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Abstract. We study joint quasimodes of the Laplacian and one
Hecke operator on compact congruence surfaces, and give condi-
tions on the orders of the quasimodes that guarantee positive en-
tropy on almost every ergodic component of the corresponding
semiclassical measures. Together with the measure classification
result of [Lin06], this implies Quantum Unique Ergodicity for such
functions. Our result is optimal with respect to the dimension of
the space from which the quasi-mode is constructed.

We also study equidistribution for sequences of joint quasimodes
of the two partial Laplacians on compact irreducible quotients of
H×H.

1. Introduction

The Quantum Unique Ergodicity (QUE) Conjecture of Rudnick-
Sarnak [RS94] states that eigenfunctions of the Laplacian on Riemann-
ian manifolds of negative sectional curvature become equidistributed in
the high-energy limit. Although there exist so-called “toy models” of
quantum chaos that do not exhibit this behavior (see eg. [FNDB03,
AN07, Kel07]), it has been suggested that large degeneracies of the
quantum propagator may be responsible for some of these phenom-
ena (see eg. [Sar11]). Since the Laplacian on a surface of negative
curvature is not expected to have large degeneracies, one can explore
this aspect and introduce “degeneracies” by considering quasimodes, or
approximate eigenfunctions, in place of true eigenfunctions— relaxing
the order of approximation to true eigenfunctions yields larger spaces of
quasimodes, mimicking higher-dimensional eigenspaces. Studying the
properties of such quasimodes— and, especially, the effect on equidis-
tribution of varying the order of approximation— can help shed light
on the overall role of spectral degeneracies in the theory.

S.B. was partially supported by NSF grant DMS-1101596. E.L. was supported
by the ERC, NSF grant DMS-0800345, and ISF grant 983/09.
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One case of QUE that has been successfully resolved is the so-called
Arithmetic Quantum Unique Ergodicity, where one considers congru-
ence surfaces that carry additional number-theoretic structure, and ad-
mit Hecke operators that exploit these symmetries. Since these opera-
tors commute with each other and with the Laplacian, it is natural to
consider joint eigenfunctions of the Laplacian and Hecke operators. The
dimension of the joint eigenspace of the full Hecke algebra is well under-
stood, and is one unless there is an obvious symmetry; in any case this
dimension is bounded by a constant depending only on Γ, and hence
degeneracies in the spectrum play no role is this case. For compact
congruence surfaces, QUE for such joint eigenfunctions was proved by
the second-named author [Lin06], relying on earlier work with Bourgain
[BL03]. In the non-compact case the results of [Lin06] are somewhat
weaker, but this has been rectified by Soundararajan in [Sou10]; some
higher-rank cases were studied in [Lin01,SV07,SV10,AS10].

Here, we apply techniques developed in the context of our work
[BL11] on eigenfunctions of large graphs to the question of Quantum
Unique Ergodicity for joint quasimodes. We define an ω(r)-quasimode
with approximate parameter r to be a function ψ satisfying

||(∆ + (
1

4
+ r2))ψ||2 ≤ rω(r)||ψ||2

The factor of r in our definition comes from the fact that r is essentially
the square-root of the Laplace eigenvalue.

We will be interested in o(1)-quasimodes, by which we mean ω̃(r)-
quasimodes for some fixed ω̃(r) tending to 0 as r → ∞; we allow this
decay to be arbitrarily slow. Denoting by Sω(r) the space spanned by
eigenfunctions of spectral parameter in [r − ω(r), r + ω(r)], our o(1)-
quasimodes should be thought of as essentially belonging to Sω(r) for
some ω(r)→ 0. In fact,

Lemma 1.1. Given a fixed function ω̃(r)→ 0, and a sequence {ψ̃j}∞j=1

of ω̃(rj)-quasimodes with approximate eigenvalue rj →∞, there exists
a function ω(r)↘ 0 and a sequence {ψj ∈ Sω(rj)}∞j=1 such that

||ψ − ψ̃||2 → 0 as j →∞

This means that the microlocal lifts of ψ and ψ̃ (see section 2) have
the same weak-* limit points. Therefore, for our purposes, we can
assume without loss of generality that our o(1)-quasimodes actually
belong to Sω(rj) for some ω(r)↘ 0.

Proof: Consider ψ̃⊥j = ψ̃j − ΠSω(rj)ψ̃j, the projection of ψ̃ to the

orthogonal complement of Sω(rj), and decompose ψ̃⊥j =
∑

i cj(φi)φi
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into an orthonormal basis of eigenfunctions. Since each component φi
of ψ̃⊥j has spectral parameter outside the interval [rj−ω(rj), rj+ω(rj)],
we have

||(∆ + (
1

4
+ r2j ))φi||2 > 2ω(rj)rj − ω(rj)

2

and therefore

||(∆ + (
1

4
+ r2j ))ψ̃j||2 ≥ ||(∆ + (

1

4
+ r2j ))ψ̃

⊥
j ||2

&

√∑
i

|cj(φi)|2ω(rj)rj

Choosing ω(r) to decay sufficiently slowly that ω̃(r) = o(ω(r)), this
contradicts the ω̃(r)-quasimode hypothesis unless

∑
i |cj(φi)|2 → 0

(and hence ||ψ̃⊥j ||2 → 0) as j →∞. �
One expects that the space Sω(r) should have dimension propor-

tional to rω(r); in fact, estimating the error term in Weyl’s Law shows
that this holds for windows of size ω(r) ≥ C/ log r, where C is a con-
stant depending on the manifold [Sar03, §4]. The dimension of Sω(r)
is not known for small windows ω(r)— indeed, this is the very diffi-
cult problem of bounding spectral multiplicities— but we will content
ourselves to deal with o(1)-quasimodes, for which it is known that
the spaces are of dimension o(r). Such quasimodes can be extremely
crude, and without further assumptions one cannot expect meaningful
statements. However, the situation is radically different when there is
additional structure present that one can exploit.

Our first result concerns certain compact hyperbolic surfaces Γ\H
of arithmetic congruence type. One can consider more general Γ, but
for concreteness and simplicity we restrict to the following situation.
Let H be a quaternion division algebra over Q, split over R, and R a
maximal order in H. Fix an isomorphism ι : H(R)

∼→ Mat2(R). For
α ∈ R of positive norm n(α), we write α for the corresponding element
of PSL2(R). Set Γ to be the image in PSL2(R) of the subgroup of
norm 1 elements of R. As is well known, Γ is discrete and co-compact
in PSL2(R), and the quotient X = Γ\PSL2(R) can be identified with
the unit cotangent bundle of a compact hyperbolic surface M = Γ\H.

Write R(m) for the set of elements of R of norm m, and define the
Hecke operator

Tm : f(x) 7→ 1√
m

∑
α∈R(1)\R(m)

f(αx)
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as the operator averaging over the Hecke points

Tm(x) = {αx : α ∈ R(1)\R(m)};

note that these formulas make sense both for x ∈ Γ\H and x ∈
Γ\PSL2(R).

Our methods are reliant only on the Laplacian and a single Hecke
operator, and so we will be interested in the case where m = pk are
powers of a fixed prime p. It is well known that Tpk is a polynomial in
Tp; so in particular, eigenfunctions of Tp are eigenfunctions of all Tpk .
It is known that for all but finitely many primes, the points Tpk(x) form
a p+ 1-regular tree as k runs from 0 to ∞; we will always assume that
p is such a prime. We denote by Spk the sphere of radius k in this tree,
given by Hecke points corresponding to the primitive elements of R of
norm pk.

Since each α acts by isometries on Γ\H, the operator Tp commutes
with ∆. The spectrum of Tp on L2(Γ\H) lies in [−p+1√

p
, p+1√

p
], and since Tp

commutes with ∆, there is an orthonormal basis of L2(Γ\H) consisting
of joint eigenfunctions for Tp and ∆. An ω-quasimode for Tp of approx-
imate eigenvalue λ is a function ψ satisfying ||(Tp−λ)ψ||2 ≤ ω||ψ||2; we
call {ψj}∞j=1 a sequence of o(1)-quasimodes for Tp if each ψj is an
ωj-quasimode for Tp, and ωj → 0 as j →∞. As above in Lemma 1.1,
for our purposes we may as well assume that each ωj-quasimode is a
linear combination of eigenfunctions whose eigenvalues lie in intervals
of the form [λj − ωj, λj + ωj], for some sequence ωj → 0.

For any sequence φj of o(1)-quasimodes of the Laplacian ∆ on M ,
normalized by ||φj||2 = 1, there exists a measure µj on S∗M (which we
view as a probability measure on Γ\PSL2(R)), called the microlocal
lift of φj. This measure is asymptotically invariant under the geo-
desic flow as the approximate eigenvalue of φj tends to infinity, and
its projection to M is asymptotic to |φj|2darea. Since the space of
probability measures on M is weak-* compact, we consider weak-*
limit points of these microlocal lifts, called semiclassical measures
or quantum limits. The QUE problem asks whether such a limit
point must be the uniform measure on S∗M . We shall use a version of
the construction of these lifts due to Wolpert [Wol01] (this version is
the one used in [Lin01,Lin06]), where µj = |Φj|2dvol for suitably cho-
sen Φj ∈ L2(S∗M); see Section 2. The construction satisfies that Φj is
an eigenfunction of Tp when φj is, of the same eigenvalue; more gener-
ally, applying this to each spectral component, Φj is an ωj-quasimode
for Tp whenever φj is, with the same approximate eigenvalue. Since
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∆ commutes with Tp, we may consider sequences {φj} of joint o(1)-
quasimodes, whereby the corresponding {Φj} are still o(1)-quasimodes
of Tp as well.

We recall the following key definition from [Lin06]:

Definition 1.2. A measure µ on S∗M = Γ\PSL2(R) is said to be
()Tp-recurrent if for any subset A ⊂ S∗M of positive µ-measure, for
µ-almost every x ∈ A there is a sequence ki →∞ for which Spki (x)∩A
is nonempty.

As we show in Lemma 3.3, any weak-* limit point of the µj is Tp-
recurrent. The main innovation in this paper is the following result
regarding these limit measures:

Theorem 1.3. Let p be a prime (outside the finite set of bad primes
for M), and let {φj}∞j=1 be a sequence of L2-normalized joint o(1)-
quasimodes of ∆ and Tp on M . Then any weak-* limit point µ of the
microlocal lifts µj has positive entropy on almost every ergodic compo-
nent.

In view of the measure classification results of [Lin06], this theorem,
together with the geodesic-flow invariance of quantum limits proved in
Lemma 2.2, and Tp-recurrence which we establish in Lemma 3.3 imply
the following:

Corollary 1.4. Let {φj} as above be a sequence of joint o(1)-quasimodes
of ∆ and Tp. Then the sequence µj converges weak-* to Liouville mea-
sure on S∗M .

Here, we have reduced the assumptions to a bare minimum: we as-
sume only that our functions are joint o(1)-quasimodes for the Lapla-
cian and one Hecke operator. In particular, this shows that the full
Hecke algebra is not needed to establish Arithmetic QUE, as one Hecke
operator will suffice. Note that even without any Hecke operators,
Anantharaman [Ana08] has shown— for general negatively curved com-
pact manifolds— that a quantum limit corresponding to Laplacian
eigenfunctions has positive entropy, and these techniques extend to
O( 1

log r
)-quasimodes). Anantharaman’s result has been further sharp-

ened in her joint work with Nonnenmacher [AN07b] (see also [AKN09]).
With respect to eigenfunctions, while the overall entropy bounds ob-
tained by our methods are weaker than those of [AN07b], Theorem 1.3
is stronger in that it gives information on almost all ergodic compo-
nents. In particular, the results of [Ana08, AN07b, AKN09] do not
rule out that a positive proportion of the mass of a quantum limit is
supported on a single periodic trajectory of the geodesic flow.
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Our results go further by allowing o(1)-quasimodes— which may be
taken from rather large subspaces whose dimension is only bounded
by o(r). In the paper [Bro11] the first named author shows that these
subspaces are “optimally degenerate” for QUE, in the sense that given
any sequence of crj-dimensional subspaces S̃c(rj) of the spaces SC(rj),

there exists a sequence {ψj ∈ S̃c(rj)}∞j=1 such that the corresponding
microlocal lifts do not converge to Liouville measure on S∗M— indeed,
any weak-* limit point of these microlocal lifts must concentrate a
positive proportion of its mass on a codimension 1 subset! Thus, our
joint o(1)-quasimodes form spaces of largest-possible dimension that
can satisfy QUE.

It should be remarked that these subspaces are considerably larger
than the spaces of Laplace-quasimodes that are expected to satisfy
QUE without any Hecke assumption. This is a testament to the rigidity
imposed by the additional structure of the Hecke correspondence, as
already apparent in [Lin06].

It is worth remarking here that the phrase “joint o(1)-quasimodes”
can be misleading: the two orders of approximation are not necessarily
the same, and serve completely separate purposes; the approximation
to the Laplace eigenvalue is used to guarantee asymptotic invariance
under the geodesic flow, while the approximation to the Hecke eigen-
value is used to establish positive entropy on almost every ergodic com-
ponent and Tp-recurrence.

Our methods also apply to the case of M = Γ\H × H, with Γ a
co-compact, irreducible lattice in PSL(2,R) × PSL(2,R). Here we do
not assume any Hecke structure1; instead, we take the sequence {φj}
to consist of joint o(1)-quasimodes of the two partial Laplacians, each
on the respective copy of H. The Laplacian on M is the sum of the two
partial Laplacians, and so the large eigenvalue limit for the Laplacian
entails at least one of the two partial eigenvalues going to infinity (after
passing to a subsequence, if necessary). At present, we have been able
to apply our methods only to the case where one partial eigenvalue
(say the second) remains bounded, and the other tends to ∞.

By the arguments of [Lin01] and Section 2.4, this means that the
microlocal lift to Γ\PSL(2,R)×H becomes invariant under the action
of the diagonal subgroup A of PSL(2,R) acting on the first coordinate.
By applying the methods of Theorem 1.3 to use the foliation given by
varying the second coordinate in an analogous way to use of the Hecke

1By Margulis’ Arithmeticity Theorem such lattices are necessarily arithmetic,
though it is not known if they are necessarily of congruence type (which is necessary
for the existence of Hecke operators with good properties).
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Correspondence Tp for congruence surfaces, we are able to prove that
any quantum limit of such a sequence must also carry positive entropy
on a.e. ergodic component (with respect to the A-action on the first
coordinate). Thus, [Lin06, Thm. 1.1] in conjunction with the relevant
recurrence property proved in Lemma 5.6 again may be used to show
equidistribution of |φj|2dvol as well as their microlocal lifts:

Theorem 1.5. Let {φj} be a sequence of joint o(1)-quasimodes of ∆1

and ∆2 on Γ\H × H with approximate spectral parameters r1j , r
2
j and

where Γ is an irreducible cocompact lattice in PSL(2,R) × PSL(2,R).
Assume r1j → ∞ and r2j bounded. Then the sequence of lifts µj of

|φj|2 dvol to Γ\PSL(2,R)×H converges weak-* to the uniform measure
on Γ\PSL(2,R)×H.

The argument is analogous to the one presented here for the rank-one
arithmetic case in Theorem 1.3, and we present the necessary modifi-
cations of the argument in section 5.

The results of [BL03], along with an appropriate construction of
microlocal lifts, were generalized by Silberman and Venkatesh [SV07,
SV10] who, using the measure classification results of [EKL06], were
able to extend the QUE results of [Lin06] to quotients of more general
symmetric spaces (they also had to develop an appropriate microlocal
lift). It is likely possible to extend the techniques of this paper to their
context. We also hope that our work may be extended to the case of
Γ\H×H where both partial eigenvalues are growing to ∞.

Regarding finite volume arithmetic surfaces such as SL(2,Z)\H, it
was shown in [Lin06] that any quantum limit has to be a scalar mul-
tiple of the Liouville measure— though not necessarily with the right
scalar— and similar results can be provided by our techniques using
a single Hecke operator. Recently, Soundararajan [Sou10] has given
an elegant argument that settles this escape of mass problem for joint
eigenfunctions of the full Hecke algebra and (in view of the results of
[Lin06]) shows that the only quantum limit is the normalized Liouville
measure. An interesting open question is whether our p-adic wave equa-
tion techniques can be used to rule out escape of mass using a single
Hecke operator. We also mention that Holowinsky and Soundararajan
[HS10] have recently developed an alternative approach to establishing
Arithmetic Quantum Unique Ergodicity for joint eigenfunctions of all
Hecke operators. This approach requires a cusp, and is only applica-
ble in cases where the Ramanujan Conjecture holds; this conjecture is
open for the Hecke-Maass forms, but has been established by Deligne
for holomorphic cusp forms — a case which our approach does not
handle.
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2. Microlocal Lifts of Quasimodes

2.1. Some Harmonic Analysis on PSL(2,R). We begin by review-
ing some harmonic analysis on PSL(2,R) that we will need. Through-
out, we write X = Γ\PSL(2,R) and M = Γ\H = Γ\PSL(2,R)/K,
where K = SO(2) is the maximal compact subgroup.

Fix an orthonormal basis {φj} of L2(M) consisting of Laplace eigen-
functions, which we can take to be real-valued for simplicity. Each
eigenfunction generates, under right translations, an irreducible repre-
sentation Vj = {φj(xg−1) : g ∈ PSL(2,R)} of PSL(2,R), which span a
dense subspace of L2(X).

We distinguish the pairwise orthogonal weight spaces A2n in each
representation, consisting of those functions satisfying f(xkθ) = ei2nθf(x)

for all kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ K and x ∈ X. The weight spaces to-

gether span a dense subspace of Vj. Each is one-dimensional in Vj,

spanned by φ
(j)
2n where

φ
(j)
0 = φj ∈ A0

(irj +
1

2
+ n)φ

(j)
2n+2 = E+φ

(j)
2n

(irj +
1

2
− n)φ

(j)
2n−2 = E−φ

(j)
2n

Here E+ and E− are the raising and lowering operators, first-

order differential operators corresponding to

(
1 i
i −1

)
∈ sl(2,C) and(

1 −i
−i −1

)
∈ sl(2,C) in the complexified Lie algebra. The normal-

ization is such that each φ
(j)
2n is a unit vector. Continuing with the

identification of the elements in (2,C) with first order invariant differ-
ential operators on X, we also make use of the following operators

H =

(
1 0
0 −1

)
W =

(
0 −1
1 0

)
X+ =

(
0 1
0 0

)
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note that H is the derivative in the geodesic-flow direction, W is the
derivative in the fibre K direction, and X+ is the derivative in the
stable horocycle direction. We will also need the second order operator

Ω = 1
2
(E+E− + E−E+) +

W 2

4

which commutes with all the invariant differential operators on X and
agrees with ∆ on the space of K-invariant functions.

It is easy to check that the distribution

Φ(j)
∞ =

∞∑
n=−∞

φ
(j)
2n

satisfies HΦ
(j)
∞ = (irj − 1

2
)Φ

(j)
∞ and X+Φ

(j)
∞ = 0. We also record the

identities

H =
1

2
(E+ + E−)

E+Φ(j)
∞ = (irj −

1

2
− i

2
W )Φ(j)

∞

E−Φ(j)
∞ = (irj −

1

2
+
i

2
W )Φ(j)

∞

E+E−Φ(j)
∞ = −(r2j +

1

4
)Φ(j)
∞ + (

1

4
W 2 − i

2
W )Φ(j)

∞

E+E−φ
(j)
0 = −(r2j +

1

4
)φ

(j)
0 = ∆φ

(j)
0(2.1)

2.2. Construction of the Microlocal Lift. For any ω(r)-quasimode
φ, with approximate Laplace eigenvalue 1

4
+ r2, we seek a smooth func-

tion Φ on Γ\PSL(2,R) satisfying:

(Φ1) The measure |Φ|2dvol is asymptotic to the distribution defined
by

f 7→ 〈Op(f)φ, φ〉L2(M) = 〈fΦ∞, φ〉L2(X)

In particular, the projection of the measure |Φ|2dvol on X to M

is asymptotic to |φ|2darea; i.e., for any smooth f̃ ∈ C∞(M), we
have ∫

X

f̃ |Φ|2dvol ∼
∫
M

f̃ |φ|2darea

as r → ∞. It is in this sense that |Φ|2dvol “lifts” the measure
|φ|2darea to X.
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(Φ2) The measure |Φ|2dvol is asymptotically invariant under the geo-
desic flow; that is, for any smooth f ∈ C∞(X), we have∫

X

Hf |Φ|2dvol→ 0 as r →∞

(Φ3) Φ will be a Tp-eigenfunction (or an ω-quasimode for Tp) whenever
φ is.

For the remainder of the section, set

Iφ(f) := 〈fΦ∞, φ〉 = lim
N→∞

〈
f

N∑
n=−N

φ2n, φ0

〉
.

Note that this limit is purely formal for K-finite f , by orthogonality of
the weight spaces, and since these K-finite functions are dense in the
space of smooth functions, we can restrict our attention to these. We
denote by A2n the n-th weight space, consisting of smooth functions
that transform via f(xkθ) = e2inθf(x) for all x ∈ X.

Recall that Sω(r) ⊂ C∞(M) is the space spanned by eigenfunctions
with spectral parameter in [r − ω(r), r + ω(r)].

Lemma 2.1. Let φ ∈ Sω(r) be a unit vector, with ω(r) ≤ 1, and set

Φ :=
1√

2br1/2c+ 1

∑
|n|≤
√
r

φ2n

Then for any K-finite f ∈
∑N0

n=−N0
A2n, we have

Iφ(f) = 〈fΦ,Φ〉+Of (r
−1/2)

Proof: First, we wish to show that

〈fφ2n, φ2m〉 = 〈fφ2n+2, φ2m+2〉+Of (r
−1) +Of (ω(r)r−1)

for all −
√
r ≤ n,m ≤

√
r, satisfying |n − m| ≤ N0 (if the latter

condition is not met, both inner products are trivial, by orthogonal-
ity of the weight spaces). We will work individually with each pair of
spectral components of φ, and then re-average over the spectral de-
composition; therefore, we write φ(r1) and φ(r2) for the projections of
φ to the eigenspaces of parameters r1 and r2, respectively. Recall that
r1, r2 = r +O(1) by the quasimode condition.
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We have

〈fφ(r1)
2n , φ

(r2)
2m 〉

=
1

(ir1 − n− 1
2
)(−ir2 −m− 1

2
)
〈fE−φ(r1)

2n+2, E
−φ

(r2)
2m+2〉

=
〈E−(fφ

(r1)
2n+2), E

−φ
(r2)
2m+2〉 − 〈E−(f)φ

(r1)
2n+2, E

−φ
(r2)
2m+2〉

(ir1 − n− 1
2
)(−ir2 −m− 1

2
)

= −
〈fφ(r1)

2n+2, E
+E−φ

(r2)
2m+2〉

(ir1 − n− 1
2
)(−ir2 −m− 1

2
)
−
〈E−(f)φ

(r1)
2n+2, φ

(r2)
2m 〉

ir1 − n− 1
2

= −
−ir2 +m+ 1

2

ir1 − n− 1
2

〈fφ(r1)
2n+2, φ

(r2)
2m+2〉 −

〈E−(f)φ
(r1)
2n+2, φ

(r2)
2m 〉

ir1 − n− 1
2

= 〈fφ(r1)
2n+2, φ

(r2)
2m+2〉+

(c1 + c2)〈fφ(r1)
2n+2, φ

(r2)
2m+2〉 − 〈E−(f)φ

(r1)
2n+2, φ

(r2)
2m 〉

ir1 − n− 1
2

say, where

c1 = c1(r1, n,m) := i(r − r1) + (n−m) = Of (1)

c2 = c2(r2) := i(r2 − r) = Of (1)

Note that c1 is independent of r2, and c2 is independent of r1.
We now average over r1 to get

〈fφ2n, φ
(r2)
2m 〉 − 〈fφ2n+2, φ

(r2)
2m+2〉

=

〈
f
∑
r1

c1 + c2
ir1 − n− 1

2

φ
(r1)
2n+2, φ

(r2)
2m+2

〉
−

〈
E−(f)

∑
r1

φ
(r1)
2n+2

ir1 − n− 1
2

, φ
(r2)
2m

〉

where∥∥∥∥∥∑
r1

c1
ir1 − n− 1

2

φ
(r1)
2n+2

∥∥∥∥∥ ≤

(∑
r1

(
c1

ir1 − n− 1
2

)2

||φ(r1)
2n+2||22

)1/2

.f r−1

(∑
r1

||φ(r1)
2n+2||22

)1/2

. r−1||φ2n+2||2 . r−1

since c1 = Of (1) and 1
ir1−n− 1

2

= O(r−1), and using the orthogonality of

the φ(r2). Similarly

∥∥∥∥∑r1

φ
(r1)
2n+2

ir1−n− 1
2

∥∥∥∥ = Of (r
−1) in the rightmost-term.
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Thus, further averaging over r2 and applying Cauchy-Schwarz gives

〈fφ2n, φ2m〉 − 〈fφ2n+2, φ2m+2〉

=
∑
r2

〈
f
∑
r1

c1 + c2
ir1 − n− 1

2

φ
(r1)
2n+2, φ

(r2)
2m+2

〉
−

〈
E−(f)

∑
r1

φ
(r1)
2n+2

ir1 − n− 1
2

, φ2m

〉

≤ Of (r
−1) +

∑
r2

〈
f
∑
r1

c2
ir1 − n− 1

2

φ
(r1)
2n+2, φ

(r2)
2m+2

〉
+Of (r

−1)

≤

〈
f
∑
r1

1

ir1 − n− 1
2

φ
(r1)
2n+2,

∑
r2

c2φ
(r2)
2m+2

〉
+Of (r

−1)

≤ ||f ||∞ ·

∥∥∥∥∥∑
r1

1

ir1 − n− 1
2

φ
(r1)
2n+2

∥∥∥∥∥ ·
∥∥∥∥∥∑

r2

c2φ
(r2)
2m+2

∥∥∥∥∥+Of (r
−1)

.f r−1

using again the orthogonality of the φ(r), and the fact that c2 = Of (1).
Therefore we finally arrive at

〈fφ2n, φ2m〉 = 〈fφ2n+2, φ2m+2〉+Of (r
−1)

We iterate this |m| ≤
√
r times, arriving at

〈fφ2n, φ2m〉 = 〈fφ2(n−m), φ0〉+Of (
√
rr−1)

Now, by definition

〈fΦ,Φ〉 =
1

2br1/2c+ 1

∑
|m|,|n|≤

√
r

〈fφ2n, φ2m〉

and so we now combine all weight space components together to get

〈fΦ,Φ〉 =

N0∑
n=−N0

(2br1/2c − 2|n|+ 1)

(2br1/2c+ 1)
〈fφ2n, φ0〉+Of (

√
rr−1)

Since for all |n| ≤ N0

2br1/2c − 2|n|+ 1

2br1/2c+ 1
= 1 +Of (r

−1/2)

and using the K-finiteness of f , we see that

〈fΦ,Φ〉 =
∑
n

〈fφ2n, φ0〉+Of (r
−1/2) +Of (

√
rr−1)

as required. �
For any given sequence {φj} of quasimodes, we have constructed a

sequence {Φj}∞j=1 such that the microlocal lifts |Φj|2dvol are positive
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measures, asymptotically equivalent to the distributions Iφj . Moreover,
since Φj are constructed from φj via left-invariant operators, and Tp
acts by isometries on the left, this construction is equivariant with
respect to the action of Tp, and Φj will be a Tp-eigenfunction (resp.
ωj-quasimode for Tp) whenever φj is.

2.3. Asymptotic Invariance under the Geodesic Flow. We now
turn to the invariance under the geodesic flow. By Lemma 2.1, we may
consider the distribution

f 7→ 〈fΦ∞, φ〉
in place of our positive-measure microlocal lift, since it is more amenable
to verifying this invariance.

Lemma 2.2. Let {φj} be a sequence of ω(rj) quasimodes with approx-
imate parameter rj, satisfying rj → ∞ and ω(rj) → 0. Then for any
f ∈ C∞(S∗M), we have Iφj(Hf)→ 0 as rj →∞.

Remark: In contrast with Lemma 2.1, here it is necessary to assume
that ω(rj) → 0; in fact, the sequences of quasimodes considered in
[Bro11] have ω(rj) � 1, and do not satisfy Lemma 2.2.

Proof: Once again, we may assume that f ∈
∑N0

n=−N0
A2n is K-

finite, and it will be natural to consider the contribution of each pair
of spectral parameters individually; so we again write φ(r1) and φ(r2)

for the projections of φ to the eigenspaces of parameters r1 and r2
respectively, and similarly Φ

(r1)
∞ .

Recall that we have

−(r22 +
1

4
)〈fΦ(r1)

∞ , φ(r2)〉 = 〈fΦ(r1)
∞ , E−E+φ(r2)〉 = 〈E−E+(fΦ(r1)

∞ ), φ(r2)〉

and use the identities (2.1) to compute

E−E+(f · Φ∞)

= f · (E−E+Φ∞) + (E+f) · (E−Φ∞) + (E−f) · (E+Φ∞) + (E−E+f) · Φ∞

= −(r21 +
1

4
)f · Φ∞ + f · (D1(W )Φ∞) + 2ir1(Hf) · Φ∞

+(E+f) · (−1

2
+
i

2
W )Φ∞ + (E−f) · (−1

2
− i

2
W )Φ∞ + (E−E+f) · Φ∞

where D1(W ) is a differential operator in W . This means, after inte-
grations by parts in W (recalling that Wφ(r2) = 0) we get

−(r22 +
1

4
)〈fΦ(r1)

∞ , φ(r2)〉

= −(r21 +
1

4
)〈fΦ(r1)

∞ , φ(r2)〉+ 2ir1〈HfΦ(r1)
∞ , φ(r2)〉+ 〈(D2f)Φ(r1)

∞ , φ(r2)〉
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for a fixed differential operator D2. But since r1, r2 = r + o(1), we
have r21− r22 = o(r), and so putting all of the spectral components back
together again we see

(r21 − r22)〈fΦ(r1)
∞ , φ(r2)〉 = 2ir1〈(Hf)Φ(r1)

∞ , φ(r2)〉+ 〈(D2f)Φ(r1)
∞ , φ(r2)〉

(r21 − r22)〈fΦ
(r1)
N0
, φ(r2)〉 = 2ir1〈(Hf)Φ(r1)

∞ , φ(r2)〉+ 〈(D2f)Φ(r1)
∞ , φ(r2)〉

o(r)||f ||∞||ΦN0||2||φ||2 = 2ir〈(Hf)Φ∞, φ〉+ of (1)||ΦN0+1||2 + Iφ(D2f)

of (r) = 2irIφ(Hf) + of (1) +Of (1)

where we may replace Φ∞ on the left with ΦN0 , the projection of Φ∞
to
∑
|n|≤N0

An, by orthogonality of weight spaces— and similarly on

the right side since f ∈
∑
|n|≤N0

An implies that Hf ∈
∑
|n|≤N0+1An—

noting that ||ΦN0||2 =
√

2N0 + 1 = Of (1) and similarly ||ΦN0+1||2 =
Of (1).

The result now follows by dividing by r and taking the limit as
j →∞. �

2.4. Microlocal lift on Γ\H×H. Given a quasimode φ on Γ\H, we
constructed an element Φ ∈ L2 (Γ\PSL(2,R)) satisfying (Φ1)–(Φ3)
on p. 9 by considering φ as a right K = SO(2)-invariant function on
Γ\PSL(2,R) and applying a carefully chosen generalized differential

operator of the type D =
∑k

i=1 fi(Ω)Xi with fi appropriately chosen
analytic functions, Ω the Casimir operator and Xi some invariant dif-
ferential operators on Γ\PSL(2,R). We note that the choice of D
depends on the approximate eigenvalue of φ. Since Ω is in the center of
the algebra of invariant differential operators it is easy to make sense
very concretely of the operator D by decomposing L2(Γ\PSL(2,R))
to ω-eigenspaces and applying — on the eigenspace corresponding to
eigenvalue r —the honest differential operator

∑k
i=1 fi(r)Xi.

Now suppose that we are working not on Γ\H, but on X = Γ\H×H,
with Γ an irreducible lattice in PSL(2,R) × PSL(2,R). Suppose ∆1

is the Laplacian operator acting on the first H component, and ∆2

the Laplacian on the second such component. If φ is an approximate
eigenfunction of both ∆1 and ∆2 with approximate eigenvalues r1, r2
with r1 large, we could take the same generalized differential operator
D discussed in the previous paragraph and consider it as an operator
on Γ\PSL(2,R) × H. Then if φ is considered as a SO(2)-invariant
function on Γ\PSL(2,R) × H, taking Φ = Dφ we obtain a function
satisfying the analogous conditions to (Φ1)–(Φ3) for Γ\PSL(2,R)×H
as explained in greater detail in [Lin01].
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3. The Propagation Lemma

Our methods were inspired in part by the work of Anantharaman et.
al. (eg., [Ana08,AN07b,AKN09,Riv10b,Riv10]); in particular, the ob-
servation that one can obtain interesting information on eigenfunctions—
and quasimodes— by breaking the function up into smaller pieces, let-
ting each piece disperse individually through the quantum dynamics,
and adding the pieces back together. In this spirit, our approach is
to use an analogous “wave propagation” on the Hecke tree to disperse
pieces of our Tp-quasimodes, as described in Lemma 3.2. As will be-
come clear later on, this dispersion alone is not enough to get Theo-
rem 1.3; we will need to employ interferences in order to build a better
dispersion mechanism, that amplifies a desired spectral window.

3.1. Constructing the Kernel. The following lemma proved along
the lines of [BL11] is central to our approach:

Lemma 3.1. Let 0 < η < 1/2. For any sufficiently large N ∈ N
(depending on η), and any θ0 ∈ [0, π], there exists an operator KN on
S∗M satisfying:

(1) KN(δx) is supported on the union of Hecke points y ∈ Tpj(x) up to
distance j ≤ N in the Hecke tree.

(2) KN has matrix coefficients bounded by O(p−Nδ), in the sense that
for any x ∈ S∗M

|KN(f)(x)| . p−Nδ
N∑
j=0

∑
y∈S

pj
(x)

|f(y)|

where δ depends only on η (explicitly, can be taken to be η2/512).
(3) Any Tp eigenfunction is also an eigenfunction of KN with eigen-

value ≥ −1.
(4) Eigenfunctions with Tp-eigenvalue 2 cos θ with |θ − θ0| ≤ 1

2N
, as

well as all untempered eigenfunctions (Tp-eigenvalue 6∈ [−2, 2]) have
KN -eigenvalue > η−1.

Lemma 3.1 is based on the well known connection between Hecke
operators and Chebyshev polynomials. A way to derive these which
we have found appealing is via the following p-adic wave equation for,
say, compactly supported functions on Tp+1 :

Φn+1 =
1

2
TpΦn −

(
1−

T 2
p

4

)
Ψn

Ψn+1 =
1

2
TpΨn + Φn
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which is a discrete analog of the non-Euclidean wave equation (more
precisely, of the unit time propagation map for the wave equation)
on H. For initial data (Φ0,Ψ0), the solution to this equation is given
by the sequence

Φn = Pn

[
1

2
Tp

]
Φ0 −

(
1−

T 2
p

4

)
Qn−1

[
1

2
Tp

]
Ψ0

Ψn = Pn

[
1

2
Tp

]
Ψ0 +Qn−1

[
1

2
Tp

]
Φ0

where P and Q are Chebyshev polynomials of the first and second
kinds, respectively, given by

Pn(cos θ) = cosnθ

Qn−1(cos θ) =
sinnθ

sin θ

and preserves the energy-like quantity

‖Φ‖2 +

〈
Ψ,

(
1−

T 2
p

4

)
Ψ

〉
.

This can be proved directly by induction, using the well-known recur-
sive properties of the Chebyshev polynomials:

Pn+1(x) = xPn(x)− (1− x2)Qn−1(x)

Qn(x) = xQn−1(x) + Pn(x)

Suppose we take initial data (δ0, 0). The solution to the p-adic wave
equation is then {(Pn[1

2
Tp]δ0, Qn−1[

1
2
Tp]δ0)}. On the other hand, one

can compute the explicit solution inductively2; looking at the first co-
ordinate, we get the following “Propagation Lemma” on the tree:

Lemma 3.2. Let δ0 be the delta function at 0 in the p+ 1-regular tree
Tp+1. Then for n even, we have

Pn

[
1

2
Tp

]
δ0(x) =


0 |x| odd or |x| > n

1−p
2pn/2 |x| < n and |x| even

1
2pn/2 |x| = n

In particular, we have

Pn

[
1

2
Tp

]
δ0(x) . p−n/2 for all x ∈ Tp+1.

2An alternative proof, with a more spectral flavor, was given in [BL11].
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We now have a description of the p-adic wave propagation in both
spectral and spacial terms, which we will use to construct our desired
radial kernel KN on the Hecke tree. It will be convenient to parametrize
the Tp-eigenvalues as 2 cos(θ), where

• The tempered spectrum is parametrized by θ ∈ [0, π].
• The positive part of the untempered spectrum has iθ ∈ (0, log

√
p).

• The negative part of the untempered spectrum has iθ + π ∈
(0, log

√
p).

We also recall that for any (say, compactly supported) radial kernel k
on Tp+1, any Tp-eigenfunction φ is also an eigenfunction of convolution
with k, with eigenvalue— depending only on the Tp-eigenvalue of φ—
given by the spherical transform hk(θ).

Now, Lemma 3.2 is a good start towards Lemma 3.1, since the kernel
Pn[1

2
Tp]δ0 satisfies the first two properties of Lemma 3.1, with δ = 1/2.

Unfortunately, the spherical transform of this kernel is 2 cosnθ, which
is bounded by 2 and cannot satisfy the third condition of Lemma 3.1.
More crucially, it takes negative values that are as large in absolute
value as the maximum. In order to create the kernel we want, we will
have to combine different Pn[1

2
Tp]δ0 waves together, in such a way that

they interfere constructively at our chosen spectral interval, to generate
a large eigenvalue there, but do not become too negative elsewhere.
To allow this kind of interference, however, we will have to sacrifice
somewhat in our bounds for δ.

Proof of Lemma 3.1. The case where θ0 = 0 is a bit simpler, so we
consider this case first. Using the Hecke correspondence, we can as-
sign to any “kernel” (spherically invariant compactly supported func-
tion) on a p + 1-regular tree with a marked point an operator on
L2(S∗M). We will produce the operator KN satisfying the proper-
ties of Lemma 3.1 from such a kernel kN , which in turn will be defined
from its spherical transform hkN . Denoting the Fejér kernel of order L

by FL(θ) = 1
L

(
sin(Lθ/2)
sin(θ/2)

)2
, we will set the spherical transform to be

hkN (θ) = FL(qθ)− 1

for an appropriately chosen q. Now FL & L on (− 1
L
, 1
L

), which contains
the spectral parameters for components of Φj if N ≥ L, and FL is
non-negative, so the third condition of Lemma 3.1 is satisfied on the
tempered spectrum, as long as N > L > η−1 + 1. Moreover, we can
write

FL(qθ)− 1 =
L∑
j=1

2(L− j)
L

cos (jqθ)
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and observing that cos(jqθ) > cos(0) on the entire untempered spec-
trum as long as q is even, we see that the third condition holds on the
full spectrum. We also observe that

|kN(x)| ≤
L∑
j=1

2

∣∣∣∣Pjq [1

2
Tp

]
δ0

∣∣∣∣
.

L∑
j=1

p−jq/2

. p−q/2

which provides the second condition of Lemma 3.1, as long as q ≥ 2Nδ.
Moreover, since each Pjq[

1
2
Tp]δ0 vanishes outside the ball of radius Lq,

the first condition is satisfied whenever Lq ≤ N . So we may take
L = dη−1e + 1, and q = 2bN/2Lc, which yields δ = bq/2Nc & η. The
same kernel also works for θ = π and the untempered spectrum.

We must now consider the case of θ0 ∈ (0, π). The general idea is
the same, but in order to maintain positivity on the untempered spec-
trum, we can’t simply shift the Fejér kernel to a different approximate
eigenvalue. The solution to this problem is to find a suitable multiple
of θ0, which is sufficiently close to 0, and choose our value of q to be
divisible by this multiple. Thus the original Fejér kernel evaluated at
qθ0 will still be large, as before, without affecting its positivity on the
untempered spectrum. To guarantee that we can find such a suitable
value of q, we will invoke Dirichlet’s Theorem on Diophantine approxi-
mation. We will lose some in our bounds for δ (as well as in the implied
constant)— whereas our previous argument gave δ & η, we will have
to settle for a more modest δ & η2 in order to achieve the necessary
flexibility in choosing q . The following argument is essentially identical
to the one appearing in [BL11], with some tweaking to the constants
to accommodate our quasimodes.

Set L = bη−1c and Q = d1
8
Nηe. By Dirichlet’s Theorem, we can

find a positive integer q ≤ Q such that |qθ0 mod 2π| < 2πQ−1. There
exists an even multiple of q, say q′ = 2lq, such that 1

64
Qη ≤ q′ ≤ 2Q

— indeed, if q ≥ 1
128
Qη, we can simply take l = 1; otherwise there is

a multiple of q between 1
128
Qη and 1

64
Qη, so take twice that multiple.

Either way, since N is assumed to be large depending on η, we may
assume Qη > 64 which implies that both when l = 1 and l > 1 we have
that

2l <
1

32
Qη and |q′θ0 mod 2π| < 1

16
πη
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We now set the spherical transform of kN to be hkN (θ) = F2L(q′θ)− 1,
where F2L is the Fejér kernel of order 2L, and KN the corresponding
operator on L2(S∗M) i.e.

KN =
2L∑
j=1

2L− j
L

Pjq′

(
Tp
2

)
.

For any Tp-eigenfunction with eigenvalue 2 cos θ with θ ∈ [θ0 −
1
2
N−1, θ0 + 1

2
N−1], we have that

|q′(θ0 − θ)| ≤ QN−1 ≤ η/8 + 1/N < η/6;

this means that

|q′θ mod 2π| < 1

16
πη +

1

6
η <

1

8
πη ≤ π

8L
.

It follows that

F2L(q′θ) =
1

2L

sin2(Lq′θ)

sin2(q′θ/2)
≥ 2

L

sin2(Lq′θ)

(q′θ)2

≥ 2L

(
sin(Lq′θ)

Lq′θ

)2

But since L ∈ Z, and q′θ mod 2π ∈
(
− π

8L
, π
8L

)
, we have Lq′θ mod 2π ∈

[−π
8
, π
8
], which implies that∣∣∣∣sin(Lq′θ)

Lq′θ

∣∣∣∣ ≥ sin π
4

π
4

=
1√
2

4

π

whereby

F2L(q′θ) ≥ 2L

(
1√
2

4

π

)2

≥ 2L
8

π2
> L+ 1

as long as L ≥ 2 (which follows from the hypothesis η < 1/2). There-
fore the KN -eigenvalue of this eigenfunction will be > L + 1 ≥ η−1.
Moreover, since F2L is positive, the spherical transform of kN is bounded
below by −1; note also that on the untempered spectrum of Tp, then
KN -eigenvalue is also > L + 1 . It remains to check the first two
properties.

Now, by Lemma 3.2, we see that the kernel whose spherical transform
is cos 2jθ— i.e., the kernel of P2j(

1
2
Tp)— has sup-norm .p p−j. The

spherical transform of kN is a sum of terms of the form 2L−j
L

cos jq′θ,
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where j = 1, 2, . . . , 2L (note that we eliminated the j = 0 term by
subtracting off the constant contribution to F2L) and q′ ∈ 2Z. Thus

||kN ||∞ .
L∑
j=1

p−jq
′
.p p

−q′

Then, since

q′ ≥ 1

64
Qη ≥ 1

512
Nη2

the second condition is satisfied with δ = 1
512
η2. Moreover, since each

kernel Pjq′(
1
2
Tp) is supported in a ball of radius jq′ ≤ 2L · 2Q < N , the

full kernel kN is supported in a ball of radius N . This concludes the
proof of Lemma 3.1. �

The kernel kN produced by Lemma 3.1 will be used in section 4 to
establish positive entropy on a.e. ergodic component of quantum limits
arising from joint o(1)-quasimodes. It will also be used in section 3.2,
though in a less delicate way (in particular, without making use of
property (3) of Lemma 3.1).

3.2. Hecke Recurrence for Quasimodes. As shown in [Lin06] (and
implicitly already in [Lin01]) a quantum limit arising from a sequence
of Tp-eigenfunctions is Hecke recurrent. This remains true for Tp-quasi-
modes, and in order to streamline the presentation we shall make use
of the discussion in section 3.1. The recurrence property for quantum
limits arising from our joint o(1) quasimodes, follows immediately from
the following estimate (see [Lin06] for details):

Lemma 3.3. Let {Φj} be a sequence of ωj-quasimodes for Tp, with
ωj → 0, such that the sequence |Φj|2dvol converges weak-* to a measure
µ. Let x ∈ suppµ ⊂ S∗M , and B a small open ball around e ∈ G (say,
of radius less than 1/3 the injectivity radius of S∗M). Then

lim inf
j→∞

∑
dp(x,y)≤N

∫
yB
|Φj|2∫

xB
|Φj|2

→∞ as N →∞

uniformly in x and the radius of B.

Here, dp(x, y) refers to distance in the Hecke tree containing x and y,
i.e. the smallest d for which x ∈ Tpd(y); in particular, the sum is finite.
While we have in mind the case where the Φj arise from a sequence
of joint ∆ and Tp quasimodes on M as in Lemma 2.1, the proof of
Lemma 3.3 only uses the Tp-structure, and holds for any sequence of
o(1)-quasimodes for Tp on S∗M .
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Proof of Lemma 3.3. We will use a simplified version of the construc-
tion in Lemma 3.1. Let L be a large integer. Suppose Φj is a ωj-
quasimode for Tp with approximate eigenvalue λj and set θj ∈ [0, 2π]
by

θj =


cos−1(λj/2) if λj ∈ [−2, 2]

0 if λj > 2

π if λj < −2

.

Find a q ∈ {1, . . . , 100L} so that

(3.1) |qθj mod 2π| ≤ π

50L
,

and set

K =
L∑
l=1

P2ql

(
Tp
2

)
.

By Lemma 3.2 and two consecutive applications of the Cauchy Schwarz
inequality

|KΦj(x)| .

∣∣∣∣∣∣
L∑
l=1

∑
y: 2q(l−1)<dp(y,x)≤2ql

p−2ql/2Φj(y)

∣∣∣∣∣∣
≤

L∑
l=1

(
# {y : 2q(l − 1) < dp(y, x) ≤ 2ql} · p−2ql ·

∑
y : 2q(l − 1) < dp(y, x) ≤ 2ql

|Φj(y)|2
)1/2

.
L∑
l=1

( ∑
y: 2q(l−1)<dp(y,x)≤2ql

|Φj(y)|2
)1/2

≤

(
L

∑
dp(y, x) ≤ 100L2

|Φj(y)|2
)1/2

.

and similarly for every g ∈ B

|KΦj(xg)| .

(
L

∑
dp(y, x) ≤ 100L2

|Φj(yg)|2
)1/2

.

Set a =
∑L

l=1 P2ql(λj/2) (which we can also write in the tempered

case as
∑L

l=1 cos(2qlθj)); by considering separately the tempered and
untempered cases (using in the former case (3.1)) it can be verified that
a & L. Since Φj is an ωj-quasimode

‖KΦj − aΦj‖ = OL(ωj).
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It follows that

a2
∫
xB

|Φj|2 ≤
∫
xB

|KΦj|2 +OL(ωj)vol(B)1/2

. L
∑

dp(y,x)≤100L2

∫
yB

|Φj|2 +OL(ωj)vol(B)1/2.

Since a2 & L2, ωj → 0, and x ∈ suppµ (so that lim infj→∞
∫
xB
|Φj|2 >

0) we conclude that

lim inf
j→∞

∑
dp(x,y)≤100L2

∫
yB
|Φj|2∫

xB
|Φj|2

& L.

�

4. Proof of Theorem 1.3

Let

B(ε, τ) =
{
a(t)u−(s−)u+(s+) : t ∈ (−τ, τ), s−, s+ ∈ (−ε, ε)

}
where

u+(s) =

(
1 0
s 1

)
u−(s) =

(
1 s
0 1

)
a(t) =

(
et/2 0
0 e−t/2

)
.

We recall the setup, which is the same as in [RS94]: we begin with
a quaternion division algebra

H(Q) = {x+ iy + jz + ijw : x, y, z, w ∈ Q}
with i2 = a, j2 = b, ij = −ji and the usual norm n(x+ iy+ jz+ ijw) =
x2−ay2−bz2 +abw2 and trace tr(x+ iy+jz+ ijw) = 2x; that H(Q) is
a division algebra is equivalent to n(α) 6= 0 for all nonzero α ∈ H(Q);
we also assume a > 0 and then

ι(x+ iy + jz + ijw) =

(
x+
√
ay z +

√
aw

b(z −
√
aw) x−

√
ay

)
gives an embedding of H(Q) to Mat2(F ), F = Q(

√
a), which extends

to an isomorphism of rings between H(R) to Mat2(R). An order R <
H(Q) is a subring containing 1 which as an additive group is of rank
4 and so that tr(α) ∈ Z for every α ∈ R. An example of an order
is R̃ = OF + jOF (with F embedded in H(Q) in the obvious way).
We take R to be a maximal order containing R̃; the assumptions that
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R is maximal is not important, but makes it easier to write things
accurately in classical language. Cf. [Eic65] for more details.

The following estimate can be derived using the techniques of [BL03],
specifically Lemmas 3.1 and 3.3 there (much more general statements
of this type by Silberman and Venkatesh can be found in [SV10]). We
include the proof below for completeness.

Lemma 4.1. For τ fixed but small enough, there exists a constant c
(depending only on τ), such that for any x, z ∈ X = Γ\PSL(2,R), and
any ε < cp−2N , the tube zB(ε, τ) ⊂ X contains at most O(N) of the
Hecke points

⋃
j≤N Tpj(x).

Proof. Let F be a compact fundamental domain for Γ and x, z ∈ F
points projecting to x, z respectively. Suppose there exist k distinct
Hecke points yi ∈ Tpji (x) with ji ≤ N , such that yi ∈ zB(ε, τ). By
construction of the Hecke correspondence, this implies that there are
αi ∈ R(pji) so that αix ∈ zB(ε, τ).

Then, since B(ε, τ)−1B(ε, τ) ⊂ B(4ε, 3τ) for ε sufficiently small we
have

(4.1) α1
−1αi ∈ xB(4ε, 3τ)x−1 ∩ ι

( ⋃
j≤2N

R(pj)

)
where ι is as above our isomorphism of the quaternion division algebra
H to 2×2 matrices over R. Set, for i = 1, . . . , k−1, βi = α1αi+1; since
α = tr(α) − α is in R iff α is, we have that βi ∈ R, 1 ≤ n(βi) ≤ p2N

and of course βi = α1
−1αi. From (4.1) it follows that

|tr(βiβj − βjβi)| <
1

c1
n(βiβj)

1/2ε

tr(βi) ≥ n(βi)
1/2(2− ε

c1
)

tr(β2
i ) ≥ n(βi)(2−

ε

c1
)

with c1 depending only on τ . As tr(β2
i ), tr(βiβj − βjβi) ∈ Z it follows

that if ε < c1p
−2N we have that βiβj = βjβi and tr(β2

i ) ≥ 2n(βi). It
also follows that tr(βi) > 0, hence since tr(β2

i ) = tr(βi)
2 − 2n(βi) we

find that tr(βi) ≥ 2n(βi)
1/2.

By construction βi 6∈ Q, so the only elements in H(Q) that commute
with β1 are Q(β1). Since tr(βi) ≥ 2n(βi)

1/2, the field Q(β1) is isomor-
phic to a real quadratic number field L. Let φ : L → Q(β1) ⊂ H(Q)
be this isomorphism.

Since R is an order, for any β ∈ Q(β1) ∩ R (such as βi for 1 ≤ i ≤
k − 1) we have that φ−1(β) is in OL, the ring of integers in L. Hence
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for any 1 ≤ i ≤ k − 1 we obtain a principal ideal Ii = φ−1(βi)OL of
norm n(βi) ≤ p2N ; write I ′i = pkIi with Ii not divisible by p.

Since βi are all distinct, if I ′i = I ′j then βi = βjp
kθ with θ ∈ O∗K

and k ∈ Z. Since βi, βj ∈ xB(4ε, 3τ)x−1, this would imply that θ ∈
xB(cε, cτ)x−1 for an appropriate constant c. But then if τ was chosen
sufficiently small, we must have θ = 1 and βi = βj, in contradiction to

αj being all distinct.

Thus the map j 7→ I ′j is injective, and since in OL there are at most

4N ideals of norm dividing p2N which are not divisible by the principal
ideal pOL, we conclude that k ≤ 4N . �

Modifying the constant c, one can get the seemingly stronger con-
clusion that given any x ∈ X, for at most O(N) of the points y ∈⋃
j≤N Spj(z) the intersection xB(cp−2N , τ) ∩ yB(cp−2N , τ) 6= ∅.

Proof of Theorem 1.3. Take P to be a partition of S∗M with the prop-
erty that µ(∂P ) = 0 for every P ∈ P , and such that maxP∈P diamP
is sufficiently small (less than 1

10
of the injectivity radius of X would

be sufficient), and consider its refinement under the time one geodesic
flow. Any partition element of the b2N log pc-th refinement is con-
tained in a union of Oc(1) “tubes” of the form xlB(cp−2N , τ) for some
points xl ∈ S∗M . For convenience, we take c sufficiently small, so that
the remarks following the proof of Lemma 4.1 apply.

Positive entropy on almost every ergodic component is equivalent to
the statement: for any η > 0 there exists δ(η) > 0 such that, for all
N sufficiently large, any collection of distinct partition elements of the
b2N log pc-th refinement of P whose union has total mass > η, must
contain at least pδN partition elements (cf. e.g. [Wal82]). Therefore,
take a collection {E1, E2, . . . , EK} of distinct partition elements of the

b2N log pc-th refinement of P , of cardinality K, and set E =
⋃K
k=1Ek

to be their union; we wish to show that K ≥ pδN for some δ(η), and
all N sufficiently large.

Let 1Ek
denote the characteristic function of each Ek, and similarly

1E =
∑

Ek⊂E 1Ek
. To each Ek we associate, as above, Oc(1) tubes

Bk,l = xk,lB(ε, τ) whose union contains Ek with ε = cp−2N . Let Ek,l
denote the intersection Ek ∩ xk,lB(ε, τ).

Now assume that µ(E) > η; since we have assumed µ(∂P ) = 0 for
all P ∈ P (hence µ(∂Ek) = 0 for all k), this implies that there exists a
j such that µj(E) = ||Φj1E ||22 > η as well. Consider the correlation

〈KN(Φj1E),Φj1E〉
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where KN is the operator from Lemma 3.1. We will estimate this
correlation in two different ways. First, we can expand

〈KN(Φj1E),Φj1E〉L2(S∗M) =
∑
k,l

∑
k′,l′

〈KN(Φj1Ek,l
),Φj1Ek′,l′

〉L2(Ek).

Now lift xk,l and xk′,l′ from X to elements xk,l and xk′,l′ in a compact

fundamental domain F for Γ in PSL(2,R) as in the proof of Lemma 4.1.
We also lift the sets Ek,l and Ek′,l′ to subsets Ek,l and Ek′,l′ of PSL(2,R)

so that Ek,l ⊂ xk,lB(ε, τ) and similarly for k′, l′. Consider all αi ∈
R(pj), j ≤ N for which

αixk,lB(ε, τ) ∩ xk′,l′B(ε, τ) 6= ∅;

say there are v such. By Lemma 4.1 (more precisely, by the comments
following the proof of this lemma), we have v = O(N). By (2) of
Lemma 3.1, for any y ∈ X∣∣KN(Φj1Ek,l

)(y)
∣∣ . p−Nδ

∑
j≤N

∑
z∈S

pj
(y)

|Φj(z)| 1Ek,l
(z),

hence (implicitly identifying between functions onX and left Γ-invariant
functions on PSL(2,R))

〈KN(Φj1Ek,l
),Φj1Ek′,l′

〉 . p−Nδ
v∑
i=1

∫
αiEk,l∩Ek′,l′

∣∣∣Φj(α
−1
i z)

∣∣∣ · |Φj(z)| dz

. p−Nδ
v∑
i=1

‖Φj‖L2(Ek,l)
‖Φj‖L2(Ek′,l′ )

. p−NδN ‖Φj‖L2(Ek,l)
‖Φj‖L2(Ek′,l′ )

.

It follows that

(4.2)

〈KN(Φj1E),Φj1E〉 . p−NδN

(∑
k,l

‖Φj‖L2(Ek,l)

)2

. p−NδNK
∑
k,l

‖Φj‖2L2(Ek,l)

≤ p−NδNK

.

On the other hand, we can decompose Φj1E spectrally into an or-
thonormal basis (of L2(S∗M)) of Tp eigenfunctions {ψi}, which a for-
tiori also diagonalize KN . After applying Lemma 1.1, and restricting
to a subsequence if necessary, we may assume that Φj ∈ Sj, the space
spanned by those ψi with Tp-eigenvalue in [2 cos(θ)−2ωj, 2 cos(θ)+2ωj],
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where 2 cos θ is an approximate Tp-eigenvalue for all Φj. We denote by
ΠSj

the orthogonal projection to Sj, and observe that

||Φj1E ||22 =
∣∣∣∣ΠSj

(Φj1E)
∣∣∣∣2
2

+
∑
ψi /∈Sj

|〈Φj1E , ψi〉|2

Now, since Φj ∈ Sj is a unit vector, we have∣∣∣∣ΠSj
(Φj1E)

∣∣∣∣
2

= max
{ψ∈Sj :||ψ||2=1}

〈Φj1E , ψ〉

≥ 〈Φj1E ,Φj〉 = ||Φj1E ||22
and therefore∑

ψi /∈Sj

|〈Φj1E , ψi〉|2 = ||Φj1E ||22 −
∣∣∣∣ΠSj

(Φj1E)
∣∣∣∣2
2

≤ ||Φj1E ||22 − ||Φj1E ||42
< ||Φj1E ||22(1− η)

by the assumption that ||Φj1E ||22 > η.
Now by Lemma 3.1, since {ψi} diagonalizes KN , and the KN eigen-

value for each ψi is at least −1, while the KN eigenvalue for eigenfunc-
tions in Sj is greater than η−1, we have

〈KN(Φj1E),Φj1E〉 =
∑
ψi

|〈Φj1E , ψi〉|2〈KNψi, ψi〉

≥
∑
ψi∈Sj

|〈Φj1E , ψi〉|2〈KNψi, ψi〉 −
∑
ψi /∈Sj

|〈Φj1E , ψi〉|2

>
∑
ψi∈Sj

|〈Φj1E , ψi〉|2 · η−1 − ||Φj1E ||22(1− η)

≥
∣∣∣∣ΠSj

(Φj1E)
∣∣∣∣2
2
· η−1 − ||Φj1E ||22(1− η)

> ||Φj1E ||22(||Φj1E ||22 · η−1 − (1− η))

> η(η · η−1 − 1 + η) = η2 > 0(4.3)

where we have used the estimate above
∣∣∣∣ΠSj

(Φj1E)
∣∣∣∣2
2
≥ ||Φj1E ||42.

Therefore, combining (4.2) and (4.3), we have

Np−δNK & η2

and so
K & η2N−1pδN

and there exists δ′(η) > 0 such that the right hand side is ≥ p−δ
′N for

all N sufficiently large.
Since this holds for any collection of partition elements of total µ-

measure > η, we conclude that there is at most µ-measure η on ergodic
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components of entropy less than δ′ & δ > 0. Taking η → 0, we get
positive entropy on a.e. ergodic component of µ. �

5. Irreducible Quotients of H×H

In this section, we let M = Γ\H × H, where Γ is an irreducible,
cocompact, discrete subgroup of PSL(2,R)×PSL(2,R). Here we do not
assume that a Hecke correspondence is available to apply our methods
to, but instead we assume that our functions are joint o(1)-quasimodes
of the two partial Laplacians (in each coordinate). Since the eigenvalue
of the Laplace operator on M is the sum of the eigenvalues of the two
partial Laplacians, the semiclassical limit entails at least one of the
two partial eigenvalues tending to ∞ (perhaps after restricting to a
subsequence, if necessary). Here, we consider the case where one partial
eigenvalue tends to∞ while the other remains bounded; without loss of
generality, we assume throughout that the approximate eigenvalue of
the partial Laplacian ∆1 in the first coordinate grows, while that of ∆2

in the second coordinate is bounded. The discussions of section 2 apply
in the first coordinate (see Section 2.4), and we find that any quantum
limit measure on Γ\PSL(2,R) × H arising from such a sequence is
invariant under the diagonal subgroup acting on the first (PSL(2,R))
coordinate. As discussed in Lemma 5.6, such a limit measure is also
recurrent under translations in the second coordinate. We then use the
action of ∆2 as a replacement for the Hecke operator in applying the
methods of the preceding sections to get our positive entropy result,
which therefore implies QUE by [Lin06].

Theorem 5.1. Let φj be a sequence of L2-normalized joint o(1)-quasi-
modes for the two partial Laplacians ∆1,∆2 on M , such that the ap-
proximate eigenvalues of ∆1 grow to ∞, while those of ∆2 remain
bounded. Then any weak-* limit point µ of the microlocal lifts µj has
positive entropy on almost every ergodic component.

5.1. Our kernel for the hyperbolic plane. We recall the Selberg/Harish-
Chandra transform (see eg. [Iwa02, Chapter 1.8])

h(r) =

∫ ∞
−∞

eirug(u)du

g(u) = 2Q
(

sinh2
(u

2

))
k(t) = − 1

π

∫ ∞
t

dQ(ω)√
ω − t

(5.1)

relating a radial kernel k(x, y) = k(t(x, y)) = k(sinh2(dist(x, y)/2))
with its spherical transform h(r), which gives the eigenvalues under
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convolution with k for each Laplace eigenfunction (∆ + (1
4

+ r2))φ = 0
of spectral parameter r. Intuitively, the variable u for g(u) represents
wave propagation times.

We will start with the Fourier pair

hT (r) =
cos(rT )

cosh(πr/2)

gT (ξ) =
4 cosh ξ coshT

cosh 2ξ + cosh 2T

essentially the same as that used in [IS95], albeit in inverted roles.
Notice that for untempered r— i.e., ir ∈ [−1

2
, 1
2
]— we have

hT (r) =
cosh(irT )

cos πir/2
& 1

since cosh ≥ 1, and the argument of the cos term is in [−π
4
, π
4
], where

cos is uniformly bounded below.
We use this kernel to establish the analogue of the Propagation

Lemma 3.2:

Lemma 5.2. Let kT be the radial kernel corresponding to the above

function hT (r) = cos(rT )
cosh(πr)

. Then

• ||kT ||∞ . e−T/2

• kT decays rapidly outside of a ball of radius 4T ; in fact,∫ ∞
t=sinh2(2T )

|kT (t)|dt . e−T

This Lemma is analogous to Lemma 3.2, and can be understood
in terms of propagation of the hyperbolic wave equation. Our proof
here, estimating the explicit transform directly, is morally the same
as that of Lemma 3.2, though perhaps more direct at the expense of
transparency.

Proof. We have

2Q(sinh2(ξ/2)) = 4
2 cosh ξ coshT

2 cosh 2ξ + 2 cosh 2T

Q(ω) = 2
(4ω + 2) coshT

((4ω + 2)2 − 2) + 2 cosh 2T
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which implies that

Q′(ω) = (8 coshT )
(4ω + 2)2 − 2 + 2 cosh 2T − 2(4ω + 2)2

[(4ω + 2)2 − 2 + 2 cosh 2T ]2

= (8 coshT )
2 cosh 2T − 2− (4ω + 2)2

[2 cosh 2T − 2 + (4ω + 2)2]2

.C

{
ω−2 coshT (4ω + 2)2 ≥ 1

C
(2 cosh 2T − 2)

coshT (cosh 2T )−1 (4ω + 2)2 ≤ C(2 cosh 2T − 2)
(5.2)

In particular, if (4t+ 2)2 ≥ 2 cosh(2T )− 2, then

|πkT (t)| =

∣∣∣∣∫ ∞
0

v−1/2Q′(v + t)dv

∣∣∣∣
. coshT

∫ ∞
0

v−1/2(v + t)−2dv

. coshT

(
t−2
∫ t

0

v−1/2dv + t−1
∫ ∞
t

v−3/2dv

)
. coshT (t−2t1/2 + t−1t−1/2) . coshT · t−3/2

and therefore, since t ≥ sinh2(2T ) implies (4t + 2)2 ≥ 2 cosh(2T ) − 2,
we have by (5.2)∫ ∞

t=sinh2(2T )

|kT (t)|dt . coshT

∫ ∞
t=sinh2(2T )

t−3/2dt

. coshT · (sinh(2T ))−1

. e−T

since coshT . eT and sinh(2T ) & e2T for T ≥ 1, say.
For the ||kT ||∞ statement, we choose an appropriate value of C sim-

plifying (5.2) to

|Q′(ω)| .
{

ω−2 coshT ω ≥ coshT
coshT (cosh 2T )−1 ω ≤ 2 coshT

Apply this first in the case t ≥ coshT , to get as in the previous estimate

|πkT (t)| . coshT (t−3/2)(5.3)

. coshT · (coshT−3/2) . e−T/2
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Finally, if t ≤ coshT , we estimate

|πkT (t)| .
∫ coshT

0

v−1/2 coshT (cosh 2T )−1dv +

∫ ∞
coshT

v−1/2(v + t)−2 coshTdv

. (coshT )3/2(cosh 2T−1) + coshT

∫ ∞
coshT

v−5/2dv

. (coshT )−1/2 + (coshT )−1/2

(5.4)

by estimating |Q′(v+ t)| separately for (v+ t) ≤ 2 coshT and (v+ t) ≥
coshT . �

We now use this family of kernels in a construction analogous to
Lemma 3.1:

Lemma 5.3. Let 0 < η < 1
2
, and r

(2)
j an approximate spectral parame-

ter. For any sufficiently large N ∈ N (depending on η), there exists an
operator KN on Γ\SL(2,R)×H satisfying:

(1) KN is given by convolution with a kernel kN in the second co-
ordinate, supported in the ball of radius 2N ; i.e.

KN(f)(x, z) =

∫
d(w,z)≤2N

f(x,w)kN(w)dw

(2) We have the estimate ||kN ||∞ . e−δN for some δ(η) > 0. In
fact, we can choose δ = 1

2
η2.

(3) The spherical transform hkN is uniformly bounded below, and

hkN (r) & η−1 for all |r − r(2)j | < 1/2N .

Proof. We first use the fact that
∫
|kT (t)|dt is small outside the ball of

radius 4T to get a modified kernel k̃T cut off to be supported inside
this ball. Namely, define

k̃T (t) =

{
kT (t) t ≤ sinh2(2T )

0 t > sinh2(2T )

and by integrating against a spherical eigenfunction (see eg. [Iwa02,

1.7]), we see that kT − k̃T has spherical transform bounded by∫
w≥4T

|k(sinh2(w))|dw . e−T

since spherical eigenfunctions decay away from the origin. Therefore
k̃T has spherical transform h̃T satisfying∣∣∣∣h̃T (r)− cos(rT )

cosh πr/2

∣∣∣∣ . e−T
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We now set L := dη−1e, and take the linear combination

hL,T (r) :=
2L∑
j=1

2L− j
L

h̃2jT (r)

which satisfies∣∣∣∣hL,T (r)− F2L(2Tr)− 1

cosh πr/2

∣∣∣∣ . 2L∑
j=1

e−2jT < 1

so that hL,T is everywhere uniformly bounded below, and hL,T (r) > L
for untempered r ∈ iR, in analogy with section 3.

Of course, if our approximate spectral parameter r
(2)
j is tempered

(i.e., r
(2)
j ∈ R), then we would like to pick T in such a way that F2L(2Tr)

is large at r
(2)
j , and we invoke Dirichlet’s Theorem once again to find a

suitable such T .
Suppose r

(2)
j ∈ R is tempered, and set θ0 = r

(2)
j mod 2π. Take N

from the hypotheses of the Lemma, which represents the time to which
we will allow propagation, and let Q = d1

8
Nηe. Apply the argument

from the proof of Lemma 3.1 to find q′ ∈ 2Z such that Nη2 . q′ ≤ 2Q,

and satisfying F2L(q′θ) > L+ 1 for all θ = r mod 2π where |r− r(2)j | <
1/2N . Now set 2T = q′, and we have

hL,T (r) >
F2L(q′r)− 1

cosh πr/2
−O(1) &

r
(2)
j
L

for all |r − r(2)j | < 1/2N . Note that our estimate depends on r
(2)
j , but

we have assumed that r
(2)
j remains bounded, so that hL,T (r) & L, with

the implied constant depending on our uniform bound for r
(2)
j .

Finally, we define kL,T :=
∑2L

j=1
2L−j
L
k̃2jT to be the kernel correspond-

ing to hL,T , and note that since ||k̃2jT ||∞ = ||k2jT ||∞, we have

||kL,T ||∞ ≤
2L∑
j=1

||k2jT ||∞ .
2L∑
j=1

e−(2jT )/2 . e−2T

decays exponentially in T .
In conclusion, we have constructed a radial kernel kL,T with the

following properties:

• kL,T is supported in the ball of radius 4(2L · 2T ) < 2N .

• ||kL,T ||∞ . e−T < e−
1
2
Nη2 for N sufficiently large.

• The spherical transform of kL,T is uniformly bounded below,

and is & η−1 at all spectral components in [r
(2)
j − 1

2N
, r

(2)
j + 1

2N
].
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as required.
�

Armed with this kernel of Lemma 5.3, the proof of Theorem 5.1
proceeds exactly as in section 4; we are missing only the analogue of
Lemma 4.1:

Lemma 5.4. There are c, κ > 0 so that for any (x, z) in a compact
fundamental domain F < PSL(2,R) × PSL(2,R) with respect to the
action of Γ on the left, there are at most cN distinct γ ∈ Γ such that
there exist g1, g2 ∈ PSL(2,R) satisfying

(5.5) (x, zg1) ∈ γ(xB(e−κN , τ), zg2) log ‖g1‖, log ‖g2‖ < N

Recall that Γ is an irreducible, cocompact lattice in PSL(2,R) ×
PSL(2,R). In this context, irreducibility is equivalent to Γ intersecting
the group {e} × PSL(2,R) trivially [Rag72]. A complete classifica-
tion of such (up to commensurability) can be obtained from Margulis’
Arithmeticity Theorem [Mar91]. This classification (and Liouville type
bounds on the approximation of algebraic numbers) in particular im-
plies a more quantitative form of the triviality of Γ ∩ {e} × PSL(2,R),
namely that there are C, κ > 0 so that

(5.6) ‖g1 − e‖ ≥ κ ‖g2‖−C for any (g1, g2) ∈ Γ \ {e}.
We shall also make use of the following estimate:

Proposition 5.5. Let Γ be an irreducible cocompact lattice in PSL(2,R)×
PSL(2,R). Then there is a C1 so that for every abelian subgroup H < Γ
and N > 1

|{h = (h′, h′′) ∈ H : ‖h′‖ ≤ 100, ‖h′′‖ ≤ N}| ≤ C1 logN.

Proof. Let F be a compact fundamental domain for G = PSL(2,R)×
PSL(2,R) with respect to Γ. Then{

g(Γ \ {e})g−1 : g ∈ G
}

=
{
g(Γ \ {e})g−1 : g ∈ F

}
is a closed subset of G not containing e. It follows that there is a δ > 0
so that for every γ ∈ Γ \ {e}

inf
g∈G

∥∥gγg−1 − e∥∥ > δ.

Let now H be an abelian subgroup of G. Since Γ has a finite index
torsion free subgroup, if H contains only torsion elements then the
order of H is O(1). Let now γ ∈ H be an element of infinite order. The
centralizer CG(γ) of γ is conjugate to either T = K ×A,A×K,A×A
with K = SO(2,R)/{±1} and A < PSL(2,R) the diagonal group (if
the centralizer is K ×K then since Γ is discrete we must have that γ
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is a finite order). Both K and A have the properties that for any h in
either group ‖h− e‖ ≥ c infg∈PSL(2,R) ‖ghg−1 − e‖ (with the standard
choice of norm, we may even take c = 1).

It follows that if g0 is chosen so that g0Hg
−1
0 ≤ T then

g0 (H ∩ {(h′, h′′) : ‖h′‖ ≤ 100, ‖h′′‖ ≤ N}) g−10 ⊂
T ∩ {(h′, h′′) : ‖h′‖ ≤ 100/c, ‖h′′‖ ≤ N/c}

hence by the pigeonhole principle if this intersection is of cardinality
≥ C1 logN with sufficiently large C1 there will be two distinct γ1, γ2 ∈
H so that

∥∥g0γ1γ−12 g−10 − e
∥∥ < δ, in contradiction to the definition

of δ. �

Proof of Lemma 5.4. As in the proof of Lemma 4.1 a key observation
is that if γ1, γ2 ∈ Γ are such that there exist gi, g

′
i, hi ∈ G (i = 1, 2)

with ‖gi‖, ‖g′i‖ ≤ eN and hi ∈ B(e−κN , τ) satisfying

(5.7) (x, zgi) = γi(xhi, zg
′
i)

then γ1 and γ2 commute. Indeed, letting πi denote the projection from
PSL(2,R)× PSL(2,R) to the i component (i = 1, 2) we have that

‖π1[γ1, γ2]− e‖ = ‖π1(γ1γ2γ−11 γ−12 )− e‖
= ‖xh−11 h−12 h1h2x

−1 − e‖ = O(e−κN)

with an implicit constant depending only on τ , while

‖π2[γ1, γ2]‖ =
∥∥∥zg1g′1−1g2g′2−1g′1g−11 g′2g

−1
2 z−1

∥∥∥ = O(e8N)

since for g ∈ SL(2,R) the norms of g and g−1 are comparable. Hence
by (5.6) if κ/8 > C and N is sufficiently large we may conclude that
[γ1, γ2] = 1.

The lemma now follows by applying Proposition 5.5 to the set of all
γi’s satisfying (5.7). �

5.2. Recurrence for Joint Quasimodes on H×H. Here, we prove
the analogue of Lemma 3.3 for our joint quasimodes on Γ\H×H.

Lemma 5.6. Let Φj be a sequence of ωj-quasimodes for ∆2 (the Lapla-
cian operator on the second component) on Γ\PSL(2,R) × H, with
ωj → 0. Suppose that |Φj|2dvol converges weak-* to a measure µ.
Consider a point (x, z) ∈ Γ\PSL(2,R)×H, and let B be a small open
ball around e ∈ PSL(2,R), so that xB×{z} is a small ball in the first
coordinate around (x, z). Then for every (x, z) ∈ suppµ and η ∈ (0, 1),

lim inf
j→∞

η2
∫
xB×{w:d(z,w)≤N} |Φj(x

′, w)|2dx′dw∫
xB×{w:d(z,w)≤η} |Φj(x′, w)|2dx′dw

→∞ as N →∞
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uniformly in (x, z), η, and the radius of B.

Proof. We proceed as in Lemma 3.3, using a simplified version of the
construction in section 5.1. Let L be a large integer, and r∗ an approx-
imate spectral parameter for Φj for ∆2. Find a q ∈ {1, . . . , 100L} so
that

(5.8) |qr∗ mod 2π| ≤ π

50L

and set

k =
L∑
l=1

k̃2ql

where k̃2ql is given by the spherical kernel of Lemma 5.2, cut off at
radius 8ql, as in section 5.1. The spherical transform of k therefore
satisfies ∣∣∣∣∣hk(r)−

L∑
l=1

cos(rl)

cosh(πr/2)

∣∣∣∣∣ . 1

for all r. We computed in (5.4) and (5.3) that

|k̃2lq(t)| ≤ |k2lq(t)| .
{

(cosh 2lq)−1/2 t ≤ cosh 2lq
cosh 2lq · t−3/2 t ≥ cosh 2lq

so that for cosh 2lq < t ≤ cosh 2(l + 1)q we have

k(t) .
∑

1≤l′≤l

cosh 2l′q · t−3/2 +
∑

l+1≤l′≤L

(cosh 2l′q)−1/2

. cosh 2lq · t−3/2 + (cosh 2(l + 1)q)−1/2

We wish to estimate

|(k ∗ Φj)(x, z)| =
∣∣∣∣∫

H
k(sinh2(d(z, w)/2))Φj(x,w)dw

∣∣∣∣
by dividing into the following annuli:

A0 = {w : sinh2(d(z, w)/2) ≤ cosh 2q}
Al = {w : cosh 2lq < sinh2(d(z, w)/2) ≤ cosh 2(l + 1)q}

l = 1, 2, . . . , L− 1

AL = {w : cosh 2Lq < sinh2(d(z, w)/2) ≤ sinh2(4qL)}
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which cover the support of k. Applying Cauchy-Schwarz, we have

|(k ∗ Φj)(x, z)|2

.

∣∣∣∣∣
L∑
l=0

∫
Al

k(sinh2(d(z, w)/2))Φj(x,w)dw

∣∣∣∣∣
2

. L
L∑
l=0

∣∣∣∣∫
Al

k(sinh2(d(z, w)/2))Φj(x,w)dw

∣∣∣∣2
. L

L∑
l=0

(∫
Al

|k(sinh2(d(z, w)/2))|2dw
∫
Al

|Φj(x,w)|2 dw
)

Now recall that in hyperbolic polar coordinates around z, the infini-
tesimal hyperbolic area element is given by dθdt with t = sinh2(d(z, w)/2).
Thus for 1 ≤ l ≤ L− 1 we have the upper bound∫

Al

|k(sinh2(d(z, w)/2))|2dw

.
∫ cosh 2(l+1)q

t=cosh 2lq

(
cosh2 2lq · t−3 + (cosh 2(l + 1)q)−1

)
dt

. cosh2 2lq

∫
t≥cosh 2lq

t−3dt+ (cosh 2(l + 1)q)−1
∫
t≤cosh 2(l+1)q

dt

. cosh2 2lq(cosh 2lq)−2 + (cosh 2(l + 1)q)−1(cosh 2(l + 1)q) . 1.

Moreover, we similarly estimate the integral over A0 and AL by∫
A0

|k(sinh2(d(z, w)/2))|2dw .
∫ cosh 2q

t=0

(cosh 2q)−1dt

. 1∫
AL

|k(sinh2(d(z, w)/2))|2dw . (cosh 2(L− 1)q)2
∫
t>cosh 2(L−1)q

t−3dt

. 1.

Plugging these back into our Cauchy-Schwarz estimate, we get

|(k ∗ Φj)(x, z)| . L1/2

(
L∑
l=0

∫
Al

|Φj(x,w)|2 dw

)1/2

.

(
L

∫
d(z,w)≤4Lq

|Φj(x,w)|2dw
)1/2

≤
(
L

∫
d(z,w)≤400L2

|Φj(x,w)|2dw
)1/2
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and similarly for every g ∈ B

|(k ∗ Φj)(xg, z)| .
(
L

∫
d(z,w)≤400L2

|Φj(xg, w)|2dw
)1/2

Now by considering separately the tempered (r∗ ∈ R) and untem-
pered (−1

2
≤ ir∗ ≤ 1

2
) cases, using in the former case (5.8), it can be

verified that

h(r∗) =
L∑
l=1

h̃2ql(r
∗) & L

Since Φj is is an ωj-quasimode for ∆2

||k ∗ Φj − h(r∗)Φj|| = OL(ωj),

and it follows that

h(r∗)2
∫
xB×{w:d(z,w)<η}

|Φj|2

≤
∫
xB×{w:d(z,w)<η}

|k ∗ Φj|2 +OL,B,η(ωj)

. L

∫
xB×{d(z,w)≤η}

∫
{d(w′,w)<400L2}

|Φj(y, w
′)|2dwdw′dy +OL,B,η(ωj)

. Lη2
∫
xB×{w:d(z,w)<400L2+1}

|Φj|2 +OL,B,η(ωj)

Since h(r∗)2 & L2, ωj → 0, and (x, z) ∈ suppµ, we conclude that

lim inf
j→∞

η2
∫
xB×{d(z,w)≤400L2+1} |Φj|2∫
xB×{d(z,w)≤η} |Φj|2

& L.

�
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