defined on the
m(m − 1)-dimensional vector of (signed) regrets R� such that the vector of
m(m−1) functions (fj�k)j �=k is the gradient ∇P of a continuously differentiable
potential function P with x · ∇P(x) > 0 for all x � 0 (again, these strategies
are too complex to be viewed as heuristics). In the second step, we dispose of
the computation of eigenvectors in (12) and get the full class of generalized re-
gret matching strategies: σ(k)= cfj�k(R) for k �= j and σ(j)= 1−∑

k : k �=j σ(k)�
where j is the previous period’s action. (The strategies given by (7) in Section 7
correspond to the “separable” special case where P(x)= ∑∑

j �=k F(xj�k) and
F = ∫

f .) If every player uses such a strategy, convergence to the set of corre-
lated equilibria is obtained. For precise statements and proofs, see Hart and
Mas-Colell (2001a, Section 5.1) and Cahn (2004, Theorem 4.1).

29If Q were constant over time, the Ergodic Theorem for Markov chains would imply that re-
gret matching and regret eigenvector strategies lead to essentially the same long-run distribution
of play. The proof of the Regret Matching Theorem in Hart and Mas-Colell (2000) shows that
this also holds when Q changes over time as a function of the regrets.

30See Sandholm (2004) for related work in an evolutionary setup.
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10.4. Fictitious Play and Variants

Fictitious play is an extensively studied adaptive heuristic; it prescribes play-
ing at each period a best reply to the distribution of the past play of the oppo-
nents. Now the action k is such a best reply if and only if kmaximizes Ṽ (k) or,
equivalently, the signed unconditional regret Ṽ (k) − U (see (11) and (10)).
Thus fictitious play turns out to be a function of the regrets too; however,
since choosing a maximizer does not yield a continuous function, fictitious play
does not belong to the class of unconditional regret-based strategies of Sec-
tion 10.3—and it is indeed not Hannan-consistent. Therefore some smoothing
out is needed, as in the strategies mentioned at the end of Section 10.1.

Similarly, conditional fictitious play consists of playing at each period a best
reply to the distribution of the play of the opponents in those periods where
i played the same action j as in the previous period. Smoothing this out yields
smooth fictitious play eigenvector strategies (see Fudenberg and Levine (1998,
1999a)) and smooth conditional fictitious play (see Cahn (2004, Section 4.5)),
which lead to the set of correlated approximate equilibria; for a discussion of
the reason that one gets only approximate equilibria, see Hart and Mas-Colell
(2001a, Section 4.1).

10.5. The Case of the Unknown Game

Consider now the case where player i knows initially only his set of actions Si,
and is informed, after each period of play, of his realized payoff.31 He does not
know what game he is playing: how many players there are and what their ac-
tions and payoffs are. In particular, he does not know his own payoff function—
but only the payoffs he did actually receive every period. Thus at time T + 1 he
knows the T numbers ui(s1)�u

i(s2)� � � � � u
i(sT ); in addition, he recalls what he

did in the past (i.e., his actual actions, si1� s
i
2� � � � � s

i
T in Si� and the probabilities

that he used, σi1�σ
i
2� � � � �σ

i
T in ∆(Si)). This is essentially a standard stimulus-

response setup.
At each period the player can compute his realized average payoff U� but

he cannot compute his regrets R(k) (see (2) and (4)): he knows neither what
the other players did (i.e., s−it ) nor what his payoff would have been had he
played k instead (i.e., ui(k� s−it )). We therefore define the proxy regret R̂(k) for
action k by using the payoffs he got when he did actually play k:

R̂(k) :=
[

1
T

∑
t≤T : sit=k

σit (j)

σit (k)
ui(st)− 1

T

∑
t≤T : sit=j

ui(st)

]
+

(the normalizing factor σit (j)/σ
i
t (k) is needed, roughly speaking, to offset the

possibly unequal frequencies of j and k being played in the past).

31Following a suggestion of Dean Foster; see Foster and Vohra (1993).
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In Hart and Mas-Colell (2001b) it is shown that convergence to correlated
approximate equilibria is obtained also for proxy regret matching strategies.

10.6. Continuous Time

The regret-based dynamics up to this point have been discrete-time dynamics:
the time periods were t = 1�2� � � � � It is natural to study also continuous-time
models, where the time t is a continuous variable and the change in the play-
ers’ actions is governed by appropriate differential equations. It turns out that
the results carry over to this framework (in fact, some of the proofs become
simpler). See Hart and Mas-Colell (2003a) for details.

10.7. Computing Regrets

The regrets, despite depending on the whole history, are easy to compute.
A player needs to keep record only of his m(m − 1) signed regrets DT(j�k)
(one for each j �= k) and the “calendar” time T . The updating is simply
DT(j�k) = (1 − 1/T)DT−1(j�k) + (1/T)(ui(k� s−iT ) − ui(sT )) for j = siT and
DT(j�k) = (1 − 1/T)DT−1(j�k) for j �= siT , and the regrets at time T are
RT(k)= [DT(s

i
T �k)]+.

10.8. Convergence

The convergence of the joint distributions play zT to the set of correlated
equilibria CE, i.e., zT → CE (a.s.) as T → ∞, means that32

dist(zT �CE) −→
T→∞

0 (a.s.).

That is, the sequence zT eventually enters any neighborhood of the set CE,
and stays there forever: for every ε > 0 there is a time T0 ≡ T0(ε) such that
for each T > T0 there is a correlated equilibrium within ε of zT ; i.e., there is
ψT ∈ CE with ‖zT −ψT‖< ε. Since the players randomize, all of the above are
random variables, and all statements hold with probability 1 (i.e., for almost
every history); in particular, T0 and ψT depend on the history.

An equivalent way of stating this is as follows. Given ε > 0� there is a time
T1 ≡ T1(ε) after which the joint distribution of play is always a correlated
ε-equilibrium; i.e., zT satisfies the correlated equilibrium constraints (see (6))
within ε, for all T > T1.

As for the rate of convergence, it is essentially of the order of 1/
√
T ; see

the Proof of the Approachability Theorem in the Appendix and, for more pre-
cise recent bounds, Cesa-Bianchi and Lugosi (2003) and Blum and Mansour
(2005).

32The distance between a point x and a set A is dist(x�A) := infa∈A ‖x− a‖�
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10.9. A Summary of Strategies

At this point the reader may well be confused by the plethora of regret-based
strategies that have been presented above. We therefore provide a summary,
with precise references, in Table I.

An important additional dynamic leading to correlated equilibria is the cal-
ibrated learning of Foster and Vohra (1997). Here each player computes “cal-
ibrated forecasts” on the behavior of the other players, and then plays a best
reply to these forecasts. Forecasts are calibrated if, roughly speaking, the prob-
abilistic forecasts and the long-run frequencies are close: for example, it must
have rained on approximately 75% of all days for which the forecast was
“a 75% chance of rain” (and the same holds when replacing 75% with any
other percentage). There are various ways to generate calibrated forecasts; see

TABLE I

REGRET-BASED STRATEGIES

Correlated Equilibria Hannan Consistency
(Conditional Setup) (Unconditional Setup)

Regret matchinga
Unconditional regret matchingc

Regret eigenvectorb

Generalized regret matchingd

Generalized unconditional regret matchingf
Generalized regret eigenvectore

Conditional fictitious playg Fictitious playh

Smooth conditional fictitious playi
Smooth fictitious playk

Smooth fictitious play eigenvectorj

Proxy regret matchingl Proxy unconditional regret matchingm

Continuous-time regret matchingn Continuous-time unconditional regret matchingo

aSection 4; Hart and Mas-Colell (2000, Main Theorem).
bSection 10.2; Hart and Mas-Colell (2000, Theorem A).
cSection 10.1; Hart and Mas-Colell (2000, Theorem B).
dSections 7 and 10.3; Hart and Mas-Colell (2001a, Section 5.1), Cahn (2004, Theorem 4.1).
eSection 4; Hart and Mas-Colell (2001a, Section 5.1).
fSection 10.3; Hart and Mas-Colell (2001b, Theorem 3.3).
gSection 10.4; it does not converge to the set of correlated equilibria.
hSection 10.4; it is not Hannan-consistent.
iSection 10.4; Cahn (2004, Proposition 4.3).
jSection 10.4; Fudenberg and Levine (1998, 1999a).
kSection 10.4; Fudenberg and Levine (1995).
lSection 10.5; Hart and Mas-Colell (2001b).
mSection 10.5; Hart and Mas-Colell (2000, Section 4(j); 2001a, Section 5.3).
nSection 10.6; Hart and Mas-Colell (2003a).
oSection 10.6; Hart and Mas-Colell (2003a).
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Foster and Vohra (1997, 1998, 1999), Foster (1999), Fudenberg and Levine
(1999b), and Kakade and Foster (2004).33

There is also a significant body of work in the computer science litera-
ture (where conditional regrets are called “internal regrets” and unconditional
ones, “external”), with connections to machine learning, on-line prediction,
experts, classification, perceptrons, and so on. For a recent study (and earlier
references), see Cesa-Bianchi and Lugosi (2003).

10.10. Variable Game

Even if the one-shot game changes every period (as in stochastic games),
our results—that the regrets converge to zero—continue to hold, provided
that the payoffs are uniformly bounded and the players are told at the end of
each period which game has been played. This follows easily from our proofs
(replace ui by uit throughout) and is related to the “universality” of the regret-
based strategies; see Fudenberg and Levine (1998, Chapter 4, footnote 19) and
Hart and Mas-Colell (2001a, Section 5.2).

10.11. The Set of Correlated Equilibria

Correlated equilibria always exist in finite games. This follows from the ex-
istence of Nash equilibria (which requires fixed-point arguments), or directly
(by linear duality arguments; see Hart and Schmeidler (1989)34 and Nau and
McCardle (1990)).

A natural question is, how large (or small) is the set of correlated equilibria?
An interesting result in this direction is provided by Keiding and Peleg (2000).
Fix the number of players N , the action sets S1� S2� � � � � SN� and a bound on
the possible payoffs M� If one chooses at random (uniformly) a game Γ and
a joint distribution of play z ∈ ∆(S)� then the probability that z is a correlated
equilibrium of Γ is at most 1/2N (which goes to zero as N increases).

There is also work on the structure of the set of correlated equilibria; see
Evangelista and Raghavan (1996), Myerson (1997), Nau, Gomes Canovas,
and Hansen (2004), Calvó-Armengol (2004), and Nitzan (2005). For some re-
cent results on the computation of correlated equilibria, see Kakade, Kearns,
Langford, and Ortiz (2003) and Papadimitriou (2005).

33One construction, due to Hart and Mas-Colell, uses approachability to prove “no regret”;
see Foster and Vohra (1999, Section 2). Interestingly, calibration is also closely related to the
“merging of opinions” that arises in the study of the learning dynamics of Section 2.1; see Kalai,
Lehrer, and Smorodinsky (1999).

34The starting point for the research presented here was the application of fictitious play to
the auxiliary two-person zero-sum game of Hart and Schmeidler (1989); see Hart and Mas-Colell
(2000, Section 4(i)).
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APPENDIX: APPROACHABILITY

A most useful technical tool in this area is the approachability theory orig-
inally introduced by Blackwell (1956a). The setup is that of games where
the payoffs are vectors (rather than, as in standard games, scalar real num-
bers). For instance, the coordinates may represent different commodities;
or contingent payoffs in different states of the world (when there is incom-
plete information—see Aumann and Maschler (1995, Section I.6 and post-
script I.d)); or, as in the current setup, regrets for the various actions in a
standard game.

Let thus A :S ≡ Si × S−i → Rm be the payoff function of player i, where
Rm denotes the m-dimensional Euclidean space (thus A(si� s−i) ∈ Rm is the
payoff vector when player i chooses si and the other players, −i, choose s−i),
which is extended bilinearly to mixed actions, i.e., A :∆(Si) × ∆(S−i) → Rm.
The time is discrete, t = 1�2� � � � � and let st = (sit� s−it ) ∈ Si × S−i be the actions
chosen by i and −i, respectively, at time t� with payoff vector at :=A(st); put
aT := (1/T)∑T

t=1 at for the average payoff vector up to T .
Let C ⊂ Rm be a convex and closed set.35 We define:

• The set C is approachable by player i (cf. Blackwell (1956a)36) if there exists a
strategy of i such that, no matter what the opponents −i do, dist(aT �C)→ 0
almost surely as T → ∞.

• The set C is enforceable by player i if there exists a mixed action σi in ∆(Si)
such that, no matter what the opponents −i do, the one-shot vector payoff
is guaranteed to lie in C; i.e., A(σi� s−i) ∈ C for all s−i in S−i (and so also
A(σi�σ−i) ∈C for all σ−i in ∆(S−i)).

Approachability is a notion in the long-run repeated game, whereas enforce-
ability is a notion in the one-shot game.

We restate the result of Blackwell (1956a) as follows:

THEOREM 5—Approachability:
(i) A half-space H is approachable if and only if it is enforceable.

35For nonconvex sets, see Blackwell (1956a), Vieille (1992), and Spinat (2002).
36Blackwell’s definition requires in addition that the approachability be uniform over the strate-

gies of the opponents; namely, for every ε > 0 there is T0 ≡ T0(ε) such that E[dist(aT �C)] < ε
for all T > T0 and all strategies of −i (i.e., T0 is independent of the strategy of −i). It turns out
that for convex sets C this strengthening is always satisfied.
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FIGURE 4.—A game with vector payoffs.

(ii) A convex set C is approachable if and only if every half-space H contain-
ing C is approachable.

The statement of Theorem 5 seems like a standard convexity result (based on
the fact that a closed convex set is the intersection of the half-spaces containing
it). This is however not so, since the intersection of approachable sets need not
be approachable. For a simple example, consider the game of Figure 4, where
player i has two actions: T yields the payoff vector (1�0) and B yields (0�1) (the
opponent −i has only one action). The half-space {x = (x1�x2) ∈ R2 :x1 ≥ 1}
is approachable (by playing T), and so is the half-space {x :x2 ≥ 1} (by play-
ing B)—whereas their intersection {x :x ≥ (1�1)} is clearly not approachable.
What the Approachability Theorem says is that if all half-spaces containing
the convex set C are approachable, then, and only then, their intersection C is
approachable.

Let H = {x ∈ Rm :λ · x ≥ ρ} be a half-space, where λ �= 0 is a vector in Rm

and ρ is a real number. Consider the game λ · A with scalar payoffs given
by λ · A(si� s−i) (i.e., the linear combination of the m coordinates with co-
efficients λ). Then H is enforceable if and only if the minimax value of this
game, val(λ ·A)= max minλ ·A(σi�σ−i)= min maxλ ·A(σi�σ−i)� where the
max is over σi ∈ ∆(Si) and the min over σ−i ∈ ∆(S−i)� satisfies val(λ ·A)≥ ρ.
Given a convex set C� let ϕ be the “support function” of C , namely, ϕ(λ) :=
inf{λ · c : c ∈ C} for all λ ∈ Rm� Since, for every direction λ� only the minimal
half-space containing C� i.e., {x :λ · x≥ ϕ(λ)}� matters in (ii),37 the Approach-
ability Theorem may be restated as follows: C is approachable if and only if

val(λ ·A)≥ ϕ(λ) for all λ ∈ Rm�

PROOF OF THEOREM 5: (i) If the half-space H = {x ∈ Rm :λ · x ≥ ρ} is
enforceable then there exists a mixed action σi ∈ ∆(Si) such that λ · A(σi�
σ−i) ≥ ρ for all σ−i ∈ ∆(S−i)� Player i� by playing σi every period, guaran-
tees that bt :=E[at |ht−1]� the expected vector payoff conditional on the history
ht−1 of the previous periods, satisfies λ · bt ≥ ρ� Put bT := (1/T)

∑T

t=1 bt; then
λ · bT ≥ ρ, or bT ∈H; the Strong Law of Large Numbers38 implies that almost

37Trivially, a superset of an approachable set is also approachable.
38The version used in this proof is: (1/T)

∑T
t=1(Xt −E[Xt |ht−1])→ 0 almost surely as T → ∞,

where theXt are uniformly bounded random variables; see Loève (1978, Theorem 32.1.E). While
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FIGURE 5.—The Blackwell strategy for the set C .

surely aT − bT → 0, and therefore aT →H, as T → ∞� Conversely, if H is not
enforceable then val(λ ·A) < ρ� Therefore, given a strategy of player i� for
every history ht−1 the other players can respond to player i’s mixed action at t
so that39 λ · bt ≤ v; hence λ · bT ≤ v < ρ and aT cannot converge to H�

(ii) The condition that every half-space containing C be approachable is
clearly necessary. To see that it is also sufficient, for every history ht−1 such that
at−1 /∈ C� let c ∈ C be the closest point to at−1, and so δt−1 := [dist(at−1�C)]2 =
‖at−1 − c‖2� Put λ := at−1 − c and H := {x :λ · x ≤ λ · c}; then C ⊂ H (since
C is a convex set and λ is orthogonal to its boundary at c; see Figure 5). By
assumption the half-spaceH is approachable, and thus enforceable; the Black-
well strategy prescribes to player i to play a mixed action σi ∈ ∆(Si) correspond-
ing to this40 H—and so the expected payoff vector b := E[at |ht−1] satisfies
b ∈H, or41 λ · b≤ λ · c� Now

δt = [dist(at�C)]2 ≤ ‖at − c‖2 =
∥∥∥∥
(
t − 1
t
at−1 + 1

t
at

)
− c

∥∥∥∥
2

= (t − 1)2

t2
‖at−1 − c‖2 + 2(t − 1)

t2
(at−1 − c) · (at − c)+ 1

t2
‖at − c‖2�

player i’s actions constitute an independent and identically distributed sequence, those of the
other players may well depend on histories—and so we need a Strong Law of Large Numbers for
dependent random variables (essentially, a Martingale Convergence Theorem).

39These responses may be chosen pure—which shows that whether or not the opponents −i
can correlate their actions is irrelevant for approachability; see Hart and Mas-Colell (2001a, foot-
note 12).

40When at−1 ∈ C take λ= 0 and an arbitrary σi .
41As can be seen in Figure 5, it follows that (the conditional expectation of) at is closer to C

than at−1 is. The computation below will show that the distance to C not only decreases but, in
fact, converges to zero.
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Taking expectation conditional on ht−1 yields in the middle term λ · (b − c),
which is ≤ 0 by our choice of σi� and so

E[t2δt |ht−1] ≤ (t − 1)2δt−1 +M2(13)

for some bound42 M . Taking overall expectation and then using induction im-
plies that E[t2δt] ≤ M2t; hence E[dist(at�C)] = E[√δt ] ≤ √

E[δt] ≤ M/
√
t

and so at → C in probability.
To get almost sure convergence,43 put ζt := tδt − (t − 1)δt−1� Then

E[ζt|ht−1] ≤ −(1 − 1/t)δt−1 + M2/t ≤ M2/t → 0 (by (13)) and |ζt | ≤ M
(since |δt − δt−1| ≤ ‖at − at−1‖ = (1/t)‖at − at−1‖), from which it follows that
δT = (1/T)

∑T

t=1 ζt → 0 almost surely (by the Strong Law of Large Numbers;
see footnote 38). Q.E.D.

Historically, Blackwell (1956b) used the Approachability Theorem to pro-
vide an alternative proof of the Hannan (1957) result (see Rustichini (1999)
for an extension); the proof was indirect and nonconstructive. The direct ap-
plication of approachability to regrets, with the vector of regrets as payoff
vector and the negative orthant as the approachable set, was introduced in
the 1996 preprint of Hart and Mas-Colell (2000) (see Section 3 there). This
eventually led to the simple regret matching strategy of Section 4, to the uni-
versal approachability strategies and the generalized regret matching of Sec-
tion 7, and to the other results presented here—as well as to various related
uses of approachability (for example, Foster (1999), Foster and Vohra (1999),
Lehrer (2001, 2002, 2003), Sandroni, Smorodinsky, and Vohra (2003), Cesa-
Bianchi and Lugosi (2003), Greenwald and Jafari (2003), and Lehrer and Solan
(2003)).
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