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1. Introduction

In this paper we report some progress towards a conjecture of Rud-
nick and Sarnak regarding eigenfunctions of the Laplacian ∆ on a com-
pact manifold M for certain special arithmetic surfaces M of constant
curvature (see below for definitions):

Conjecture 1.1 (QUE [5]). If M has negative curvature, then for any
sequence of eigenfunctions φi of the Laplacian, normalized to have L2-
norm 1, such that the eigenvalues λi tend to −∞, the probability mea-
sures |φi(x)|2d vol(x) converge in the weak∗ topology to the Riemannian
volume vol(M)−1d vol.

(Recall that µi converge weak∗ to µ if for every continuous function
with compact support, ∫

fd µi −→
∫

fd µ

as i →∞.) A similar conjecture can be stated also in the finite volume
case [6].

Of particular number theoretic interest are manifolds of the form
Γ\H with Γ a congruence arithmetic lattice, in which case it is natu-
ral to assume that the eigenfunctions are Hecke-Maas forms, i.e. also
eigenfunctions of all Hecke operators. We shall refer to this special
case of Conjecture 1.1 as the Arithmetic Quantum Unique Ergodicity
Conjecture. While most of our methods are quite general, the number
theoretic argument used to prove Theorem 3.4 is specific to lattices
coming from quaternion algebras over the rationals or to congruence
sublattices of SL2(Z). We plan to address the general case using a
different technique in a future paper.

It is well known (see [2], [7], [11]) that any weak∗ limit as in the above
conjecture of |φi(x)|2d vol(x) is a projection of a measure on Γ\ SL(2, R)
invariant under the geodesic flow; our main result is that if we assume
that φi are all Hecke-Maas forms, then all ergodic components of this
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measure on Γ\ SL(2, R) have strictly positive entropy with an explicit
lower bound, namely κ′ = 2/9 (where the speed of the geodesic flow
is normalized so that the entropy of the Haar-Lesbegue measure is 2).
This in particular implies that the support of such a measure on X has
Hausdorff dimension at least 1 + κ′.

The first result of this type was proved by Rudnick and Sarnak [5].
They proved that this limiting measure (or even its singular part if any)
cannot be supported on a finite union of closed geodesics. Wolpert [10]
gave explicit bounds (though substantially weaker than ours) on the
modulus of continuity of the limiting measure for Γ = SL(2, Z); however
he used the substantial additional assumption that the support of the
singular part (if any) of the measure is compact. In [4], the second
named author extended Rudnick and Sarnak’s result to more general
groups and lattices, as well as strengthening it by showing that the
measure of any closed geodesic is zero.

While in general dimension is not preserved under projections, it can
be shown that for the projection

π : Γ\ SL2(R) → Γ\H

dimension is preserved in the following sense: if µ is invariant under the
geodesic flow on Γ\ SL2(R) with the entropy of all ergodic components
≥ η then the dimension of πµ is at least 1 + η if η ≤ 1; if η > 1 then
πµ is regular with respect to the natural measure on Γ\H (see bellow
for a more precise statement). This result is proved in Lindenstrauss
and Ledrappier [3]. Thus our results on the dimension of the limiting
measure on Γ\ SL(2, R) immediately give bounds on the dimension of
any weak∗ limit of |φi(x)|2d vol(x).

Finally, we remark that it follows from an identity of T. Watson [9]
that the Grand Riemann Hypothesis implies the Arithmetic Quantum
Unique Ergodicity Conjecture, that is that any weak∗ limit as above
is indeed the natural volume measure. In fact, the GRH gives a best
possible rate of convergence of these measures.

2. Statement of main results

In this paper we deal with uniform lattices that arise from quaternion
algebras over Q. Thus, the following notations will be used throughout
this paper:

• H a quaternion division algebra over Q, split over R.
• R an order in H
• Γ a lattice in SL2(R) corresponding to the norm one elements

of R (see below).
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We recall that an order R is a subring of H that spans H over Q
satisfying that for every a ∈ R both the norm n(a) and the trace tr(a)
are integral. Our techniques are also equally applicable to congruence
sublattices of SL(2, Z), though the nonuniformity of the lattice requires
some minor modifications which we present in §4..

We fix once and for all an isomorphism Ψ: H(R) ∼= M2(R). For
α ∈ R of positive norm n(α), we let α ∈ SL(2, R) denote the matrix

α = n(α)−1/2Ψ(α).

We let Γ be the image under Ψ of the norm one elements in R; as is
well known this Γ is a uniform lattice in SL(2, R). While we do not
require R to be a maximal order, we will require that ±1 ∈ R. Set
M = Γ\ SL(2, R)/ SO(2, R) and X = Γ\ SL(2, R) which is a 2-to-1
cover of the unit tangent bundle of M .

We shall say an element α ∈ R is primitive if it cannot be written as
mα′ with m ∈ N\{1}. Let R(m) be the set of all primitive α ∈ R with
n(α) = m, and define the Hecke operator Tm : C∞(X) → C∞(X) by

Tm : f(x) 7→
∑

α∈R(1)\R(m)

f(αx).

Similarly, we define the Hecke points Tm(x) of a x ∈ X by

Tm(x) = {αx : α ∈ R(1)\R(m)}.

For all but finitely many primes, Tpk(x) (for all k ≥ 1) consists of
(p + 1)pk−1 distinct points. We will assume implicitly throughout this
paper that all primes considered are outside this finite set. Similarly
one can define Hecke operators for SL2(Z) (and after dropping finitely
many primes also for congruence sublattices). In this case we take
R′ = M2(Z) ∩ GL(2, R), and taking R′(m) to be all primitive integral
matrices of determinant m, primitive being defined exactly as in the
previous case. This again can be used to define Hecke operators as
above with precisely the same properties.

Let Λ < SL(2, R) be a lattice. We will denote by QL(Λ) the col-
lection of all measures on Λ\ SL(2, R) that can be obtained as limiting
measures of micro local lifts of L2-normalized eigenfunctions of both
the Laplacian and all Hecke operators on Λ\H. All measures in QL(Λ)
are invariant under the geodesic flow; if Λ is uniform, then they are
also clearly probability measures. It is a delicate and probably difficult
issue to show that in the nonuniform case all measures in QL(Λ) are
probability measures (this is however a consequence of the GRH).



4 JEAN BOURGAIN AND ELON LINDENSTRAUSS

We will need to use the following one parameter subgroups of SL(2, R):

u+(x) =

(
1 0
x 1

)
u−(x) =

(
1 x
0 1

)
a(t) =

(
et 0
0 e−t

)
Set, for any ε, τ > 0

B(ε, τ) = a((−τ, τ))u−((−ε, ε))u+((−ε, ε))

and
B(ε) = B(ε, ε)

all of these sets are open neighborhoods of the identity in SL(2, R).
Throughout this note, we let τ0 be a small fixed number, satisfying

e10τ0 + e−10τ0 < 2.5 (2.1)

say τ0 = 1/50.

Theorem 2.1. Let Λ = Γ or a congruence sublattice of SL(2, Z). For
any µ ∈ QL(Λ) and any compact subset of Λ\ SL(2, R), we have that
for any x in this compact subset

µ(xB(ε, τ0)) � εκ′

for κ′ = 2/9.

Corollary 2.2. (1) Almost every ergodic component of a measure
µ ∈ QL(Λ) has entropy ≥ κ′.

(2) The Hausdorff dimension of the support of µ is at least 1 + κ′

(unless Λ is nonuniform and µ = 0).

We derive this theorem from the following estimate regarding eigen-
functions of Hecke operators on X:

Theorem 2.3. Let Λ be as above, and Φ ∈ L2(Λ\ SL(2, R)) be an
eigenfunction of all Hecke operators with L2-norm 1. Then for any
compact subset Ω of Λ\ SL(2, R), for any x ∈ Ω and r > 0,∫

xB(ε,τ0)

|Φ(y)|2 dvol(y) � rκ′ .

Proof of Theorem 2.1 assuming Theorem 2.3. Let φi be a sequence of
eigenfunctions of the Laplacian and all Hecke operators on M = Λ\H,
and let µ be a limiting measure of the micro local lift of the φi to
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the unit tangent bundle SM of M which can be identified with X =
Λ\ SL(2, R). We recall the following important properties of the micro
local lift (see [4] for details):

(1) |φi|2dvol converge weak∗ to the projection of µ to M .
(2) Let ω be the Casimir operator. Considering L2(M) as a subset

of L2(X) one can find a sequence of Casimir eigenfunctions Φi

which are also eigenfunctions of all Hecke operators on L2(X)
with ‖Φi‖2 = 1 such that:
(a) φi and Φi have the same ω-eigenvalue.
(b) µ is the weak∗ limit of |Φi|2dvolX .
(c) µ is invariant under the geodesic flow (under the identifi-

cation SM ∼= X this is the flow that arises from the action
Λg 7→ Λga(t) ).

By Theorem 2.3 for all x ∈ Ω and i,∫
xB(ε,τ0)

|Φi(y)|2dvolX(y) � εκ′ .

Since µ is the weak∗ limit of |Φi|2dvolX ,

µ (xB(ε, τ0)) 6 lim

∫
xB(ε,τ0)

|Φi(y)|2 dvolX(y),

so

µ (xB(ε, τ0)) � εκ′ .

�

Finally, we mention the following corollary of Theorem 2.1 and the
results in [3]:

Corollary 2.4. Let dM denote the image of the standard hyperbolic
metric on H to M , and µ̃ a weak∗ limit of |φi|2dvolM with φi a sequence
of Hecke-Maas forms as above. Then for any κ′′ < κ′∫∫

M

dµ̃(x)dµ̃(y)

dM(x, y)κ′′+1
< ∞

We note that if one could improve the constant κ′ in Theorem 2.1
to be > 1 then one would have by [3] that µ̃ is regular with respect
to the Riemannian volume with an L2 Radon Nikodyn derivative. The
full Quantum Unique Ergodicity Conjecture in this case is equivalent
to κ′ = 2.
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3. On the distribution of Hecke points and a proof of
Theorem 2.3 for quaternion lattices

Lemma 3.1. If α, β are two primitive commuting elements of H(Q)\Q
then

Q(α) = Q(β).

Proof. Since α, β commute, K = Q(α, β) is a field embedded in H(Q),
and unless Q(α) = Q(β) we have that [K : Q] = 4. Let θ be a generator
for K, i.e. K = Q(θ). Then since θ ∈ H(Q) it has to satisfy the degree
two polynomial with rational coefficients θ2 − tr(θ)θ + n(θ) = 0 — a
contradiction. �

Lemma 3.2. For any τ > 0 and ε ∈ (0, 0.1) we have that

B(ε, τ)B(ε, τ) ⊂ B
(
Oτ (ε), 2τ + Oτ (ε

2)
)

(3.1)

B(ε, τ)−1 ⊂ B(Oτ (ε), τ + Oτ (ε
2))

Proof. We prove only (3.1), the proof of the second equation being very
similar. Let

g1 = a(t1)u
−(a1)u

+(b1)

g2 = a(t2)u
−(a2)u

+(b2)

then
g1g2 = a(t1)u

−(a1)u
+(b1)a(t2)u

−(a2)u
+(b2)

= a(t1 + t2)u
−(e−2t2a1)u

+(e2t2b1)u
−(a2)u

+(b2).

Set b̃1 = e2t2b1, and rewrite u+(b̃1)u
−(a2) as

u+(b̃1)u
−(a2) =

(
1 a2

b̃1 1 + a2b̃1

)
= u−

(
a2

[
1 + a2b̃1

]−1
)

a
(
− ln

[
1 + b̃1a2

])
u+

(
b̃1

[
1 + a2b̃1

]−1
)

;

thus
g1g2 = a(t1 + t2 + Oτ (ε

2))u−(Oτ (ε))u
+(Oτ (ε))

�

Lemma 3.3. If α, β ∈ R satisfy, for some x ∈ SL(2, R), that

βx, αx ∈ xB(ε, τ0) (3.2)

with ε < 0.1,
Cε2 ≤ [n(α)n(β)]−1

(C some constant depending only on τ0) then α and β commute.
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Proof. Take tα, tβ so that

αx ∈ xa(tα)B(ε, 0)

and similarly for β. Consider now

ρ =
[
α−1, β

]
∗ = αβ−1α−1β =

1

n(α)n(β)
αβ̄ᾱβ.

a straightforward calculation using (3.2) and Lemma 3.2 shows that

ρx = αβ−1α−1βx

∈ αβ−1α−1xa(tβ)B(ε, 0)

⊂ αβ−1xa(tβ − tα)B(C1ε, C1ε
2)

⊂ · · ·
⊂ xa(0)B(C2ε, C2ε

2)

for some C2 that can be calculated explicitly using Lemma 3.2. How-
ever,

tr(ρ) ∈ Z[1/n(α)n(β)],

and for any z ∈ xB(C2ε, C2ε
2)x−1,

|tr(z)− 2| ≤ C3ε
2

as long as
C3ε

2 ≤ [n(α)n(β)]−1

this implies that
tr(ρ) = 2

hence, since R contains no unipotent elements, ρ = 1. This shows that
α and β do indeed commute. �

We defer the proof of the following theorem to the next section

Theorem 3.4. For any ε > 0, and any sufficiently large D and N ≥
D1/4+ε, there exists a set W ⊂ {1, . . . , N} of size |W | ≥ Nκ (κ = 4/5)
of square free integers divisible by a bounded number of primes p, all

with
(

D
p

)
= −1.

Remark: It is possible to improve on the value of κ (see the remark
following Lemma 5.6); the natural limit of the argument given here
seems to be

√
e/2− ε ≈ 0.824.

Theorem 3.5. For any set of primes P, x ∈ Γ\ SL(2, R) and ε > 0,
there is a set W of cube free integers with the following properties:

(1) Any n ∈ W has a bounded number of prime factors (uniformly
in ε, x, δ).
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(2) For any n ∈ W , p2|n iff p|n and p ∈ P.
(3) The sets in {yB(ε, τ0) : y ∈ Tn(x), n ∈ W} are pairwise disjoint.
(4) |W | � ε−κ′/4, with

κ′ =
κ

2(1 + κ)
= 2/9.

Remark: Improving κ of Theorem 3.4 to κ = 0.824 will give κ′ ≈
0.225.

Proof. Let n1 ≤ n2 be a pair of integers with smallest n2 such that
there are some y1 6= y2 ∈ X with

yb ∈ Tnb
(x) for b = 1, 2

satisfying
y1B(ε, τ0) ∩ y2B(ε, τ0) 6= ∅.

Choose a representative α1 ∈ R(n1) of the coset of R(1)\R(n1) sending
x to y1. By definition of τ0 (see (2.1)), there will be a unique α2 ∈ R(n2)
such that

α1xB(ε, τ0) ∩ α2xB(ε, τ0) 6= ∅.
Now set α to be a primitive element of R so that

ᾱ1α2 ∈ Zα.

Since y1 6= y2 we have that α ∈ R(M) for some M > 1 dividing n1n2.
By definition of α, we have that

x ∈ αxB(4ε, 3τ0).

Consider the subring Q(α) < H. Since H is a division ring, Q(α) is
isomorphic to some number field L; let

i : L → Q(α) < H

be this isomorphism. Since α is primitive, α 6∈ Q; since α satisfies the
degree 2 polynomial over Z

t2 − tr(α)t + n(α) = 0

L is a quadratic extension of Q, namely

L ∼= Q
(√

D
)

for D = tr(α)2 − 4n(α).

Notice that since H splits over R, α ∈ R hence D ≥ 0. We give the
following upper bound for D. By definition,

|tr(α)|
n(α)1/2

= |tr(α)| ∈ |tr
(
xB(4ε, 3τ0)x

−1
)
| � 1

hence |tr(α)| � n(α)1/2 and D � n(α) ≤ n1n2.



ENTROPY OF QUANTUM LIMITS 9

We define a multiplicative function ζP by

ζP(1) = 1

ζP(p) =

{
p if p prime /∈ P
p2 if p ∈ P

ζP(p2) = 0

If n2 ≥ ε−2κ′ we can take

W = {ζP(p) : p prime 6 n2} ,

and we are done. Thus we may assume that D � ε−4κ′ , n2 ≤ ε−2κ′ .
Take

N ∼
(
ε2n1n2

)−1/4 � ε1/2−κ′ � D
1/2−κ′

4κ′ ,

so in particular N � D1/4+ (i.e. N � D1/4+ε0 for any ε0). Apply
Theorem 3.4 to find a set W̃ ⊂ {2, . . . , N} with∣∣∣W̃ ∣∣∣ > Nκ ≥ εκ(1/2−κ′) = εκ′ (3.3)

satisfying the conditions of that theorem. We now take W to be

W =
{

ζP(n) : n ∈ W̃
}

.

By Theorem 3.4, any n ∈ W has a bounded number of prime factors,
and by definition of W and ζP we have that p2|n iff p|n and p ∈ P.
In view of (3.3) we know that the W has the prescribed number of
elements. Thus it remains to be verified that the sets of the collection

{yB(ε, τ0) : y ∈ Tl(x), l ∈ W}
are all pairwise disjoint.

Assume to the contrary that there are distinct

zb ∈ Tlb(x) lb ∈ W

such that
z1B(ε, τ0) ∩ z2B(ε, τ0) 6= ∅

We find that there is some primitive β with

1 6= n(β)|l1l2
x ∈ βxB(4ε, 3τ0). (3.4)

so in particular, |n(β)| ≤ l1l2 ≤ N4. By Lemma 3.3, since

|n(α)n(β)|−1 ≥ [N4n1n2]
−1 � ε2 (3.5)

α and β commute, hence β ∈ Q(α) ∼=i L = Q(
√

D).
Since the conjugate β̄ of β is mapped to the Galois conjugate of the

image of β in L, the norm n(β) is the same as the norm of the image
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i(β) of β in L. But by Theorem 3.4 any prime factor p of n(β) satisfies(
D
p

)
= −1. Thus any such prime p remains inert in the extension

L : Q, and so must divide n(β) (indeed must divide the norm of any
integral element of L) an even number of times. We conclude that
n(β) =: A2 is a square and moreover the two ideals (in the ring of
integers of L)

〈i(β)〉L , 〈A〉L

are equal. Equivalently, we have that i(β)/A is a unit of the ring of
integers of L. This in turn implies that

tr(β) = trL(i(β)/A) ∈ Z

combining (3.4) with (2.1), and assuming, as we may, that ε is suffi-
ciently small, we have that

|tr(β)| ∈ Z ∩ [2, 5/2 + Oτ0(ε)] = {2},

or (since H(Q) is a division domain) that β = ±1, and β is not primitive
— a contradiction. �

Lemma 3.6. Let T be a r + 1 regular tree (or even any r + 1 regular
graph with girth ≥ 2). Let TT : CT → CT be the operator

[TT f ](x) =
∑

dT (y,x)=1

f(y)

(with dT denoting the usual metric on the tree).
Assume φ is an eigenfunction of TT , with eigenvalue λ. Then

|φ(x)|2 �


∑

d(y,x)=1

|φ(y)|2 if |λ| >
√

r
10∑

d(y,x)=2

|φ(y)|2 otherwise.

Proof. Assume |λ| >
√

r
10

. Then by Cauchy-Schwartz

|φ(x)|2 =
1

|λ|2

∣∣∣∣ ∑
dT (x,y)=1

φ(y)

∣∣∣∣2 ≤ 1

|λ|2
(r + 1)

∑
dT (x,y)=1

|φ(y)|2

�
∑

dT (x,y)=1

|φ(y)|2.
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Now assume |λ| <
√

r
10

. Then for any y with dT (x, y) = 1,

λφ(y) =
∑

d(z,y)=1
d(z,x)=2

φ(z) + φ(x)

φ(x) =
1

r + 1

( ∑
d(y,x)=1

λφ(y)−
∑

d(z,x)=2

φ(z)

)
=

1

r + 1
(λ2φ(x)−

∑
d(z,x)=2

φ(z)).

So

|φ(x)|2 = [(r + 1)− λ2]−2

∣∣∣∣∣∣
∑

d(z,x)=2

φ(z)

∣∣∣∣∣∣ ≤
≤ r(r + 1)

[(r + 1)− λ2]2

∑
d(z,x)=2

|φ(z)|2 �

∑
d(z,x)=2

|φ(z)|2.

Note that throughout the proof, the implicit constants are absolute
and do not depend on λ, r. �

Corollary 3.7. Let Φ be an eigenfunction of all Hecke operators on
X. Let n be a square free integer

n = p1 · p2 · . . . · pk

with k = O(1). Take
m = pα1

1 pα2
2 . . . pαk

k

where

αi =

{
1 if Tpi

Φ = λpi
Φ with |λpi

| >
√

pi

10

2 otherwise.

Then for all x ∈ X

|Φ(x)|2 �
∑

y∈Tm(x)

|Φ(y)|2

Proof. We prove the corrolary by induction on k. The case k = 0, i.e.
m = n = 1, states that |Φ(x)|2 � |Φ(x)|2, which is of course true. Now
if

n′ = p1 . . . pk−1

m′ = pα1
1 · · · pαk−1

k−1
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then Tm(x) = Tp
αk
k
◦ Tm′(x). Furthermore, since Φ restricted on the

Hecke tree associated with pk is an eigenfunction of the tree Laplacian
we may apply Lemma 3.6 to show ∀y ∈ X

|Φ(y)|2 �
∑

z∈T
p
αk
k

(y)

|Φ(z)|2

so

|Φ(x)|2 �
∑

y∈Tm′ (x)

|Φ(y)|2

�
∑

z∈T
p
αk
k

(y)

∑
y∈Tm′ (x)

|Φ(z)|2

�
∑

z∈Tm(x)

|Φ(z)|2.

Note that the implicit constant depends only on the bound on k. �

Proof of Theorem 2.3. Let λp denote the eigenvalue of Φ with respect
to the Hecke operator Tp. Let P be the sets of all primes for which
|λp| ≤

√
p/10. By Theorem 3.5, there is a set W of cube free integers

of size ≥ ε−κ′ such that for any n ∈ W , we have that p2|n iff p|n and
p ∈ P , and such that

yB(ε, τ0) y ∈ Tn(x), n ∈ W (3.6)

are all pairwise disjoint. Since Φ is a Hecke eigenfunction, by Corol-
lary 3.7, for all n ∈ W and any y ∈ X,

|Φ(y)|2 �
∑

z∈Tn(y)

|Φ(z)|2

(note that the implicit constant in the above equation is universal and
does not depend on any parameter) hence for any n ∈ W∫

xB(ε,τ0)

|Φ(y)|2 dvolX(y) �
∫

xB(ε,τ0)

∑
z∈Tn(y)

|Φ(z)|2 dvolX(y)

=
∑

z∈Tn(x)

∫
zB(ε,τ0)

|Φ(y)|2dvolX(y)
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Summing over n ∈ W , and using the disjointness property (3.6), we
get that∫

xB(ε,τ0)

|Φ(y)|2 dvolX(y) � 1

|W |
∑
n∈W

∑
z∈Tn(x)

∫
zB(ε,τ0)

|Φ(y)|2dvolX(y)

6 εη

∫
X

|Φ(y)|2

�

4. The case of Λ a congruence sublattice of SL(2, Z)

In this section we present the modifications needed to carry out the
proof of Theorem 2.3 to the nonuniform case. For simplicity we will
discuss only the case of Λ = SL(2, Z), leaving the straightforward
verification for congruence sublattices to the reader. Recall the no-
tations R′ = M2(Z) ∩ GL(2, R), and R′(m) = all primitive integral
matrices of determinant m. As before we set M = SL(2, Z)\H and
X = SL(2, Z)\ SL(2, R). In order to conform more closely to the no-
tations of the previous section, we set for α ∈ R′ n(α) = det(α), and
ᾱ = n(α)α−1 ∈ R′.

The starting point of the proof is Lemma 3.3. While the proof of
this lemma essentially carries over to SL(2, Z), the final step, gives only
that tr(ρ) = 2, which in view of the existence of unipotents in R′ does
not imply ρ = 1. As an alternative we use the following:

Lemma 4.1. If α, β ∈ R satisfy, for some x ∈ SL(2, R), that

βx, αx ∈ xB(ε, τ0) (4.1)

Cε2 ≤ [n(α)n(β)]−1

(with ε sufficiently small and C some constant depending on τ0 and on
x, uniformly on x in compact subsets of X) then α and β commute.

Proof. Let Ω be a compact subset of SL(2, R) with x ∈ Ω. Define as
before tα and tβ so

αx ∈ xa(tα)B(ε, 0)

and similarly for β. Let B0(ε1, ε2) = log B(ε1, ε2), so that B0(ε1, ε2) is
a small neighborhood of the zero matrix in M2(R).

Then
αβx ∈ xa(tα + tβ)B(Cε,Cε2)
βαx ∈ xa(tα + tβ)B(Cε,Cε2).
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So

[α, β]+ = βα− βα ∈ x−1B0(C
′ε, C ′ε2)x

⊂ B0(C
′′ε, C ′′ε)

C ′′ some constant depending on Ω, τ0.
But [α, β]+ ∈ M2(Z), so

[α, β]+ ∈ B0(C
′′ε, C ′′ε) ∩ 1

det(αβ)1/2
M2(Z).

Assuming

(det α det β)−1 � ε2

for sufficiently large implicit constant depending on Ω we have that
indeed

[α, β]+ = 0.

�

Having proved a suitable substitute to Lemma 3.3, we discuss the
modifications needed to prove Theorem 3.5. As usual our result will
no longer be uniform in x ∈ X but only uniform for x in an arbitrary
compact subset of X. For the convenience of the reader we restate this
theorem, from which Theorem 2.3 is easily derived in the same way as
in the previous section.

Theorem 4.2. For any compact subset Ω ⊂ SL(2, Z)\ SL(2, R), for
any set of primes P, x ∈ Ω and ε > 0, there is a set W of cube free
integers with the following properties:

(1) Any n ∈ W has a bounded number of prime factors (uniformly
in ε, Ω, x).

(2) For any n ∈ W , p2|n iff p|n and p ∈ P.
(3) The sets in {yB(ε, τ0) : y ∈ Tn(x), n ∈ W} are pairwise disjoint.
(4) |W | � ε−κ′/4, uniformly on Ω, with κ′ = 2/9 as in Theorem 3.5.

Proof. We proceed exactly as in Theorem 3.5. Let n1 ≤ n2 be a pair of
integers with smallest n2 such that there are some y1 6= y2 ∈ X with

yb ∈ Tnb
(x) for b = 1, 2

satisfying

y1B(ε, τ0) ∩ y2B(ε, τ0) 6= ∅.
Choose a representative α1 ∈ R′(n1) sending x to y1. Take any α2 ∈
R′(n2) such that

α1xB(ε, τ0) ∩ α2xB(ε, τ0) 6= ∅.
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Now set α to be a primitive element of R′ so that

ᾱ1α2 ∈ Zα.

Since y1 6= y2 we have that α ∈ R′(M) for some M > 1 dividing n1n2.
By definition of α, we have that

x ∈ αxB(4ε, 3τ0).

Without loss of generality, as before, we can assume n2 � ε−2κ′ , M �
ε−4κ′ � ε−1 (with a large implicit constant). In this case α is R-
semisimple (i.e. α has two distinct real eigenvalues), since any element
of B(4ε, 3τ0) which is not R-semisimple must lie in B(4ε, Cε) for a
suitably large absolute constant C. Since x is in some fixed compact
set Ω, we conclude that unless α is R-semisimple

α ∈ B(CΩε, CΩε) ∩M−1/2M2(Z) = {1}
a contradiction. Thus again Q(α) is isomorphic to some real quadratic

number field L = Q(
√

D), and the rest of the proof carries out without
any additional difficulties. �

5. On primes which are quadratic nonresidues mod D

Theorem 5.1. For any ε > 0 there is a α > 0 so that for every large
enough integer D which is not a perfect square, and N ≥ D1/4+ε one

has that the set P of primes Nα ≤ p ≤ N with
(

D
p

)
= −1 satisfy∑

p∈P

1

p
>

1

2
− ε

We cite the following standard version of Brun’s combinatorial sieve:

Theorem 5.2 ([8, Theorem 3, p. 60]). Let A be a finite set of integers
and let P be a set of prime numbers. Write

Ad := #{a ∈ A : a ≡ 0 (mod d)},

P (y) :=
∏

p∈P,p≤y

p,

S(A, P, y) := card{a ∈ A : (a, P (y)) = 1}.
Assume there exist a non-negative multiplicative function w, some real
number X, and positive constants κ, A such that

Ad =: Xw(d)/d + Rd (d|P (y)) (5.1)∏
η≤p≤ξ

(
1− w(p)

p

)−1

<

(
log ξ

log η

)κ(
1 +

A

log η

)
(2 ≤ η ≤ ξ). (5.2)
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Then we have, uniformly for A, X , y and u ≥ 1,

S(A, P, y) = X
∏

p≤y,p∈P

(
1− w(p)

p

)
{1+O(u−u/2)}+O

 ∑
d≤yu,d|P (y)

|Rd|

 .

(5.3)

We will also use the following estimate of D. Burgess:

Theorem 5.3 ([1, Theorem 2]). Let k be a cube free positive integer and
let χ be a non-principal Dirichlet character belonging to the modulus k.
Let

SH(N) =
N+H∑

n=N+1

χ(n).

Then for any ε > 0 and r ∈ Z+ we have that

|SH(N)| � H1−1/rk{(r+1)/4r2}+ε, (5.4)

with the implicit constant depending on ε and r.

Since we may have to apply Theorem 5.3 with a character modulo
8k, k odd, we note the following immediate corollary:

Corollary 5.4. Suppose k = dk′ with k′ cube free and (d, k′) = 1, and
χ a non-principal Dirichlet character modulo k then

|SH(N)| �ε,r,d H1−1/rk′
{(r+1)/4r2}+ε

. (5.5)

Proof. Write

SH(N) =
d−1∑
l=0

SH,l(N) (5.6)

with
SH,l(N) =

∑
N<n6N+H
n−N≡l( mod d)

χ(n) (5.7)

We show that for all l,

|SH,l(N)| �ε,r,d H1−1/rk′{((r+1)/4r2}+ε
(5.8)

We now note that
χ′(m) = χ(md)

is a non principal Dirichlet character modulo k′, and we may apply
Theorem 5.3 on

SH,l(N) =
∑

M+1≤m≤M+H/d

χ(md) =
∑

M+1≤m≤M+H/d

χ′(m)
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where M is defined by

dM ≡ N + l (mod k′)

�

Proof of Theorem 5.1. We will prove the theorem in two steps. First
we show that there are many integers n ≤ N satisfying

(
D
n

)
= −1

which have no prime factor less than Nα for a suitably chosen α using
Brun’s combinatorial sieve. Then we show how this implies that∑

p∈P

1

p
is large

for which we again use the combinatorial sieve in a somewhat degen-
erate case.

Let P be the set of all primes, and

A =

{
n :

(
D

n

)
= −1

}
We now set as in Theorem 5.2

S(B, P, y) = card {a ∈ (a, p) = 1 ∀ prime p 6 y}
We now set

w(n) = 1 for all square free n

and X = N/2. This choice satisfies (5.2). By quadratic reciprocity,
(

D
n

)
is a non principal character modulo (at most) 8D, and we may clearly
assume D is square free. Burgess’ estimate (Corollary 5.4) allows us to
bound Rd of (5.1) by

|Rd| =

∣∣∣∣∣∣12
∑

1≤n≤N/d

{
1 +

(
D

dn

)}
− N

2d

∣∣∣∣∣∣�ε̄,r (N/d)1−1/r D{(r+1)/4r2}+ε̄

(5.9)
By Theorem 5.2 we know that

S(A, P, y) >
N

2

∏
p6y

(
1− 1

p

)(
1− Cu−u/2

)
+ O

(∑
d6yu

|Rd|

)
(5.10)

with C independent of A, u, y, X. We fix r, ε̄ by requiring that

N−1/rD{(r+1)/4r2}+ε̄ � N−ε/10r

and take u so that
Cu−u <

ε

100
and α

α 6 ε̄u−1/10
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We now estimate the O(·) term in (5.10) for y = Nα. By (5.9)∑
d 6 yu

d|P (y)

|Rd| �
∑
d6yu

D{(r+1)/4r2}+ε̄

� N1−ε/10r
∑
d6yu

d−(1−1/r)

� N1−ε/10ryu/r

so we see that for D, N large enough

S(A, P, Nα) ≥ (1− ε/10)N

2

∏
p≤Nα

(
1− 1

p

)
(5.11)

The second part of the proof will use the bound on S(A, P, y) to show

that there are many primes ≤ N with
(

D
p

)
= −1. We remark that any

n ≤ N contributing to S(A, P, Nα), that is such that
(

D
n

)
= −1 and n

is not divisible by a prime smaller than Nα, is divisible by some prime
p in

P0 =

{
primes Nα ≤ p ≤ N,

(
D

p

)
= −1

}
.

A trivial application of the combinatorial sieve for the prime set

Pp′,Nα = {primes 6 Nα, p′}
with p′ some prime in P0 shows that

|{n 6 N s.t. p′|n but (n, p) = 1 for all p ≤ Nα}| 6 N
∏

p<Nα

(
1− 1

p

)
1 + ε/10

p′

summing over all p′ ∈ P0, we have that

S(A, P, Nα) 6 (1 + ε/10) N
∏

p<Nα

(
1− 1

p

) ∑
p′∈P0

1

p′

Combining this with (5.11) gives∑
p′∈P0

1

p′
>

1− ε/10

2 (1 + ε/10)
> 1

2
− ε

�

Corollary 5.5 (of Theorem 5.1). Let D and N ≥ D1/4+ε as in The-
orem 5.1. Then there is a subset W ⊂ {1, . . . , N} of size � Nκ

(κ = 0.8) so that for any w ∈ W and p|w, we have that
(

D
p

)
= −1.
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The argument deducing Corollary 5.5 from Theorem 5.1 can be trans-
lated to the following purely combinatorial question:

Lemma 5.6. For any S ⊂ R+ let

m(S) =

∫
S

dx

x

ΣS = {s1 + s2 + · · ·+ sr : r ≥ 1 ∀i, si ∈ S}

Then if ε > 0 is small enough, for every S ⊂ (0, 1] with m(S) > 1/2−ε

ΣS ∩ [κ, 1] 6= ∅
for κ = 0.5.

Remark: a more refined analysis should probably enable improving

κ from the above lemma to
√

e
2
−, which is easily seen to be optimal by

taking S to be the interval [1/2, κ]

Proof. Assume that

ΣS ∩ [0.8, 1] = ∅. (5.12)

Since for any n ∈ N
nS ⊂ ΣS

we have that

S ⊂ [0, 1]−
⋃
n∈N

[
4

5n
,
1

n

]
=

[
1

2
,
4

5

]
∪
[
1

3
,

4

10

]
∪
[
1

4
,

4

15

]
.

Suppose first that

S ∩
[
1

4
,

4

15

]
6= ∅ (5.13)

and let s be any element from this set. Then by (5.12),

S ∩ [0.8− s, 1− s] = ∅;
notice that for any s ∈ [1/4, 4/15]

[4/5− s, 1− s] ⊂ [1/2, 4/5]

and

m[4/5− s, 1− s] = ln
1− s

4/5− s
≥ 0.31.

Thus, if (5.13) holds,

m(S) ≤ m

[
1

2
,
4

5

]
+ m

[
1

3
,
2

5

]
+ m

[
1

4
,

4

15

]
−m

[
4

5
− s, 1− s

]
≤ 0.401

a contradiction to m(S) > 1/2−.
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Since m(S) > 1/2−, and since (5.13) does not hold, we have that

m

(
S ∩

[
1

2
,
4

5

])
> m (S)−m

([
1

3
,
2

5

])
> 0.5− ln

6

5
− > 0.317,

hence if we define α by

m

([
α,

4

5

])
= 0.317,

i.e. α = 0.8e−0.317 ≤ 0.583 we would have that

S ∩
[
1

2
, α

]
6= ∅.

Take s to be some element in S ∩
[

1
2
, α
]
. Then on the one hand

(s + S) ∩
[
4

5
, 1

]
= ∅,

and on the other hand

s +

[
1

3
,
2

5

]
⊂
[
4

5
, 1

]
so S ⊂

[
1
2
, 4

5

]
, hence

m (S) 6 m

([
1

2
,
4

5

])
= ln

8

5
< 0.47 < 0.5−

a contradiction. �

Proof of Corollary 5.5. Let P denote the set of primes ∈ [Nα, N ] with(
D
p

)
= −1. We recall that∑

p∈P

1

p
≥ 1/2− ε.

Fix δ > 0, r = 1 + δ very small depending only on ε. Let S̃ denote the
integers

S̃ =
{
n : Nα ≤ rn ≤ rN,

∣∣P ∩ [rn−1, rn]
∣∣ > rn(1−δ)

}
And divide P into two sets:

P1 =
⋃
n∈S̃

(
P ∩

[
rn−1, rn

])
P2 =

⋃
n/∈S̃

(
P ∩

[
rn−1, rn

])
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clearly, ∑
p∈P2

1

p
6

∑
Nα<rn<rN

rn(1−δ)

rn
�r N−δ

so for N large enough ∑
p∈P1

1

p
≥ 1/2− 2ε.

Applying the previous lemma to

S =
⋃
s∈S̃

(
(s− 1) log r

log N
,
s log r

log N

]
we find that there are s1, . . . , sk ∈ S̃ with

κ ≤ log r(s1 + · · ·+ sk)

log N
≤ 1

and we can take

W =
(
P ∩ [rs1−1, rs1 ]

)
× · · · ×

(
P ∩ [rsk−1, rsk ]

)
�
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[8] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory.
Cambridge University Press, Cambridge, 1995. Translated from the second
French edition (1995) by C. B. Thomas.

[9] T. C. Watson. PhD thesis, Princeton, 2001.
[10] Scott A. Wolpert. The modulus of continuity for γ0(m)\h semi-classical limits.

Comm. Math. Phys., 216(2):313–323, 2001.
[11] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic sur-

faces, Duke Math. J. 55(4) (1987), 919–941.

School of Mathematics, Institute for Advanced Study, Olden Lane,
Princeton NJ 08540

E-mail address: bourgain@ias.edu

Department of Mathematics, Stanford University, Stanford, CA
94305

E-mail address: elonl@math.stanford.edu


