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Abstract. We give an effective proof of a theorem of Dani and
Margulis regarding values of indefinite ternary quadratic forms at
primitive integer vectors. The proof uses an effective density-type
result for orbits of the groups SO(2, 1) on SL(3,R)/ SL(3,Z).

1. Introduction

1.1. In 1929 A. Oppenheim conjectured that if Q is an indefinite qua-
dratic form in d ≥ 5 variables then

(1.1a) inf
{
|Q(v)| : v ∈ Zd primitive

}
= 0.

For rational indefinite forms (1.1a) is equivalent to the classical Meyer
theorem that a rational indefinite quadratic form in d ≥ 5 variables
represents 0 over Z nontrivially. Let us remember that for d = 3, 4
there are examples of rational indefinite quadratic forms in d variables
which do not represent 0 over Z nontrivially.

Later it was realized that if Q is an irrational form (i.e., is not propor-
tional to a quadratic form with rational coefficients) then (1.1a) should
remain true even if d = 3, 4. On the other hand, it is well-known that
(1.1a) is false for many indefinite irrational binary quadratic forms.
Note that the conjecture becomes easier as d gets larger: by restricting
a quadratic form in d variables to an appropriate d′ < d dimensional
rational subspace it is easy to deduce the conjecture for d variables
from the case of d′ variable.

1.2. Partial results for this conjecture were proved using analytical
methods, notably the Hardy-Littlewood Circle Method and its vari-
ants; in particular Davenport and Heilbronn [DH] established the con-
jecture for indefinite diagonal forms Q(x1, . . . , x5) =

∑
i λix

2
i , where

λ1, . . . , λ5 are nonzero real numbers not all of the same sign. For the
more difficult case of the general forms progress was slower; combining
results by Birch, Davenport and Ridout the Oppenheim Conjecture
was established for forms in d ≥ 21 variables by the late 1950’s, and
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despite some improvement this was still the state-of-the-art in the mid
1980’s.

1.3. In the mid-seventies, M.S.Raghunathan made the insightful obser-
vation that the Oppenheim Conjecture would follow from a conjecture
about closures of orbits of unipotent subgroups. The Raghunathan
conjecture states that if G is a connected Lie group, Γ a lattice in G
(that is, Γ is a discrete subgroup such that G/Γ carries a G-invariant
probability measure), and U a connected Ad-unipotent subgroup of G
(that is, Adu is a unipotent linear transformation for any u ∈ U), then
for any x ∈ G/Γ there exists a closed connected subgroup L = L(x)
such that the closure of the orbit U.x coincides with L.x (unipotent
orbit rigidity). In a more general form of Raghunathans conjecture,
the connected subgroup U is not necessarily unipotent but generated
by unipotent elements.

1.4. Inspired by the above-mentioned observation of M.S. Raghunathan,
the second named author proved the Oppenheim Conjecture in full
generality (i.e. for d ≥ 3) in the mid-eighties [M3, M2]. The corre-
sponding dynamical statements, which is equivalent to the Oppenheim
Conjecture and proved in [M3, M2], says that any bounded orbit of
H = SO(2, 1) in SL(3,R)/ SL(3,Z) is closed; it is interesting to note
that in implicit form this equivalence already appeared in a paper by
Cassels and Swinnerton-Dyer[CSD]. This dynamical statement can be
considered as a special case of Raghunathan’s conjecture in its more
general form given above.

In [DM1] Dani and Margulis proved that the orbits of H in G/Γ for
G = SL(3,R) and Γ = SL(3,Z) are either closed or dense. In [DM2]
the same authors proved the Raghunathan conjecture also in the more
involved case where U is a one-parameter unipotent subgroup of H
acting on G/Γ.

1.5. In full generality, the Raghunathan conjecture was proved in 1990
by Ratner [R5] using a different approach. The proof in [R5] is based
on an equidistribution theorem for unipotent flows, also proved in [R5]
and uses the countability of certain set of subgroups of G depending
on Γ. The equidistribution theorem can be considered as the quanti-
tative strengthening of the unipotent orbit rigidity for one-parameter
unipotent subgroup, and it says that if {ut : t ∈ R} is a one-parameter
Ad-unipotent subgroup of G and x ∈ G/Γ then there exists a homo-
geneous probability measure µx on G/Γ with x in its support such
that

1

T

∫ T

0

f(ut.x)dt→
∫
f(y)dµx(y) as T →∞

for every bounded continuous function f on G/Γ (a measure µ on G/Γ
is called homogeneous if there exists a closed subgroup F of G such
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that µ is F-invariant and suppµ = F.y for some y ∈ G/Γ). This
equidistribution theorem was conjectured by Dani in [D2] for the case
G/Γ = SL(n,R)/ SL(n,Z) and for the general case in [M4].

The hardest part of the proof of the equidistribution theorem is the
proof of unipotent measure rigidity which Ratner proved in a series of
three papers [R3,R2,R4]. The unipotent measure rigidity was conjec-
tured by Dani in [D1], and it says that any finite U -ergodic U -invariant
measure µ on G/Γ is homogeneous where U is a one-parameter Ad-
unipotent subgroup of U . Ratner’s early works on horocycle flow, par-
ticularly her classification of joinings in [R1], can be viewed in this
context as special cases of this much more general measure classifica-
tion.

A shorter and arguably more conceptual proof of unipotent measure
rigidity was given by Margulis and Tomanov (see [MT1] for the case
where G is algebraic and [MT2] for a simple reduction to that case).

1.6. A refined version of the equidistribution theorem was proved in
[DM4]. As in [R5], the proof in [DM4] also relies on the classification
of invariant measures, i.e. unipotent measure rigidity. Other crucial
ingredients in the proof of the equidistribution theorem, both in [R5]
and [DM4] are nondivergence of orbits of unipotent flows regarding the
amount of time and orbits can spend outside of large compact subsets in
G/Γ (see §4 for details) and an “avoidability” argument explaining why
an orbit cannot spend too much time near certain proper subvarieties
of G/Γ. The avoidability argument are proved differently in [R5] and
[DM4]; the method of [DM4] based on the use of finite dimensional
representations of G is known as the linearization technique.

These equidistribution results, which rely on the classification of in-
variant measures, are of great intrinsic interest. However, if one is
only interested in Raghunathan’s conjecture it seems feasible to give
such a proof which is much closer in spirit to the original approach of
[M3,M2,DM1,DM2]. In particular, for G/Γ a product of SL(2, Ki)/Γi
a direct proof of orbits rigidity along these lines was given by N. Shah
in [S].

1.7. A weaker version of the main number theoretic result in [DM1] is
the following:

1.8. Theorem (Dani-Margulis). Let Q be an indefinite, irrational,
ternary quadratic form. Then the set{

Q(v) : v ∈ Z3 primitive
}

is dense in the real line.

1.9. The main result of this paper is the following quantification of
Theorem 1.8. We implicitly assume all integral quadratic forms we
consider are primitive in the sense that they are not a nontrivial integer
multiple of another integral quadratic form.
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1.10. Theorem. Let Q1 be an indefinite, ternary quadratic form with
detQ1 = 1 and ε > 0. Then for any T ≥ T0(ε) ‖Q1‖K1 at least one of
the following holds:

(i) There is an integral quadratic form Q2 with | det(Q2)| < T ε and

‖Q1 − λQ2‖ � ‖Q1‖T−1 where λ = | det(Q2)|−1/3.

(ii) For any ξ ∈ [−(log T )κ2 , (log T )κ2 ] there is a primitive integer
vector v ∈ Z3 with 0 < ‖v‖ < TK3 satisfying

|Q1(v)− ξ| � (log T )−κ2

(with K1, κ2, K3, and the implicit constants absolute).

1.11. We note that proving the inhomogeneous approximation above,
i.e. that in a ball of radius TK3 one can find primitive integral vectors
v for which |Q1(v)− ξ| is small for any ξ in an interval, entails a sub-
stantial complication in comparison to the corresponding homogeneous
question of showing that there is such a vector v with |Q1(v)| small.

Another feature worth noting is the quality of the approximation: if
one is content with an estimate of the form ‖Q1(v)− ξ‖ � (log log T )−1

the combinatorial apparatus of §9, perhaps the most technical section
in this paper, is not needed.

Since by Liouville’s Theorem algebraic numbers cannot be too well
approximated by rationals, we can conclude the following from Theo-
rem 1.10:

1.12. Corollary. Let Q1 be a reduced, indefinite, ternary quadratic
form which is not proportional to an integral form but has algebraic
coefficients. Then for any T ≥ T0(Q1) (with T0 depending effectively
on the degrees and heights of the coefficients of Q1), for any

ξ ∈ [−(log T )κ2 , (log T )κ2 ]

there is a primitive integer vector v ∈ Z3 with 0 < ‖v‖ < TK3 satisfying

|Q1(v)− ξ| � (log T )−κ2

with κ2, K3 as in Theorem 1.10.

1.13. Theorem 1.8 is only part of what is proved in [DM1]. While it
is possible to give an effective and quantitative version of the full force
of the main result of [DM1] with our methods, the resulting bounds
would be substantially worse than what we give above.

1.14. An important difference between the analytic methods used to
tackle the Oppenheim Conjecture and the dynamical proof of e.g. [M2,
M3,DM1] is that the analytic proofs are effective in the sense that they
provide an upper bound on the size of the shortest integer vector v for
which |Q(v)| < ε, while at least on the face of it dynamical proofs
provided no such bound. For instance, while this is not explicated in
their paper, the proof of Davenport and Heilbronn for the Oppenheim
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Conjecture for irrational indefinite forms of the type Q(q) = λ1x
2
1 +

· · · + λ5x
2
5 gives an upper bound on the size of such an individual

integer vector v in terms of Diophantine properties of the coefficients
λi; assuming e.g. λ1/λ2 is Diophantine generic (i.e. there are c, C so
that |λ1/λ2 − p/q| ≥ cq−C for all rational numbers p/q) this upper
bound is polynomial in ε−1.

Bentkus and Götze gave in [BG1] an analytic proof, with effective
estimates, of the Oppenheim conjecture for general indefinite quadratic
forms in d ≥ 9 variables, and more recently, Götze and Margulis [GM]
have been able to give an analytic proof, with effective error estimates,
of the Oppenheim Conjecture for general indefinite quadratic forms in
d ≥ 5 variable; we note that 5 seems to be a natural barrier to the
applicability of such techniques.

1.15. The proof of the Oppenheim conjecture in [M3, M2] and a sim-
plified proof in [DM3] uses the existence of minimal invariant sets for
actions of groups on compact spaces; formally these proofs depend on
the axiom of choice. Dani in [D4] gave a proof of the Oppenheim con-
jecture based on the existence of a recurrent point as a substitute to
working with minimal sets; in particular, his proof is independent of
the axiom of choice.

The proof of the Raghunathan conjecture in [R5] uses the unipotent
measure rigidity (see above) and the proof of the unipotent measure
rigidity uses the ergodic decomposition and the pointwise ergodic the-
orem for essentially arbitrary invariant measures, which seems to us to
be harder to effectivize than the existence of minimal sets.

1.16. Though there are significant differences, the strategy which we
use in our paper has many similarities with the strategy which was used
by Margulis in [M3,M2] and subsequent papers by Dani and Margulis
[DM1,DM2,DM3]. The main ingredient in these strategies is to prove
that an orbit closure contains orbits of additional subgroups. In the
papers quoted, this is achieved using minimal sets for appropriately
chosen subactions, while in our paper the beginning point of the orbit
of the new subgroup is moving. To make this approach work, we need
to control how this base point changes so it remains sufficiently generic
in an appropriate quantitative sense.

Acknowledgements. This work began with discussions of the au-
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fication theorem. We thank Amir Mohammadi and Nimish Shah for
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2. Statement of dynamical results

2.1. Let G = SL(3,R), Γ = SL(3,Z), and e the identity element of G.
If L < G we shall denote by [g]L the image of g ∈ G under the natural
map G→ G/L. We identify the space X = G/Γ with the space of unit
volume lattices in R3 by identifying [g]Γ ∈ X with the lattice gZ3 in
R3.

2.2. Let H = SO(2, 1) < G, which we view as the subgroup of G
preserving the quadratic form Q0(x, y, z) = y2 − 2xz. The following
subgroups of G will play a special role in the proof:

D = {a(t) : t ∈ R} < H a(t) =

et 1

e−t


U = {u(s) : s ∈ R} < H u(s) =

 1 s s2

2
1 s

1


U− =

{
u−(s) : s ∈ R

}
< H u−(s) =

 1
s 1
s2

2
s 1


V = {v(s) : s ∈ R} 6< H v(s) =

 1 s

1

1

.
We shall use the notations ut and u(t) etc. interchangeably. Note that
D,U, U− < H while V ∩H = {e}.

2.3. Theorem 1.8 as well as the other number theoretic results of [DM1]
were obtained from the following theorem regarding the action of H on
X:

2.4. Theorem (Dani and Margulis). For any x ∈ X, the orbit H.x is
either periodic or dense.

Note that by H.x periodic we mean that it is closed and supports
a finite H-invariant measure. As mentioned above, Theorem 2.4 is
a special case of a general conjecture of Raghunathan that was later
proved by Ratner in [R5]. In [DM3] a substantially more elementary
proof of Theorem 1.8 (and hence the Oppenheim Conjecture) was given
based in particular on the observation that the following weaker result
suffices for proving Theorem 1.8:
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2.5. Theorem (Dani and Margulis). For any x ∈ X, if H.x is not
periodic then there is a point y ∈ H.x so that V.y ⊂ H.x.

2.6. In order to state an effective version of Theorem 2.5, we need to
be able to measure the complexity of the periodic orbits H.x, to play
a similar role in the statement of an effective version of this theorem
to that played by the determinant of an integral quadratic form in
Theorem 1.10.

There are several reasonable choices how to measure the complexity
of the periodic H-orbit H.x: for instance, one can consider the volume
of H.x or equivalently the covolume of the stabilizer of x in H.

Another logical choice is measuring the arithmetic complexity of H.x
using the discriminant as defined in [ELMV] and [EMV, §17.3]). As
shown in [EMV, Prop. 17.4], one can bound both from above and below
each of these invariants of periodic H-orbits by the other.

Yet a third way of measuring the complexity of the periodic H-orbits
is through the connection between such orbits and integral quadratic
forms. Indeed, if H.[g]Γ is periodic, then g−1Hg ∩ Γ is a lattice in
g−1Hg, and hence in particular is Zariski dense there. Therefore, up to
multiplicative scalar, there is a unique quadratic form invariant under
g−1Hg∩Γ, namely Q0 ◦g. Since the elements of g−1Hg∩Γ are integral
there is a s0 ∈ R so that Q2 = s0Q0 ◦ g is integral and primitive. We
set the quadratic discriminant of a periodic orbit H.[g]Γ, denoted by
discQ(H.[g]Γ), to be |detQ2| = |s0|3.

Since in this paper our main motivation is the study of quadratic
forms it seems to reasonable to use this height as a measure of com-
plexity. In any case, it is quite easy to bound the discriminant of a
periodic orbit H.x as defined in [ELMV,EMV] polynomially above and
below by discQ(H.x), so for the purposes of this paper the discriminant
and the quadratic discriminant are essentially the same.

2.7. In addition to having a way of measuring the complexity of peri-
odic H-orbits, we need to choose how to measure the size of an element
h ∈ H (or ∈ G). We shall use both the Euclidean norm ‖·‖ and the
`∞-norm ‖·‖∞ on R3, and use the (Euclidean) operator norm on M3(R)
(in particular on the Lie algebra g of G). Let

(2.7a) BH
T = {h ∈ H : ‖h− e‖ < T} .

Note the use of the operator norm, and not a Riemannian metric, in
the definition of these sets; we will also use at times a right invariant
Riemannian metric dG on G, and the corresponding metric (simply
denoted by d) on G/Γ.

2.8. Theorem. Let ε, η ∈ (0, 1) and x1 ∈ Xη. Then for any T >
T0(ε)η−K4 (with K4 an absolute constant), at least one of the following
holds:
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(i) there is a point x2 ∈ G/Γ with H.x2 periodic and with

discQ(H.x2) < T 3ε

so that d(x1, x2) ≤ T−1

(ii) there is a h ∈ BH
TK5

so that h.x1 ∈ Xκ6 and so that for every
s ∈ [−(log T )κ7 , (log T )κ7 ] the point v(s)h.x1 is within (log T )−κ7

of a point in the set BH
TK5

.x1 with K5, κ6, κ7 absolute constants.

2.9. The two cases given by this theorem are not mutually exclusive.
Indeed, Einsiedler, Margulis and Venkatesh [EMV] have proved a gen-
eral quantitative equidistribution result (with polynomial rates) for pe-
riodic orbits of semisimple groups. An explicit version for orbits of
semisimple subgroups H which are maximal in G, which is the case
we are interested in, was given by Mohammadi [M5]. The main results
[EMV, Thm. 1.3] or [M5, Thm. 1.1] of these papers show that the pe-
riodic H-orbits occurring in (i) satisfy (ii) as long as discQ(H.x2) �
(log T )c, and hence by employing these results Theorem 2.8 can be
somewhat strengthened. The proof of these theorems from [EMV,M5]
is much less elementary than the techniques of this paper, relying in
particular on uniform spectral gap estimates for congruence subgroups
which can be attained by combining Selberg’s estimates on the Fourier
coefficients of modular forms and the Jacquet-Langlands correspon-
dence. We prefer to state the theorem as above in order to keep this
paper self-contained and elementary.

A remark about notations. we use ci, Ci, κi, Ki to denote most of
the constants appearing in this paper. ci and κi will denote small
constants, i.e. constants that need to be taken to be smaller than
something depending on all previously chosen constants, and Ci and
Ki large constants in the corresponding sense. The paragraphs are
numbered, and the constants ci, Ci are numbered per paragraph. The
constants κi, Ki on the other hand, are global, and retain their meaning
throughout the paper. While we have not evaluated the various con-
stants involved our argument is quite explicit (indeed, we have made
an effort to keep it so!) and in principle the reader should have no
difficulty evaluated them if she or he would so desire.

3. Overview of the proof of Theorem 2.8

3.1. Our proof of Theorem 2.8 gives a new proof of Theorem 2.5. We
begin by presenting the steps in this new proof, then explain how the
statements need to be modified for a quantitative proof.

We split the proof of Theorem 2.5 into two parts, first finding two
points in an orbit closure of a nonperiodic H-orbit that differ by an
element of V , and then using the dynamics along U to get additional
points on a V orbit. Both of these ingredients appear in the original
proof (though in the context of studying minimal orbit closures), but by
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switching the order we can avoid some of the more intricate arguments
in e.g. [DM3] needed to control the relative position of two points on
which we apply the U -action.

3.2. Proposition. Let x1 ∈ X be such that H.x1 is not periodic. Then
for any t > 0 there is a

x2 ∈ v(t)H.x1 ∩ v(−t).H.x1

with x2 6∈ [Pi]Γ for Pi one of the two parabolic groups

P1 =

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

 or P2 =

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 .

Note that the conditions that x2 6∈ [P1]Γ is equivalent to requiring
that the lattice in R3 corresponding to x2 does not contain a U -fixed
vector, and x2 6∈ [P1]Γ is equivalent to the lattice in R3 correspond-
ing to x2 not having a 2-dimensional rational subspace fixed by U .
Theorem 2.5 now follows from the following:

3.3. Proposition. Let t > 0 and x2 ∈ X \ ([P1]Γ ∪ [P2]Γ). Then there
is a x3 ∈ U.x2 ∩ Y so that

v([−t, t]).x3 ⊂ D {v(−t), v(t)}U.x2

with Y ⊂ X a fixed compact set.

3.4. Given these two propositions, it is easy to conclude the proof of
Theorem 2.5. Indeed, choose ti →∞, and for each i find using Propo-
sition 3.2 a point

(3.4a) x
(i)
2 ∈ v(ti)H.x1 ∩ v(−ti)H.x1

with x
(i)
2 6∈ [P1]Γ ∪ [P2]Γ. Now apply Proposition 3.3 to find x

(i)
3 ∈

U.x
(i)
2 ∩ Y so that

v([−ti, ti]).x(i)
3 ⊂ D {v(−ti), v(ti)}U.x(i)

2 ⊂ H.x1,

with the second inclusion a consequence of (3.4a); indeed, since U and
V commute

Dv(ti)U.x
(i)
2 = DU.(v(ti).x

(i)
2 ) ⊂ DUH.x1 = H.x1

and similarly with −ti replacing ti.

Since all x
(i)
3 lie in the same compact set Y , there is a convergent

subsequence, and it is clear that if x
(∞)
3 is a limit point of the x

(i)
3 then

V x
(∞)
3 ⊂ H.x1.
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3.5. In order to give a quantitative and effective proof, one needs a
quantitative substitute to the qualitative condition x 6∈ [P1]Γ ∪ [P2]Γ.

For x = [g]Γ ∈ X, let

α1(x)−1 = min
{
‖v‖∞ : v ∈ gZ3 nonzero

}
α2(x)−1 = min

{
‖v ∧ w‖∞ : v, w ∈ gZ3 linearly independent

}
where we define the `∞-norm on R3 ∧ R3 in terms of the basis ei ∧ ej
of R3 ∧ R3 with ei denoting the standard basis of R3. Let α(x) =
max(α1(x), α2(x)), and for any κ > 0 let

Xκ =
{
x ∈ X : α(x) ≤ κ−1

}
.

These form an increasing sequence of compact sets whose union is X.
Note that x ∈ [P1]Γ if and only if the corresponding lattice contains

a vector of the form (c, 0, 0)ᵀ; such a vector is contracted exponentially
by a(−t) — indeed,

a(−t)

c0
0

 =

ce−t0
0


and hence if x ∈ [P1]Γ one has that α1(a(−t)x)� et; it is not hard to
see that the converse also holds. Similarly, x ∈ [P2]Γ iff α2(a(−t)x)�
et as t → ∞. As a substitute to X \ ([P1]Γ ∪ [P2]Γ) we shall make use
of the following:

3.6. Definition. For any δ, κ ∈ (0, 1) and k ∈ R≥0 ∪ {∞}, set

Ξ(k, κ, δ) = {x ∈ X : ∀j ∈ Z ∩ [0, k], a(−j).x ∈ Xκe−δj} .
We extend this definition to all t ∈ R by defining Ξ(k, κ, δ) = X for
k < 0.

We can now state the two results used to prove Theorem 2.8:

3.7. Proposition. Let δ, η, ε ∈ (0, 1) and x1 ∈ Xη. Then for any

T > T0(δ, ε)η−K8

(with K8 absolute(1) and T0 effectively computable in terms of these
parameters), at least one of the following holds:

(i) There is a point x2 ∈ G/Γ so that H.x2 is periodic and

discQ(H.x2) < T 3ε

dG/Γ(x1, x2) < T−1.

(ii) For any τ ∈ [1, T κ9ε] there are h, h′ ∈ BH
TK10

, x′ ∈ Ξ(κ11ε log T , κ12, δ)
and τ ′ ∈ [τ/2, τ ] so that

dG/Γ(v(−τ).x′, h.x1) < c1T
−κ13ε

dG/Γ(v(τ).x′, h′.x1) < c1T
−κ13ε

(1)Explicitly, K8 can be taken to be 11.
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with K10 an absolute constant and c1, κ9, κ11, κ12, κ13 depending
only on δ.

Note that the constant K4 of Theorem 2.8 can be taken to be equal
to K8 above.

3.8. Theorem. Fix δ, κ ∈ (0, 1). Then for any T > T0(δ), if

x1 ∈ Ξ(log(T/κ), κ, δ) t ∈ (0, (log T )κ14) ,

there is a s ∈ [−T, T ] so that x3 = u(s).x2 ∈ Ξ(1
2

log T, κ̃, δ) and so
that for every ξ ∈ v([−t, t]).x3 there is a

ξ′ ∈ BD
(log T )K15 {v(−t), v(t)}u([−T, T ]).x3

with d(ξ, ξ′) < (log T )κ14; here κ̃, κ14, K15 depend only on δ.

Proposition 3.7 and Theorem 3.8 for a single value of δ ∈ (0, 1) clearly
imply Theorem 2.8. We state (and prove) them for all δ ∈ (0, 1) since
this gives a more pleasing effective analogue of Proposition 3.2 and
Proposition 3.3 respectively.

3.9. In [R2], as a step in the proof of measure rigidity for unipotent
flows, Ratner proves in particular that in the context we consider here if
µ is a U -invariant and ergodic probability measure on G/Γ then either
the measures a−tµ escape to the cusp as t→∞, or µ is invariant under
a conjugate of H by V . While the context of her result is different, it
has a somewhat similar flavour to our use of Ξ(k, κ, δ).

4. Inheritable boundedness conditions

4.1. An important ingredient of the proof is the use of an appropriate
Diophantine condition that can be efficiently used in the main inductive
lemma. Recall that for any δ, κ ∈ (0, 1) we let

Ξ(k, κ, δ) = {x ∈ X : ∀j ∈ Z ∩ [0, k], a(−j).x ∈ Xκe−δj} .

4.2. Using the results on quantitative nondivergence, we show in this
section that the boundedness condition above is inherited for most
points on any ut-orbit.

We shall use a quantitative nondivergence estimate from [KM]; this
estimate due to Kleinbock and Margulis is based on [M1] and its modi-
fication by Dani in [D3]. The following follows directly from [KM, The-
orem 5.2] for the special case of ut-orbits (and u−t -orbits) on X; as in
[KM] it will be convenient for us to work with `∞-norm on R3 as well
as on R3 ∧ R3 (with respect to the basis ei ∧ ej with ei the standard
basis of R3).

4.3. Proposition. Let x ∈ X, T > 0 be such that

(1) for any v 6= 0 in the lattice corresponding to x in R3,

max
t∈[0,T ]

‖utv‖∞ ≥ 1
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(2) for any linearly independent vectors v, w in the lattice corre-
sponding to x,

max
t∈[0,T ]

‖ut(v ∧ w)‖∞ ≥ 1.

Then for any ε ∈ (0, 1)

m({t ∈ [0, T ] : ut.x 6∈ Xε}) ≤ K16ε
1/2T,

where m denotes Lebesgue measure and K16 an absolute constant. Ex-
actly the same statement also holds for u−t .

The exponent here is 1
2

since for any vectors v, w ∈ R3 the functions
‖utv‖∞ , ‖ut(v ∧ w)‖∞ are the maximum of polynomials of degree ≤ 2
and hence in the notations of [KM] are (C, 1

2
)-good for some C (cf.

[KM, Lemm. 3.1 & Prop. 3.2]).

4.4. Proposition. Let δ, κ, κ̃ ∈ (0, 1), k ≥ 0, and T ≥ ek. Then for
any point x ∈ Ξ(k, κ, δ)
(4.4a)

m ({t ∈ [0, T ] : ut.x 6∈ Ξ((1− δ)k + log(κ)− 10, κ̃, δ)}) ≤ K16T κ̃
1/2

1− e−δ/2
with K16 an absolute constant.

Proof. Set εj = κe−δj, ε̃j = κ̃e−δj. By Proposition 4.3, for all j ∈
{0, . . . , b(1− δ)k + log(κ)c − 10}

(4.4b) m
({
t ∈ [0, e−jT ] : uta−j.x 6∈ Xε̃j

})
≤ K16ε̃

1/2
j e−jT

unless there is some j in this range and a one or two dimensional
sub-lattice of a−j.x corresponding to a vector p ∈ R3 or ∧2R3 with

‖utp‖∞ < 1

throughout the interval t ∈ [0, e−jT ]. It follows that unless there are
such j, p, equation (4.4a) holds.

In order to complete the proof of the proposition, it suffice to show
that the existence of such j, p is in contradiction to x ∈ Ξ(k, κ, δ). Sup-
pose first p =

∑3
i=1 piei ∈ R3. Then p satisfies ‖utp‖∞ < 1 throughout

the interval t ∈ [0, T e−j], hence |p3| < 1 and for all t in this range∣∣p1 + tp2 + t2p3/2
∣∣ < 1

|p2 + tp3| < 1.

It follows that |p1| < 1, |p2| < C1e
jT−1 and |p3| < C2

1e
2jT−2, with e.g.

C1 = e5. Then since T ≥ ek and j ≤ k − δk + log κ − 10 we have
T ≥ C1ε

−1
k ej+1 and hence∥∥a−dδk−log κep

∥∥
∞ < κe−δk = εk.

It follows that
a−j−dδk−log κe.x /∈ Xεk

and as j + dδk − log κe < k this is in contradiction to x ∈ Ξ(k, κ, δ).
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A similar argument holds if p ∈ R3 ∧ R3. Write p = p12e1 ∧ e2 +
p13e1 ∧ e3 + p23e2 ∧ e3. Then e1 ∧ e2 spans the ut-invariant subspace of
R3 ∧ R3, and

utp = (p12 + tp13 +
t2

2
p23)e1 ∧ e2 + (p13 + tp23)e2 ∧ e3 + p23e2 ∧ e3

and the situation is entirely analogous to the previous case . �

In order to produce points in Ξ(k, κ, δ) starting from an arbitrary
initial point x we need to use the flow in the U− direction:

4.5. Proposition. Let x ∈ Xη for 0 < η < 1, and T ≥ K17. Then

(4.5a) m
({
t ∈ [0, T ] : a(log η)u−t .x 6∈ Ξ(∞, κ, δ)

})
≤ K16κ

1/2T

1− e−δ/2
.

Proof. The proof is very similar to that of Proposition 4.4. Set εj =
κe−δj. Applying again Proposition 4.3, we see that for all j ≥ 0

(4.5b) m
({
t ∈ [0, ejη−1T ] : u−t a(−j + log η).x 6∈ Xεj

})
≤ K16ε

1/2
j

unless there is some j ≥ 0 and a one or two dimensional sub-lattice of
a−j+log η.x corresponding to a vector p ∈ R3 or ∧2R3 with

∥∥u−t p∥∥∞ < 1

throughout the interval t ∈ [0, ejη−1T ]. It follows that unless there are
such j, p, equation (4.5a) holds.

In order to complete the proof of the proposition, it suffice to show
that the existence of such j, p is in contradiction to x ∈ Xη. Suppose

first p =
∑3

i=1 piei ∈ R3. Then p satisfies
∥∥u−t p∥∥∞ < 1 throughout the

interval t ∈ [0, ejT ]. A similar calculation to that given in the proof of
Proposition 4.4 shows that |p1| < C2

1T
−2e−2jη2, |p2| < C1T

−1e−jη and
|p3| < 1 for C1 = e5, hence if T > e10η−1

α1(x)−1 ≤ ‖a(j − log η)p‖∞ = max(η−1ej |p1| , |p2| , ηe−j |p3|)
< e−jη

in contradiction to x ∈ Xη.
The case of p ∈ ∧2R3 is similar. �
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To state the following lemmas, we need to name a few more sub-
groups of G:

P =


∗ ∗ ∗∗ ∗

∗

 U = [P, P ]

P− =


∗∗ ∗
∗ ∗ ∗

 U− = [P−, P−]

A =


t s

(st)−1

 : s, t ∈ R∗
 = P ∩ P−.

4.6. Lemma. Let g ∈ G satisfy that h0ag = gγ0 for h0 ∈ BG
κ18

, a ∈
BA
κ18

and γ0 ∈ Γ \ {e} for sufficiently small absolute constant κ18 < 1
(cf. (2.7a) for the definition of BA

κ ). Then γ0 is unipotent and moreover
at least one of the following two possibilities hold:

(1) γ0 is not a generic unipotent element (i.e. (γ0 − e)2 = 0)
(2) the lattice [g]Γ contains a nontrivial vector v with

‖v‖ ≤ K19 ‖h0 − e‖ .

Proof. We begin by choosing κ18 so that if ‖gi − e‖ < κ18 for i = 1, 2
then

|tr(g1g2)− 3| ,
∣∣tr((g1g2)2)− 3

∣∣ < 1
2
.

Since for every γ ∈ Γ it holds that tr(γ) ∈ Z, it follows that if
‖a− e‖ , ‖h0 − e‖ < κ18 then γ0, hence h0a which is conjugate to γ0, is
unipotent. It follows that

(4.6a) (h0a− e)3 = 0.

Write h0 = u+a0u− with a0 ∈ A and u± ∈ U±; since multiplication
gives a local diffeomorphism U+× A× U− → G near e

‖h0 − e‖ � max(‖u+ − e‖ , ‖a0 − e‖ , ‖u− − e‖).
By equation (4.6a) (e.g. by applying (h0a − e)3 to the standard basis
of R3) it follows that

‖a0a− e‖ ≤ C1 max(‖u+ − e‖ , ‖u− − e‖)
from which we conclude that

‖h0a− e‖ ≤ C2 ‖h0 − e‖ .
Suppose now that (γ0−e)2 6= 0 (or equivalently, (h0a−e)2 6= 0). Then
conjugating γ0 by an element of Γ if necessary, we can assume that γ0

has the form

(4.6b) γ0 =

1 n1 n2

1 n3

1

 with n1, n3 6= 0
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Let e1, e2, e3 be the standard basis to R3. Then as h0a = gγ0g
−1,

equation (4.6b) implies that

(4.6c)
‖ge1‖ = |n1|−1 ‖gγ0e2 − ge2‖

≤
∥∥gγ0g

−1 − e
∥∥ ‖ge2‖ ≤ C2 ‖h0 − e‖ ‖ge2‖ .

As ‖h0 − e‖ ≤ κ18, if κ18 is sufficiently small, by replacing γ0 by p−1γ0p
and g by gp for suitable p ∈ Γ ∩ P , we may assume that the inner
product (ge1, ge2) satisfies

(ge1, ge2) < ‖ge1‖ ‖ge2‖ /100.

A similar argument shows that

(4.6d) ‖ge2‖ ≤ C3 ‖h0 − e‖ ‖ge3‖
and that without loss of generality (gei, ge3) < ‖gei‖ ‖ge3‖ /100 for
i = 1, 2.

Since det g = 1, the above bounds on (gei, gej) imply

‖ge1‖ ‖ge2‖ ‖ge3‖ < 2.

Using the estimates (4.6c) and (4.6d) we conclude that

‖ge1‖3 < C4 ‖h0 − e‖3 ,

and hence v = ge1 is a nontrivial vector in [g]Γ with ‖v‖ � ‖h0 − e‖.
�

4.7. Lemma. Let x ∈ Ξ(k, κ, δ), with δ < 1 and κ > 0. Then for
any s with K20 < |s| < κ21e

(1−δ)k, if h0 = u+a0u− ∈ BG
κ18

satisfies
u(s).x = h0.x, with u+ ∈ U+, u− ∈ U−, a0 ∈ A, then

‖u− − e‖ ≥ κ22 |s|−
2+δ
1−δ .

with κ18 an absolute constant, and K20, κ21, κ22 depending only on κ.

Proof. Write x = [g]Γ with g ∈ G; Then by definition

u(s)g = h0gγ

and clearly if s is large, the matrix γ 6= e. In fact, we can say a bit more:
if s is large (say s > K20), the matrix γ will not satisfy (γ − e)2 = 0,
since it is conjugate to the matrice h−1

0 u(s), and h−1
0 u(s) cannot have

two orthogonal fixed vectors (h0 is in some fixed neighborhood of e,
and for any given C > 0, if s is large enough, the collection of vectors
v for which ‖u(s)v‖ < C ‖v‖ lie in a narrow cone in R3).

Let 0 ≤ t ≤ k be an integer to be determined later, and write
g1 = a(−t)g. Then

u(e−ts)g1 = a(−t)u(s)g = a(−t)h0a(t)g1γ.

It follows that h1a0g1 = g1γ
−1 for

h1 =
(
a(−t)u(s)u+ a(t)

)
·
(
a0a(−t)u− a(t)a−1

0

)
;
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note that

‖h1 − e‖ ≤ C1(e−t |s|+ e−t ‖u+ − e‖+ e2t ‖u− − e‖)
≤ C2(e−t |s|+ e2t ‖u− − e‖).(4.7a)

Since [g]Γ ∈ Ξ(k, κ, δ), we know that [g1]Γ ∈ Xκe−δt , and so any non-
trivial vector in the lattice corresponding to [g1]Γ has norm ≥ κe−δt.
Using Lemma 4.6 we conclude that

(4.7b) ‖h1 − e‖ > K−1
19 κe

−δt.

Combining (4.7a) and (4.7b) we obtain that

(e−t |s|+ e2t ‖u− − e‖) > c3κe
−δt.

We now choose t so that

(4.7c)
c3

6
κe(1−δ)t < |s| < c3

2
κe(1−δ)t;

as long as K20 was chosen to be sufficiently big (depending only on κ)
the condition on |s| in the statement of lemma implies that 0 ≤ t ≤ k.
Then

‖u− − e‖ > c3

2
κe−(2+δ)t

and hence by (4.7c) it follows that ‖u− − e‖ � |s|−
2+δ
1−δ . �

5. A closing lemma

5.1. We first introduce a few more notations. Since H is a simple Lie
group, g = LieG splits into a direct sum of AdH-invariant summands,
in this case given by g = h⊕m with h the Lie algebra of H and m an
irreducible 5-dimensional representation of H. We can further split m
into eigenspaces for AdD, namely m =

⊕2
i=−2 mi with

Ad a(t)[v] = ejtv for v ∈ mj;

note that m2 coincides with the Lie algebra v of V .

5.2. Lemma (Closing Lemma). Let M > 0 be arbitrary, δ, κ ∈ (0, 1),
T ≥ T0(M, δ, κ) and x ∈ Ξ(log T, κ, δ). Then there are constants κ23,
κ24 depending on δ, and a constant K25 depending on M (explicitly,
K25 = 5M + 22) so that at least one of the following two possibilities
holds:

(A) There is a periodic H-trajectory H.x1 with discQ(H.x1) ≤ T 60 and
d(x, x1) ≤ T−M .

(B) There exist s, s′ ∈ [0, T ] so that

u(s).x, u(s′).x ∈ Ξ((1− δ) log T − log(1/κ)− 10, κ23, δ)

and in addition the point u(s).x can be expressed as u(s).x =
h exp(m)u(s′).x with h ∈ H, m ∈ m satisfying

‖h− e‖ < T−κ24 , T−K25 < ‖m‖ < T−κ24
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The following elementary facts will be useful in proving the Closing
Lemma:

5.3. Lemma. Let h1, h2 be two non-commuting elements of H of in-
finite order. Then up to scalar, Q0(x, y, z) = y2 − 2xz is the unique
〈h1, h2〉-invariant quadratic form.

The easy proof of Lemma 5.3 is left to the reader.

5.4. Lemma. Let A be a n × m-integer matrix and B a n × m real
matrix. Assume

‖A−B‖ ‖A‖m−1 < κ26.

Suppose v ∈ Rm is a nonzero vector with Bv = 0. Then there exists a
nonzero integer vector v′ ∈ Zm with

(1) Av′ = 0

(2) ‖v′ ∧ v‖ ≤ K27 ‖A−B‖
1

m−1 ‖v‖.
If in addition

dim {w : Aw = 0} ≤ 1

then

(3) ‖v′‖ < K28 ‖A‖m−1.

Here κ26, K27, K28 are constants depending only on m.

Proof. Let ε = ‖A−B‖, πv denote the orthogonal projection from Rm

to the subspace Rv, and π′v(w) = w − πv(w) the complementary or-
thogonal projection. Consider all integral vectors in the ball BT (0) of
radius T = (3ε)−1 in Rm. There are ≥ β(m)Tm−C1T

m−1 such vectors
(with β(m) the volume of the m-dimensional ball), and for any such
vector w, π′v(w) lies in a m− 1-dimensional ball of radius T .

It follows that there will be distinct w,w′ ∈ Zm with

‖π′v(w − w′)‖ < 2r r = 2 (β(m)T )−1/(m−1)

since otherwise we would have ≥ β(m)Tm − C1T
m−1 disjoint balls of

radius r inside a ball of radius T + r in m − 1-dimensional space; the
total volume of these balls would be at least

(β(m)Tm − C1T
m−1)× β(m− 1)rm−1 > β(m− 1)(2T )m−1 − C2T

m−2,

which is greater than the total volume β(m− 1)(T + r)m−1 of the ball
of radius T + r if ε is small enough — in contradiction.

Let v′ be a primitive integral vector with w−w′ ∈ Zv′, with w,w′ ∈
Zm as in the preceding paragraph. Then

‖v′‖ < 2

3ε
‖π′v(v′)‖ < C3ε

1/(m−1)
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with C3 = 4(3β(m))m−1. Since Bv = 0, it follows that

‖Av′‖ ≤ ‖A‖ ‖π′v(v′)‖+ ‖A−B‖ ‖πv(v′)‖
≤ C3 ‖A‖ ε1/(m−1) + ε ‖v′‖
≤ 2

3
+ C3 ‖A‖ ε1/(m−1).

If we now impose the condition that ε <
(
C3

3
‖A‖

)−m+1
the integrality

of A and v′ imposes that Av′ = 0.
The last statement (3) of the lemma follows from Siegel’s Lemma (or

the pigeonhole principle). Explicitly, there are ≥ β(m)(T−1)m integral
vectors w of size ≤ T ; if the image of A is m − 1-dimensional, then
there are ≤ β(m − 1) ‖A‖m−1 (T + 1)m−1 possibilities for Aw; hence
if β(m)(T − 1)m > β(m − 1) ‖A‖m−1 (T + 1)m−1, i.e. T ≥ C4 ‖A‖m−1,
there would be a nontrivial integer solution to Av′′ = 0 with ‖v′′‖ < 2T ;
by our assumption that the kernel of A is one-dimensional and v′ is
primitive it follows that v′′ is a multiple of v′, hence ‖v′‖ < 2C5 ‖A‖m−1.

�

5.5. We now proceed to prove Lemma 5.2. Unless otherwise specified
the constants ci, Ci are allowed to depend on δ (and only on δ). Assume
that (B) does not hold (for κ24, K25 to be chosen later, but a good choice
for K25 would be 5M + 22); we will show that this implies that (A)
must hold. By Proposition 4.4, taking

κ23 =

(
1− e−δ/2

2K16

)2

we have that the set F ⊂ [0, T ] defined by

F = {s ∈ [0, T ] : u(s).x ∈ Ξ((1− δ) log T − log(1/κ)− 10, κ23, δ)}

satisfies that m(F ) ≥ T/2. It follows that there is a K-separated subset
S ⊂ F , i.e. a subset such that |s− s′| ≥ K for every distinct s, s′ ∈ S,
with |S| ≥ T/2K, for K ≥ 1 to be determined later in a way that
depends on δ only. Since Ξ(k − log(1/κ)− 10, κ23, δ) ⊂ Xκ23 , and the
latter is a compact set (depending only on δ) in a nice 8-dimensional
space, it follows that there is a T−η-neighborhood O1 in X containing
at least c1T

1−8η points from the set {u(s).x : s ∈ S}. Here η (which
can be essentially identified with the constant κ24 in the statement of
the lemma) is a constant to be determined later according to δ. Let

S1 = {s ∈ S : u(s).x ∈ O1} ,

and enumerate the points of S1 in increasing order s1 < · · · < sN ; in
particular N ≥ c1T

1−8η. Let 1 ≤ j < N be such that sj+1 − sj is
minimal; clearly

sj+1 − sj ≤
1

N
(sN − s1) ≤ T 8η

c1

.
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Fix g ∈ G in some fixed compact lift of Xκ23 satisfying

(5.5a) [g]Γ = u(sj).x.

For each 1 ≤ i < N let γi ∈ Γ be chosen so that gγi is the closest point
in gΓ to u(si − sj)g; write

(5.5b) u(si − sj)g = wigγi with ‖wi − e‖ < T−η.

Note that since all u(si).x are in the small neighborhood O1 and S is
at least 1-seperated, γi 6= e for all i 6= j and also γi 6= γi′ for i 6= i′.
Finally, note that by (5.5b)

(5.5c) ‖γi‖ =
∥∥g−1w−1

i u(si − sj)g
∥∥ < C2 |si − sj|2 .

There are two cases to consider:

5.6. Case 1: There are i, i′ so that γi, γi′ are noncommuting elements
of infinite order. If this happens, we will show that (A) holds; in §5.7
we show that the complementary case leads to a contradiction.

Set

wi = h exp(m), wi′ = h′ exp(m′)

with h, h′ ∈ H, m,m′ ∈ m. Assuming (B) fails, ‖m‖ , ‖m′‖ < T−K25

where K25 is as yet undetermined.
Writing

ζ = g−1h−1u(si − sj)g
and similarly ζ ′ with i′, h′ replacing i, h we have that

ζ = exp(g−1mg)γi ζ ′ = exp(g−1m′g)γi′ .

Note that since h−1u(si−sj) preserves the form Q0 = 2xz−y2, we have
that Q2 = Q0 ◦ g is preserved by ζ as well as ζ ′. We apply Lemma 5.4
on the integral system of equations in 6 variables (the coefficients of
the quadratic form Q)

(5.6a)

{
Q ◦ γi = Q

Q ◦ γi′ = Q

which corresponds to the matrix A of the lemma and the system of
equations

(5.6b)

{
Q ◦ ζ = Q

Q ◦ ζ ′ = Q

corresponding to B. By (5.5c) we know that ‖γi‖ , ‖γi′‖ < C2T
2 hence

‖A−B‖ < C3T
2T−K25(5.6c)

‖A‖ < C3T
4.

It is also clear that Q2 solves the system of equations (5.6b).
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It follows from Lemma 5.4 that if

(5.6d) ‖A−B‖ ‖A‖5 ≤ C6
3T

22−K25 < κ26

there is a rational quadratic form Q3 which is invariant under γi, γi′ . (2)
of Lemma 5.4 implies thatQ3 is nondegenerate, hence since γi and γi′ do
not commute Lemma 5.3 implies that the space of solutions of (5.6a) is
one-dimensional. It follows from (3) of Lemma 5.4 that all coefficients
of Q3 are bounded by ≤ K28C3T

20, hence 1 ≤ | detQ3| � T 60. We
also note that since g is in a compact region of X depending only on
δ, the norm ‖Q0 ◦ g‖ can be bounded in terms of δ. Thus by (2) of
Lemma 5.4 and (5.6c)∥∥∥∥Q0 ◦ g −

1

detQ3
1/3
Q3

∥∥∥∥� T (2−K25)/5.

Writing 1
detQ3

1/3Q3 = Q0 ◦ g1 and x1 = [g1]Γ it follows that

discQ(H.x1)� T 60 d(x, x1)� T (2−K25)/5,

establishing (A) if e.g. K25 was chosen to be 5M + 22.(2)

5.7. Case 2: All γi commute with each other. In this case γ1,. . . ,γN
generate an abelian subgroup of G, and either all elements of this group
are unipotent or it is contained in a Q-torus of SL(3).

For any Q-torus L of SL(3,R), we have that∣∣L ∩BG
T

∣∣ ≤ C4 log T 2

with C4 absolute, which clearly contradicts the fact that N , the number
of the γi, is � T 1−8η if T is large (and η was chosen to be < 1/8).

Therefore all the γi are unipotent, and they all have a common fixed
vector. In fact, as we have observed in the proof of Lemma 4.7, if
the K chosen above on p. 18 was large enough, all the γi are generic
unipotents. Let n ∈ Z3 be a primitive vector fixed by all of the γi.
This vector is already determined by γj+1; hence ‖n‖ is bounded by a
power of ‖γj+1‖. Indeed, e.g. using the fact that the range of γj+1 − e
is two-dimensional by a pigeonhole argument similar to that given that
the end of the proof of Lemma 5.4 it follows that

‖n‖ ≤ C5 ‖γj+1‖2 ≤ C6 |sj+1 − sj|4 ≤ C7T
32η.

For notational simplicity assume j < N/2 (the other case being
essentially identical). Applying both sides of (5.5b) to n we see that
for all i, in particular for i = j +N/4, j +N/2

(5.7a) ‖u(si − sj)gn‖ = ‖wign‖ ≤ 2 ‖gn‖ ,

(2)Here it would be sufficient to take K25 = 5M + 2, but in (5.6d) we implicitly
assumed that K25 > 22.
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with g ∈ G as in (5.5a). Write gn = (v1, v2, v3)ᵀ, p(t) = v1+v2t+v3t
2/2.

A considering the first component of the vector appearing on the LHS
of (5.7a), we conclude that

|p(t)| < 2 ‖g‖ ‖n‖ < C8T
32η for t = 0, t1, t2

where t1 = sj+N/4 − sj, t2 = sj+N/2 − sj. As

p(t) = p(0)
(t− t1)(t− t2)

t1t2
+ p(t1)

t(t2 − t)
t1(t2 − t1)

+ p(t2)
t(t− t1)

t2(t2 − t1)

and using the fact that N/4 ≤ t1, t2, t2−t1 ≤ T (where the lower bound
follows from the si being 1-seperated) we conclude that

|v1| ≤ C8T
32η

|v2| ≤ 1000C8T
1+32ηN−2 ≤ C9T

−1+48η

|v2| ≤ 1000C8T
32ηN−2 ≤ C9T

−2+48η.

Applying a(−(1− δ) log T + 10 + log(1/κ)) to the vector gn, we find a
vector

v′ ∈ a(−(1− δ) log T + 10 + log(1/κ))gZ3

with

‖v′‖∞ ≤ C9κ
−1 min(T−1+δ+48η).

On the other hand, by construction,

u(sj).x ∈ Ξ((1− δ) log T − log(1/κ)− 10, κ23, δ),

so

‖v′‖∞ ≥ c10κ23(κ−1T 1−δ)δ

which is a contradiction if we chose η so that

δ(1− δ) < 1− δ − 48η.

and T is sufficiently large (depending on δ, κ,M and η). �

6. Proof of Proposition 3.7

6.1. Using the Closing Lemma of §5 and the nondivergence estimates of
§4 we can now finish the proof of Proposition 3.7. For the convenience
of the reader, we reproduce the statement of this proposition:

6.2. Proposition (Proposition 3.7). Let δ, η, ε ∈ (0, 1) and x1 ∈ Xη.
Then for any

T > T0(δ, ε)η−K8

at least one of the following holds:

(i) There is a point x2 ∈ G/Γ so that H.x2 is periodic and

discQ(H.x2) < T 3ε

dG/Γ(x1, x2) < T−1.
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(ii) For any τ ∈ [1, T εκ9 ] there are h, h′ ∈ BH
TK10

, x′ ∈ Ξ(εκ11 log T, κ12, δ)
and τ ′ ∈ [τ/2, τ ] so that

dG/Γ(v(−τ).x′, h.x1) < c1T
−εκ13

dG/Γ(v(τ).x′, h′.x1) < c1T
−εκ13

We recall thatK10 will be an absolute constant and c1, κ9, κ11, κ12, κ13

are allowed to depend only on δ.

Proof of Proposition 3.7. Let δ, η, ε > 0 and x1 ∈ Xη be given. Assume
alternative (i) in the statement of Proposition 3.7 does not hold, i.e.
there is no point y ∈ G/Γ so that H.y is periodic and

discQ(H.y) < T 3ε

dG/Γ(x1, y) < T−1.

By Proposition 4.5, for an appropriately chosen κ = κ(δ) > 0, there
is a t1 ∈ [0, K17] with x2 = a(log η)u−(t1).x1 ∈ Ξ(∞, κ, δ).

Now apply Lemma 5.2 on x2 with T1 = T ε/20 and M = 25
ε

. If (A) of
Lemma 5.2 holds, then there is a H-periodic y with

discQ(H.y) < T 60
1 = T 3ε

dG/Γ(x2, y) < TM1 = T−1.2.

It follows that

dG/Γ(x1, u
−(−t1)a(− log η).y)� η−2T−1.2.

which contradicts our assumption that alternative (i) in the statement
of Proposition 3.7 does not hold if T > C2η

−10.
Thus setting K8 = 11 and T0 larger than an absolute constant we

may conclude that there are s2, s
′
2 ∈ [0, T1], h ∈ H and m ∈ m so that

x3 = u(s2).x2 and x′3 = u(s2).x2 satisfy that x3 = h exp(m).x′3 with

‖h− e‖ < T−κ241 , T−K25
1 < m < T−κ241

x3, x
′
3 ∈ Xκ23

with K25 = 5M + 22 and κ23, κ24 absolute constants. Lemma 5.2
provides us with a bit more information on x3, x

′
3, namely that they

are in Ξ(log T1, κ23, δ), but we shall not be using this, as we have to
apply Proposition 4.5 again in any case to avoid m being very close to
the Lie algebra v of V .

Let x4 = exp(m/2).x′3. Applying Proposition 4.5 we may conclude
that for most t2 ∈ [0, K17] the point a(r)u−(t2)x4 ∈ Ξ(∞, κ(δ), δ) with
r = log(1/κ23). Recalling the decomposition m =

⊕2
i=−2 mi with

m2 = v from §5.1, the m−2 component of Ad(u−(t2))m is a polyno-
mial of degree 4 in t2 with coefficients that are essentially given by the
components of m. Let φm : R → m−2 denote this polynomial. Since
for most t2 ∈ [0, K17] the norm of the polynomial φ(t2) is comparable



EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS 23

to the norm of its largest coefficient, we can conclude from the above
that we can find a t2 ∈ [0, K17] so that

a(r)u−(t2)x4 ∈ Ξ(∞, κ(δ), δ) and ‖φm(t2)‖ ≥ c3 ‖m‖ .
Let x5 = a(r)u−(t2)x4 and m′ = Ad(a(r)u−(t2))m. In addition to

being in Ξ(∞, κ(δ), δ), this point has the property that

exp(±m′/2).x5 ∈ BH
C4T1

.

Write m′ as m′ = m−2 + · · ·+m2 with mi ∈ mi, and note that by choice
of t2, ∥∥m−2

∥∥� ‖m′‖ T−K25
1 � ‖m′‖ � T−κ241 .

Suppose now that τ ≥ 1 is given. Let T2 > 0 be the smallest such
that

‖Ad(u(T2))m′‖ = τ

(recall that in our normalizations

∥∥∥∥∥∥
0 0 τ

0 0 0
0 0 0

∥∥∥∥∥∥ = τ).

In the degree 4 polynomial t 7→ Ad(u(t))m′ the coefficient of the
4th order term is essentially m−2. As

∥∥m−2

∥∥ � T−K25
1 we have that

T2 � T
K25/4
1 τ 1/4 for some C4 > 0; indeed, in view of the explicit form

of K25 given above T2 � T 20ε−1+5.5
1 τ 1/4 � TC5τ 1/4 for some absolute

constant C5. As ‖m′‖ � T−κ241 it follows that T2 � T c61 τ
1/4 (with c6

depending on δ).
Since for an appropriate absolute constant c7 ∈ (0, 1) we have that

‖Ad(u(t))m‖ ≥ τ

2
for t ∈ [(1− c7)T2, T2].

By Proposition 4.4 it follows that there is a t3 ∈ [(1 − c7)T2, T2] for
which

u(t3).x5 ∈ Ξ((1− δ) log T2 − log(1/κ(δ))− 10, κ̃, δ)

provided that
K16T κ̃

1/2

1− e−δ/2
< c7.

Finally, consider the polynomials R→ m

Ad(t)mi

for −2 ≤ i ≤ 2. In each, the highest order term is its m2 component,
and all nonzero coefficients of t 7→ Ad(t)mi are of the order ‖mi‖. It
follows from definition of T2 that for t ∈ [0, T2], the components of
Ad(t)m in mi for i 6= 2 are � τT−1

2 . Let x6 = u(t3).x5 and τ ′ ≥ 0 so
that the m2 component of Ad(t3)m′ has τ ′ in its right upper corner, i.e.
is equal to vτ ′ − e. Then

x6 ∈ Ξ((1− δ) log T2 − log(1/κ(δ))− 10, κ̃, δ)



EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS 24

and
d(v(±τ ′/2).x6, exp(±(Ad(t3)m′)/2).x6)� τT−1

2 .

As
exp(±(Ad(t3)m′)/2).x6 ∈ BH

C8(T1+T2).x1

the proposition is proved. �

7. Divergence properties of nearby U-orbits

7.1. In order to study the divergence properties of ut-orbits, we make
use of the representation ρ : G→ Aut(W ) with W = R3⊕(sym2(R3))∗,
which arises from the usual action of G on R3, and the action of G
on (sym2(R3))∗ given after identifying (sym2(R3))∗ with the space of
ternary quadratic forms by (g.Q)(v) = Q(g−1v).

Let e1, e2, e3 be the usual basis of R3, and Q0(x, y, z) = y2 − 2xz ∈
(sym2(R3))∗. The vector w0 = e1 ⊕ Q0 ∈ W is fixed by U , and an
easy calculation shows that in fact U = stabG(w0). We note that the
pair (Q0, e1) give a signature (2, 1)-quadratic form, of determinant 1,
and a nonzero isotopic vector for Q0, i.e. a nonzero vector v satisfying
Q0(v) = 0. Since the action of G preserves these properties, it follows
that ρ(G)w0 is contained in

G = {v ⊕Q : Q has signature (2, 1), detQ = 1, v 6= 0, Q(v) = 0} .
Since G acts transitively on the collection of signature (2, 1)-quadratic
forms, and H acts transitively on the set of nonzero isotopic vectors of
Q0 (cf. [C]) in fact ρ(G)w0 = G.

7.2. We fix a rational cross sectionW to U in G, i.e. a subvariety of G
so that the map (w, u) 7→ wu gives a birational map between W × U
and G. A concrete choice for W is

W = U−A

1 ∗ ∗
0 1 0
0 0 1

 .

Then the map g 7→ ρ(g).w0 restricted to W gives a birational map
between W and the smooth quasi-affine variety G. The rational map
% : G → W inverting this map can be given explicitly as follows: let
v1 ⊕Q be a point in G, i.e. Q is a signature (2, 1) quadratic form with
determinant 1 and v1 ∈ R3 \ {0} with Q(v1) = 0. The quadratic form
Q(v) defines a bilinear form in the usual way Q(v, w) = 1

2
(Q(v + w)−

Q(v) +Q(w)). We complete v1 to basis v1, v2, v3 of R3 as follows: first
find v3 ∈ 〈v1, e3〉 satisfying

Q(v1, v3) = −2 Q(v3) = 0

(this is possible as long as Q(v1, e3) 6= 0). Then fix v2 by the three
linear conditions

Q(v1, v2) = 0 Q(v3, v2) = 0 det(v1, v2, v3) = 1.
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It follows that

−Q(v2) = det (Q(vi, vj))i,j=1...3 = detQ · det(v1, v2, v3)2 = −1

hence if we compose Q with the matrix (v1v2v3) formed by the column
vectors v1, v2, v3 we get Q0. Thus % : v1⊕Q 7→ (v1v2v3) gives a rational
map G → W inverting the map g 7→ g.w0; it is also clear that % is
regular at w0.

7.3. Lemma. Let WU denote the space of ρ(U)-invariant vectors in W .
Then WU is given by

WU = 〈e1 ⊕ 0, 0⊕Q0, 0⊕Q†〉,

where Q0 is the quadratic form above and Q†(x, y, z) = 2z2.The inter-
section G ∩WU is a Zariski open subset of the two dimensional affine
plane

(7.3a) W0 = {te1 ⊕ (Q0 + t′Q†) : t, t′ ∈ R} .

Proof. This is essentially a combination of the trivial observation that
e1 spans the U -invariant vectors in R3 and the fact (easily verified by
direct calculation) that any U -invariant ternary quadratic form is a
linear combination of Q0 and Q† above.

Recall that G consists of all points v ⊕ Q with v ∈ R3 nonzero and
isotropic for the signature (2,1) quadratic form Q of determinant 1. If
v ⊕Q ∈ G ∩WU then Q = sQ0 + s′Q† and as det(sQ0 + s′Q†) = s3 it
follows that s = 1. Moreover from the description of G it follows that
every v ⊕Q ∈ W0 with v 6= 0 is in G. �

7.4. One can say a bit more about G ∩W0. Our choice of cross section
W satisfies that AV ⊂ W . Since

ρ

t 1
t−1

 v(s)

w0 = te1 ⊕ (Q0 + st2Q†)

it follows that for c 6= 0

% (ce1 ⊕ (Q0 + bQ†)) =

c 1
c−1

 v

(
b

c2

)
.

We also make note of the identityc−1

1
c

 v(s)% (ce1 ⊕ (Q0 + bQ†)) = v

(
s+ b

c2

)
that will be useful later.
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7.5. The space W splits into three irreducible components under the
action of ρ(H): R3, a one-dimensional representation spanned by the
ρ(H)-fixed vector 0⊕Q0 and a 5-dimensional representation (that there
are only three irreducible representations follows from the fact that the
space of ρ(U)-invariant vectors is three-dimensional).

Fix an Euclidean norm ‖·‖ on W according to which these the ir-
reducible subspaces are orthogonal and moreover in each irreducible
representation of ρ(H) the eigenspaces of ρ(D) are orthogonal. We
further scale ‖·‖ so that every p = v ⊕ Q with ‖p− w0‖ ≤ 1 satisfies
that Q is nondegenerate of signature (1, 2), v 6= 0 and % is regular on
G ∩ BW

2 (w0). For every p ∈ W we let πWU
and πW0 denote the closest

point on WU or W0 to p respectively, and π⊥WU
(p) = p − πWU

(p) (and
similarly for W0).

7.6. Lemma. For every v ∈ W \WU consider the least T ≥ 0 for which
‖ρ(uT )v − v‖ ≥ 1. Then

(7.6a)
∥∥π⊥WU

v
∥∥−1/4 � T �

∥∥π⊥WU
v
∥∥−1

with implied constants absolute.
A similar estimate holds also for T > 0 the least number satisfying
‖ρ(−T )v − v‖ ≥ 1, or if v ∈ (W \ WU) ∩ BW

1/2(w0) for T the least

number satisfying ‖ρ(−T )v − w0‖ ≥ 1.

Proof. p(t) = ρ(ut)v − v is a vector valued polynomial of degree ≤ 4
whose maximal nonconstant coefficient is bounded above and below by
absolute constants times

∥∥π⊥WU
v
∥∥. In particular, p(t) is not a constant

as v 6∈ WU , hence ‖p(t)‖ → ∞ as t → ∞. The estimate (7.6a) for
T = min{t ≥ 0 : ‖p(t)‖ ≥ 1} or T = min{t ≥ 0 : ‖p(−t)‖ ≥ 1} now
follows from general properties of degree ≤ 4 polynomials. The case
of T = min{t ≥ 0 : ‖ρ(ut)v − w0‖ ≥ 1} follows similarly by taking
p1(t) = ρ(ut)v − w0, and noting that by construction ‖p1(0)‖ ≤ 1/2
while ‖p1(T )‖ = 1. �

7.7. Lemma. Let v ∈ (W \WU) ∩BW
1/2(w0) and

T = min{t ≥ 0 : ‖ρ(ut)v − w0‖ ≥ 1}.
Then for 0 ≤ t ≤ T it holds that

(7.7a)
∥∥π⊥WU

(ρ(ut)v)
∥∥� T−1.

Proof. Suppose t ≤ T/2. Write v′ = 1
2
ρ(ut)v, and apply Lemma 7.6

to v′. Since ‖ρ(us)v − w0‖ < 1 for all s ∈ [0, T ], it follows that for
s ∈ [0, T/2]

‖ρ(ut+s)v − ρ(ut)v‖ ≤ 2 for 0 ≤ s ≤ T/2.

Consequently, v′ satisfies the conditions of Lemma 7.6 for T ′ ≥ T/2.
Thus by the second inequality in (7.6a)

T ≤ 2T ′ �
∥∥π⊥WU

(v′)
∥∥−1

,
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which is equivalent to (7.7a). �

7.8. Lemma. Let g ∈ G satisfies that ρ(g)w0 ∈ BW
1 (w0). Then

(7.8a)
∥∥π⊥W0

(ρ(g)w0)
∥∥�� ∥∥π⊥WU

(ρ(g)w0)
∥∥ .

Proof. Since W0 is an affine subspace of WU the left-hand side of
(7.8a) is ≥ the right hand side. To see the opposite inequality, let
πWU

(ρ(g)w0) = ae1 ⊕ (a1Q0 + a2Q†) with Q0, Q† as in Lemma 7.3 and
a, a1, a2 ∈ R. Since ρ(g)w0 ∈ G, it has the form v ⊕ Q with Q an
indefinite quadratic form of determinant 1. As det(a1Q0 + a2Q†) = a3

1,
and since by the conditions on g, the scalar a1 is in some fixed compact
subset of (0,∞),

|a1 − 1| � ‖ρ(g)w0 − πWU
(ρ(g)w0)‖ =

∥∥π⊥WU
(ρ(g)w0)

∥∥ .
But this in turn implies that∥∥∥∥ρ(g)w0 −

a

a1

e1 ⊕
(
Q0 +

a2

a1

Q†

)∥∥∥∥� ∥∥π⊥WU
(ρ(g)w0)

∥∥ .
On the other hand, as a

a1
e1 ⊕

(
Q0 + a2

a1
Q†

)
∈ W0 the left-hand side of

the above equation is ≥
∥∥π⊥W0

(ρ(g)w0)
∥∥ which concludes the proof. �

7.9. Let u =

0 1
0 1

0

 so that U = exp(Ru). The following is a con-

sequence of the elementary theory of finite dimensional representations
of sl(2,R) ∼= LieH:

7.10. Lemma. Let dρ denote the representation of g corresponding to
ρ. Then for every n it holds that∥∥π⊥WU

(dρ(n)w0)
∥∥� ∥∥u−∥∥

where n = u−+ a+ u+ with u± ∈ Lie(U±) and a ∈ LieA

Proof. Decompose [u, n] also as [u, n] = u′−+ a′ + u′+. Note that as

u,d =

1
0
−1

 ,

0
1 0

1 0


form a sl(2,R)-triplet,

∥∥u′−+ a′
∥∥� ∥∥u−∥∥.

Since dρ is a Lie algebra representation and dρ(u)w0 = 0,

dρ([u, n])w0 = (dρ(u)dρ(n)− dρ(n)dρ(u))w0 = dρ(u)dρ(n)w0.

As WU is by definition the kernel of dρ(u), it follows that

(7.10a)
∥∥π⊥WU

dρ(n)w0

∥∥� ‖dρ([u, n])w0‖ .
Decompose the space W into dρ(d) eigenspaces. The vector w0 is
in such an eigenspace, with eigenvalue one. Hence dρ(u′−+ a′)w0 has
components in the eigenspaces with eigenvalue ≤ 1, and dρ(u′+)w0 in
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eigenspaces with eigenvalue > 1. By our choice of norm on W it follows
that

‖dρ([u, n])w0‖ ≥
∥∥dρ(u′−+ a′)w0

∥∥� ∥∥u′−+ a′
∥∥� ∥∥u−∥∥ ,

hence by (7.10a),
∥∥π⊥WU

dρ(n)w0

∥∥� ∥∥u−∥∥. �

7.11. Proposition. Let h0 = u−au+ ∈ BG
κ29
\NG(U) with u− ∈ U−, u+ ∈

U+, a ∈ A and κ29 a sufficiently small absolute constant. Then there
are

(i) T > 0 with ‖h0 − e‖−1/4 � T � ‖u− − e‖−1,
(ii) polynomials c(t), b(t) with Ft(x) = c(t)−2(x+ b(t)) satisfying

max
x∈

[
−1

2
,
1
2

] |Ft(x)− x| ≤ κ30 for t ∈ [−T, T ],

= κ30 for t = −T or T

(iii) a rational function φ : [−T, T ]→ R satisfying

K−1
31 |t1 − t2| ≤ |φ(t1)− φ(t2)| ≤ K31 |t1 − t2| for all t1, t2 ∈ [−T, T ]

so that for every t ∈ [−T, T ] and p ∈ G/Γ,

d

u(t)h0.p,

c(t) 1
c(t)−1

 v

(
b(t)

c(t)2

)
u(φ(t)).p

� T−1.

Note that it follows from the above equation (or from the definition of φ
below) that φ(0) is small; e.g. a suitable choice of κ29 would guarantee
that |φ(0)| < 1.

Proof of Proposition 7.11. Let T1 = min{t ≥ 0 : ‖ρ(uth0)w0 − w0‖ ≥
1}. By Lemma 7.3, we can write the polynomial map t 7→ πW0(ρ(uth0)w0)
as

πW0(ρ(uth0)w0) = c(t)e1 ⊕ (Q0 + b(t)Q†)

with c(t), b(t) real valued polynomials of degree ≤ 4.
Define φ(t) by

(7.11a) % (ρ(uth0)w0) = uth0u−φ(t),

i.e. uφ(t) = (% (ρ(uth0)w0))−1 uth0. Note that such φ(t) must exist as
% (ρ(g)w0) ∈ gU for every g ∈ G. Since % is a rational function on
G and is well behaved on G ∩ BW

2 (w0), the function φ defined above
is rational, and well behaved as a function of t as long as ρ(uth0)w0

remains in BW
1 (w0).

By Lemma 7.7 and 7.8 it follows that for |t| ≤ T1∥∥π⊥W0
(ρ(uth0)w0)

∥∥� T−1
1
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hence by the regularity of % on G ∩BW
1 (w0)

dG (%(ρ(uth0)w0), %(πW0(ρ(uth0)w0))) =

dG
(
uth0u−φ(t), h1(t)

)
� T−1

1 ,(7.11b)

with

h1(t) =

c(t) 1
c(t)−1

 v

(
b(t)

c(t)2

)
.

Applying both of these elements to the point uφ(t)p we see that

d
(
uth0.p, h1(t)uφ(t).p

)
� T−1

1 .

If one chooses κ30 appropriately, it is clear that there will be a T1 with
T � T1 < T for which condition (ii) is satisfied.

Finally, regarding (iii), observes that by (7.11a) for t1, t2 ∈ [−T, T ],

uφ(t1)−φ(t2) = (% (ρ(ut1h0)w0))−1 ut1−t2% (ρ(ut2h0)w0) .

As % (ρ(uth0)w0) is in a fixed compact neighborhood of e ∈ G, say Ω,
for all t ∈ [−T, T ], we see that for any t1, t2 ∈ [−T, T ]

uφ(t1)−φ(t2) ∈ Ω−1ut1−t2Ω

and (iii) follows by comparing norms. �

8. Some properties of rational functions

8.1. Lemma. Let a(t), b(t), c(t) be polynomials of degree ≤ d, with

c(t) > 0 on t ∈ [0, 1]. Set Ft(x) = a(t)
c(t)A

x + b(t)
c(t)B

with A,B nonneg-

ative integers. Assume that |Ft(x)− x| ≤ ρ for all t ∈ [0, 1]. Let
C = max(A,B), M = maxt∈[0,1] c(t), m = mint∈[0,1] c(t). Then

max
t∈[0,1]

∣∣∣∣ ∂∂tFt(x)

∣∣∣∣ ≤ K32ρ

(
M

m2
+

(
M

m

)C)
.

with K32 depending only on d,A,B.

Proof. Since |Ft(x)− x| ≤ ρ on t ∈ [0, 1] it follows that the coefficients

of the polynomial p(t) = c(t)C
(
a(t)
c(t)A

x+ b(t)
c(t)B
− x
)

are all � MCρ

hence maxt∈[0,1] |p′(t)| < C1M
Cρ. It follows that∣∣∣∣∂Ft(x)

∂t

∣∣∣∣ ≤ ∣∣∣∣ p′(t)c(t)C

∣∣∣∣+ C

∣∣∣∣c′(t)(Ft(x)− x)

c(t)2

∣∣∣∣
≤ C1ρ

(
M

m

)C
+ Cρ

M

m2
.

�



EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS 30

8.2. Corollary. Let c(t), b(t) be polynomials of degree ≤ d, with c(t) ∈
[δ, δ−1] on t ∈ [0, 1]. Set Ft(x) = c(t)Bx + b(t)c(t)A, with A,B ∈ Z,
and assume that |Ft(x)− x| ≤ ρ for all t ∈ [0, 1]. Then

max
t∈[0,1]

∣∣∣∣ ∂∂tFt(x)

∣∣∣∣ ≤ K33ρ

max
t∈[0,1]

∣∣∣∣ ∂∂tF−1
t (x)

∣∣∣∣ ≤ K33ρ.

with K33 depending on d, δ, A,B.

Proof. This follows directly from Lemma 8.1 as F−1
t (x) = xc(t)−A −

b(t)c(t)B−A, hence that lemma applies to both Ft and F−1
t . �

9. The combinatorial lemma

9.1. Definition. Let S ⊂ R and I an interval. The total density of S
on I is defined to be

δ(S; I) = |I|−1

∫
I

dR(x, S)dx.

9.2. Lemma. Let S be a closed subset of R, and I be an interval con-
taining at least one point of S. Then for all α < 1

m ({x ∈ I : d(x, S) < αδ(S; I)}) ≥ α |I| /8.

Proof. We first show that there is a subset D ⊂ I of measure ≥ α |I| /4
so that

(9.2a)
1

m(D)

∫
D

d(x, S) dx ≤ αδ(S; I)/2.

Indeed, let J be one of the the connected components of I \ S. Then
at least one of the endpoints of J is in S,

|J | /4 ≤ |J |−1

∫
J

d(x, S) dx ≤ |J | /2

and therefore there is a subinterval J ′ ⊂ J with |J ′| > α|J |/4 so that

1

|J |′
∫
J ′
d(x, S) dx ≤ α

2 |J |

∫
J

d(x, S) dx.

Taking D to be the union of these subintervals J ′ gives (9.2a).
Now by Chebyshev, the measure of those x ∈ D with d(x, S) >

αδ(S; I) is≤ m(D)/2, hence there is a subset of I of measure≥ m(D)/2
on which d(x, S) ≤ αδ(S; I) and the lemma follows. �

9.3. Theorem (“Combinatorial Lemma”). Let c(t), b(t) be polynomials
of degree d with c(0) = 1 and b(0) = 0 and A,B ∈ Z. Set Ft(x) =
c(t)Ax+ b(t)/c(t)B. Assume that for ∆ ∈ (0, 1/3]

(i) |Ft(x)− x| ≤ ∆ for all t ∈ [0, 1] and x ∈ [0, 1]
(ii) |F1(x)− x| = ∆ for some x ∈ [0, 1].



EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS 31

Then there are κ34, κ35 > 0 depending only on d,A,B,∆ so that for
every S ⊂ [0, 1] containing the endpoints of this interval the set

G =

{
t ∈ [0, 1] : min

ε=±1
δ(S ∪ [Ft]

ε(S); [0, 1]) <
δ(S; [0, 1])

1 + κ34

}
satisfies that m(G) ≥ κ35.

Proof. For any x ∈ [0, 1], let

rx = max {|Ft(x)− x| : 0 ≤ t ≤ 1} .
It follows from (i) of the statement of the theorem that

(9.3a) c(t)A ∈ [1−2∆, 1+2∆],
b(t)

c(t)B
∈ [−∆,∆] for all t ∈ [0, 1];

also note that for any t ∈ [0, 1]

(9.3b) (Ft)
−1 (x)− x = −(Ft(x)− x)/c(t).

Suppose first that there is some connected component (α, β) of [0, 1]\
S with β − α > ∆/40. It follows from (ii) that(3)

max(|F1(α)− α| , |F1(β)− β|) ≥ ∆2

40

Without loss of generality, assume |F1(α)− α| ≥ ∆2/40. Let ε = 1 if
F1(α) > α and ε = −1 otherwise; by (9.3a) and (9.3b) it follows that

F ε
1(α) ≥ α +

∆2

120
.

From Corollary 8.2 it follows that there is a set E ⊂ [0, 1] of measure
≥ c1 (depending only on d,A) so that for t ∈ E

F ε
t (α) ∈ (α + ∆2/240, α + ∆2/120)

and since β − α ≥ ∆2/40 it follows that for t ∈ E
δ(S ∪ F ε

t (S); [0, 1]) ≤ (1− c2)δ(S; [0, 1])

for c2 > 0 some function of ∆, and the theorem follows.

Thus we may assume for the rest of the proof that every connected
component of [0, 1] \S has size ≤ ∆/40. Clearly it suffice to show that

(9.3c)

∫ 1

0

∫ 1

0

d(x, S ∪ Ft(S)) dt dx+

∫ 1

0

∫ 1

0

d(x, S ∪ F−1
t (S)) dt dx

< (2− c3)δ(S; [0, 1]),

with c3 depending only on d,A,B,∆.
Equations (9.3a) and (9.3b) imply that for any x ∈ [0, 1]

[x− rx/3, x+ rx/3] ⊂ {F ε
t [x] : t ∈ [0, 1], ε = ±1} ⊂ [x− 3rx, x+ 3rx].

(3)The exact value of the constant on the right hand side is irrelevant, hence we
omit the details.



EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS 32

Using the above bounds on c(t) it also follows that for any y, t ∈ [0, 1]

(9.3d) |Ft(y)− Ft(x)| ≤ 5

3
|y − x|

∣∣F−1
t (y)− F−1

t (x)
∣∣ ≤ 3 |y − x|

hence for every y ∈ [x− rx/20, x+ rx/20] it holds that
(9.3e)
[x− rx/20, x+ rx/20] ⊂ {F ε

t [y] : t ∈ [0, 1], ε = ±1} ⊂ [x− 4rx, x+ 4rx].

Out of the intervals [x − rx/20, x + rx/20] ∩ [0, 1] we can extract two
disjoint subcollection Ji so that⋃

i=1,2

⋃
J∈Ji

J = [0, 1].

For any connected component I = (α, β) of [0, 1] \ S we mark one
endpoint as follows: Let

Φ(x) =

{
F1(x) if c(1) ≤ 1

F−1
1 (x) otherwise.

Mark α if Φ moves it to the right more than it moves β to the left, i.e.
if

Φ(α)− α ≥ β − Φ(β);

otherwise we mark the point β. Note that since Φ is a contraction, at
least one of Φ(α)− α, β − Φ(β) must be positive.

We then remove from both J1 and J2 all those intervals fully con-
tained in I but which do not intersect the third of I nearest the marked
endpoint of I; after performing this operation for every connected com-
ponent of [0, 1]\S we obtain two new disjoint collections J̃1, J̃2 so that
for every connected component I of [0, 1] \ S at least one third of I is
contained in the union

⋃
i=1,2

⋃
J∈J̃i J . It follows that∑

J∈J̃1∪J̃2

∫
J

d(x, S) dx ≥ 2δ(S; [0, 1])

9

Hence for an appropriate choice of i, J = J̃i is a disjoint collection of
intervals with ∑

J∈J

∫
J

d(x, S) dx ≥ δ(S; [0, 1])

9
.

In order to prove (9.3c), it is clearly enough to show that for every
J ∈ J

(9.3f)

∫
J

dx

∫ 1

0

d(x, S ∪ Ft(S)) dt+

+

∫
J

dx

∫ 1

0

d(x, S ∪ F−1
t (S)) dt < (2− κ36)

∫
J

d(x, S) dx.

There are two cases to consider:
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The interval J intersects S: In this case, we apply Lemma 9.2 on
J to find a subset E ⊂ J with m(E) ≥ c4 |J | so that

d(y, S) < 0.01δ(S; J) for every y ∈ E

where c4 is an absolute constant. Write J = [x−rx/20, x+rx/20]∩[0, 1]
for some x ∈ [0, 1]. We recall (9.3e), which states that for every y ∈ J

[x− rx/20, x+ rx/20] ⊂ {F ε
t (y) : t ∈ [0, 1], ε = ±1} ⊂ [x− 4rx, x+ 4rx];

moreover, at least one of the intervals [x−rx/20, y] or [y, x+rx/20] is in
{Ft(y) : t ∈ [0, 1]}, with the other interval being in

{
F−1
t (y) : t ∈ [0, 1]

}
.

For notational convenience we assume [x − rx/20, y] is in that set
(the other case being identical). Using Corollary 8.2 we deduce that∣∣ ∂
∂t
Ft(y)

∣∣ , ∣∣ ∂
∂t
F−1
t (y)

∣∣ < C5 |J | for all t ∈ [0, 1]. It follows that

m ({t ∈ [0, 1] : Ft(y) ∈ E}) ≥ m(E ∩ [x− rx/20, y])

maxt∈[0,1]

∣∣ ∂
∂t
Ft(y)

∣∣
≥ m(E ∩ [x− rx/20, y])

C5 |J |

m
({
t ∈ [0, 1] : F−1

t (y) ∈ E
})
≥ m(E ∩ [y, x+ rx/20])

maxt∈[0,1]

∣∣ ∂
∂t
F−1
t (y)

∣∣
≥ m(E ∩ [y, x+ rx/20])

2C5 |J |
.

We obtain that there is a choice of ε = ±1 for which

m ({t ∈ [0, 1] : F ε
t (y) ∈ E}) ≥ m(E)

2C5 |J |
= c6;

note that c6 depends only on d,A,B and is clearly < 1. Whenever
F ε
t (y) ∈ E it holds that

d(y, F−εt S) ≤ 3d(F ε
t (y), S) ≤ 0.03δ(S; J).

This implies that

(9.3g)

∫ 1

0

d(y, S ∪ FtS) dt+

∫ 1

0

d(y, S ∪ F−1
t S) dt

≤ (2− c6)d(y, S) + 0.03c6δ(S; J).

Trivially, the left-hand side of (9.3g) is also ≤ 2d(y, S). Let E ′ =
{y ∈ J : d(y, S) ≤ 0.03δ(S; J)}. Then∫

J\E′
dx

∫ 1

0

d(x, S ∪ Ft[S]) dt+

∫
J\E′

dx

∫ 1

0

d(x, S ∪ F−1
t [S]) dt

< (2− c6)

∫
J\E′

d(x, S) dx+ 0.03c6m(J \ E ′)δ(S; J),
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and clearly

2

∫
E′
d(x, S) dx ≤ 0.06m(E ′)δ(S; J)

≤ (2− c6)

∫
E′
d(x, S) dx+ 0.03c6m(E ′)δ(S; J).

Hence∫
J

dx

∫ 1

0

d(x, S ∪ Ft[S]) dt+

∫
J

dx

∫ 1

0

d(x, S ∪ F−1
t [S]) dt

< (2− c6)

∫
J

d(x, S) dx+ 0.03δ(S; J)

and (9.3f) follows, in the case J ∩ S 6= ∅.
The interval J is disjoint from S: Again, write J = [x−rx/20, x+
rx/20] ∩ [0, 1] for some x ∈ [0, 1], and let I = (α, β) be the connected
component of [0, 1] \ S containing J . Set ` = (β − α). Since S in-
tersects every interval of size ∆

40
, it follows that rx < ∆/2 and hence

in particular |(c(1)− 1)x+ b(1)| < ∆/2. Condition (ii) of the state-
ment of the theorem implies that there is some x′ ∈ [0, 1] for which
|(c(1)− 1)x′ + b(1)| = ∆, hence |c(1)− 1| ≥ ∆

2
. Without loss of gener-

ality, we may assume that in the terminology introduced on p. 32 the
point α is the marked endpoint of the interval (α, β).

Let Φt = (Ft)
ε where ε = 1 if c(1) ≤ 1 and ε = −1 otherwise. Then

∂

∂y
Φt(y) ≤ 2

2 + ∆

and hence

(Φ1(α)− α) + (β − Φ1(β)) ≥ ∆`

2 + ∆
.

Since α is marked, we have that Φ1(α)− α ≥ (β − Φ1(β) hence

(9.3h) Φ1(α) > α +
∆`

5
.

Also, by definition of rx and (9.3a), for all t ∈ [0, 1]

|Φt(x)− x| < 3rx

and it follows from (9.3d) that for all t ∈ [0, 1]

(9.3i) |Φt(α)− α| < 3rx + 3(x− α) < 6(x− α).

In particular, setting t = 1 and comparing with (9.3h) we see that
x > α + ∆`

30
. Since∫

J

d(x, S) dx =

∫
J∩[α,α+ `

2
]

|x− α| dx+

∫
J∩[α+ `

2
,β]

|β − x| dx
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and since by assumption J ∩ [α, α + `/3] 6= ∅ it follows that

(9.3j)

∫
J∩[α+ `

200
,α+ `

2
]

|x− α| dx ≥ c7

∫
J

d(x, S) dx.

Now by Corollary 8.2, (9.3h), and (9.3i) there is some c8 depending
only on the d,A,B,∆ so that if

EJ =

{
t ∈ [0, 1] :

x− α
200

< Φt[α]− α < x− α
100

}
then m(EJ) > c8. If t ∈ EJ∫

J∩[α+ `
200

,α+ `
2

]

|(Φt(α))ε [α]− x| dx ≤ 0.99

∫
J∩[α+ `

200
,α+ `

2
]

|x− α| dx

and so by (9.3j)∫
J

d(x, S ∩ ΦtS) dx ≤ (1− 0.01c7)

∫
J

d(x, S) dx

and ∫ 1

0

∫
J

d(x, S ∩ ΦtS) dx dt ≤ (1− 0.01c7c8)

∫
J

d(x, S) dx.

�

10. The main lemma

We now state our main “bootstrapping” lemma, which we derive
from combining the combinatorial lemma of the previous section (The-
orem 9.3) with the properties of the U -action developed in sections §4
and §7.

10.1. Main Lemma. Let δ, κ ∈ (0, 1), and k ≥ k0(δ). Then for any

(A1) x1 ∈ Ξ(k + log(1/κ), κ, δ) (cf. §4.1)
(A2) I ⊂ R a closed interval centered at 0 with |I| ≤ eκ37k,
(A3) S ⊂ I a subset with ∂I ⊂ S

there is some s ∈ [−ek, ek] and a set S ′ with ∂I ⊂ S ′ ⊂ I so that:

(B1) u(s).x1 ∈ Ξ(κ38k, κ̃, δ),

(B2) δ(S ′; I) ≤ δ(S;I)
1+κ39

(B3) every point of v(S ′)u(s).x1 is within e−κ40k of a point in the set
ΩDu([−ek, ek])v(S).x1, with ΩD ⊂ D an appropriately chosen
fixed compact subset.

Here κ̃, κ37, κ38, κ40 are constants depending only on δ, while κ39 is an
absolute constant.

Proof. Set σ = log |I|, and Ī = e−σI =
[
−1

2
, 1

2

]
. By Proposition 4.4

applied with T = 1
2
ek the set

F =
{
|s| ≤ 1

2
ek : ut.x1 ∈ Ξ((1− δ)k − 10, κ̃, δ)

}
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satisfies that

e−km(F ) ≥ 1− K16κ̃
1/2

1− e−δ/2
with K16 as in Proposition 4.4; moreover, if κ̃ is sufficiently small,
depending on δ the right hand side of the above equation can be made
to be arbitrarily close to one. The precise choice of κ̃ will be specified
later; in addition to δ it depends on the constants of Proposition 7.11
Theorem 9.3, but will not depend on any other choices we make in
this proof. In particular, we assume κ̃ is sufficiently small so that
e−km(F ) ≥ 1/2. Unless otherwise specified, all the constants ci, Ci
appearing in this proof may depend on δ as well as our as yet unspecified
choice of κ̃.(4)

Let

α1 =
(1− δ)2

4 + 2δ
.

It follows from the lower bound above on the measure of F that there is
a subinterval J ⊂ [−1

2
ek, 1

2
ek] of length eα1k so that m(J ∩F ) ≥ |J | /2.

The lower bound on m(J ∩F ) implies that we may extract from J ∩F
a R-separated(5) finite subset E ⊂ F of cardinality ≥ |J | /2R, with R
depending only on κ̃ (specifically, R = K20 of Lemma 4.7, applied to
points in Ξ(·, κ̃, δ)). Since

{uξ.x1 : ξ ∈ E} ⊂ Ξ((1− δ)k − 10, κ̃, δ) ⊂ Xκ

we conclude that there must be two distinct points ξ, ξ′ ∈ E with

(10.1a) d(uξ.x1, uξ′ .x1) ≤ C1e
−α1k/8

(the number 8 appears because it is the dimension of X). Write x2 =
uξ.x1, x′2 = uξ′ .x1; assuming C1e

−α1k/8 is smaller than some absolute
constant (equivalently, that k is larger than some k0 depending on δ)
we have that x′2 = h0.x2 for h0 sufficiently close to the identity for
Lemma 4.7. Moreover (10.1a) implies that

(10.1b) ‖h0 − e‖ ≤ C2e
−α1k/8.

On the other hand, if R is sufficiently large the bound

R < |ξ − ξ′| < |J | = c??e
α1k

implies by Lemma 4.7 that we may write h0 = u+a0u− with u+ ∈
U+, u− ∈ U−, a0 ∈ A and

‖u− − e‖ ≥ c3e
−2+δ

1−δ α1k = c3e
−(1−δ)k/2.

In particular, u− 6= e so h0 6∈ NG(U).

(4)Note that in the effective proof of the Oppenheim Conjecture (including the
strong, nonhomogeneous, form) δ can be chosen to be an absolute constant.

(5)I.e. |ξ − ξ′| ≥M for every distinct ξ, ξ′ ∈ E.



EFFECTIVE ESTIMATES ON INDEFINITE TERNARY FORMS 37

We now wish to apply Proposition 7.11 to x3 = a(−σ/2).x2 and
x′3 = a(−σ/2).x′2. We set the parameter κ37 from the statement of the
Main Lemma to be κ37 = α1

1000
so that

(10.1c) σ ≤ α1k/1000.

Then x′3 = h1.x3 with h1 = u′+a1u
′
− and∥∥u′− − e

∥∥ ≥ ‖u− − e‖ ≥ c3e
−(1−δ)k/2

‖h1 − e‖ ≤ C4e
σ ‖h0 − e‖ ≤ C5e

−α1k/10.

By Proposition 7.11 there are

(a) c6e
α1k/40 ≤ T2 ≤ C7e

k/2,
(b) a rational function φ satisfying K−1

31 ≤ φ′(t) ≤ K31 on [−T2, T2],
(c) polynomials c(t), b(t) so that the family of affine functions Ft(x) =

(x+ b(t))/c(t)2 satisfy

max
x∈Ī
|Ft(x)− x| ≤ κ30 for t ∈ [−T2, T2]

= κ30 for t = −T2 or T2(10.1d)

so that for every |t| ≤ T2

d

(
u(t).x′3, a(log c(t))v

(
b(t)

c(t)2

)
u(φ(t)).x3

)
< C8e

−α1k/40.

Since for g1, g2 ∈ G,

dG(a(σ/2)g1, a(σ/2)g2) ≤ eσdG(g1, g2),

it follows that for |t| ≤ T1 = eσ/2T2 the points x2 = a(σ/2).x3, x′2 =
a(σ/2).x′3 satisfy

(10.1e) d

(
u(t).x′2, a(log c̃(t))v

(
eσ b̃(t)

c̃(t)2

)
u(φ̃(t)).x2

)
< C8e

σe−α1k/40

with b̃(t) = b(e−σ/2t), c̃(t) = c(e−σ/2t), φ̃(t) = φ(e−σ/2t); set also

F̃t(x) = x/c̃(t)2 + eσ b̃(t)/c̃(t)3.

Equation (10.1e) implies that for s ∈ I

(10.1f) d

(
v(s)u(t).x′2, a(log c̃(t))v(F̃t(s))u(φ̃(t)).x2

)
=

= d

(
v(s)u(t).x′2, a(log c̃(t)) v

(
s+ eσ b̃(t)

c̃(t)2

)
u(φ̃(t)).x2

)

= d

(
v(s)u(t).x′2, v(s)a(log c̃(t))v

(
eσ b̃(t)

c̃(t)2

)
u(φ̃(t)).x2

)
.

By (10.1e) and the inequality

dG(v(s)g1, v(s)g2) ≤ C9s
2dG(g1, g2) for g1, g2 ∈ G
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we can further estimate (10.1f) by

(10.1f) < C10e
3σe−α1k/40 ≤ C10e

−α1k/50.

Let α2 = α1/50, T1 = eσ/2T2, and note that assuming k0 was chosen
large enough we have that

(10.1g) T1 < e(1−δ)k−10.

Recalling that on the interval |t| ≤ T1 we have that log c̃(t) is in some
fixed finite interval, we conclude that for every |t| ≤ T1, every point of

v(F̃t(S))u(φ̃(t)).x2

is within distance ≤ C11e
−α2k of some point in ΩDu(t)v(S).x′2, for an

appropriate choice of symmetric neighborhood ΩD of e in D. Since
|φ(0)| = |φ̃(0)| < 1 (cf. note after the statement of Proposition 7.11),
by (b) above for |t| < T1 and if k0 is large enough,

|φ̃(t)| < K31(|t|+ 1) < 2K31e
(1−δ)k−10 < 1

2
ek,

hence both u(t).x′2 and u(φ̃(t)).x2 are in u([−ek, ek]).x1. It follows that

for every |t| ≤ T1 and x ∈ v(F̃t(S))u(φ̃(t)).x2

(10.1h) d(x,ΩDu([−ek, ek])v(S).x1) ≤ C11e
−α2k.

Since v(S)u(φ̃(t)).x2 ⊂ u([−ek, ek])v(S).x1, the estimate (10.1h) holds

in fact for every x ∈ v(S ∪ F̃t(S))u(φ̃(t)).x2.
Similarly, every point of v(F̃−1

t (S))u(t).x′2 is within distance at most
C11e

−α2k of some point in Ω−1
D u(φ(t))v(S).x2 hence for every point x′

in the set v(S ∪ F̃−1
t (S))u(t).x′2

(10.1i) d(x′,ΩDu([−ek, ek])v(S).x1) ≤ C11e
−α2k.

We are now in a position to apply Theorem 9.3. Using the parameters
d,A,B,∆ for that theorem that are applicable to the case at hand (in
particular, A = −2, B = 2,∆ = κ30), the constants κ34 and κ35 from
the statement of that theorem become absolute constants and we shall
treat them as such. Applying Theorem 9.3 to F±t/T2 (with the sign
determined according to whether equality is attained at −T2 or T2 in
(10.1d)) and S̄ = e−σS ⊂ Ī, we see that there is an ε ∈ {±1} and
subset Λ̄ of t ∈ [−T2, T2] of size ≥ κ35T2/2 so that for every t ∈ Λ̄,

δ(S̄ ∪ [Ft]
ε(S̄); Ī) ≤ δ(S̄; Ī)/(1 + κ34).

It follows that for t ∈ Λ := eσΛ̄ there is some set S ′, depending on t,
with δ(S ′; I) ≤ δ(S; I)/(1+κ34) so that for at least one of x = u(φ(t)).x2

or x = u(t).x′2

(10.1j) max
s∈S′

d(v(s).x,ΩDu([−ek, ek])v(S).x1) ≤ C11e
−α2k.

It remains to apply Proposition 4.4 again twice. By (10.1g),

(1− δ)k − 10 ≥ log T1,
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hence since x2, x
′
2 ∈ Ξ(k − 10, κ̃, δ) we may apply Proposition 4.4 to

conclude that the set Ψ′ defined by

Ψ′ = {t ∈ [−T1, T1] : ut.x
′
2 6∈ Ξ((1− δ) log T1 + log κ̃− 10, κ̃, δ)}

satisfies that

m(Ψ′) ≤ 2K16κ̃
1/2

1− e−δ/2
T1.

In view of the bound K−1
31 ≤ φ′(t) ≤ K31, Proposition 4.4 and (10.1g)

also imply that the set

Ψ′′ =
{
t ∈ φ([−T1, T1]) : u(t).x2 6∈ Ξ((1− δ) log T1 − C12, κ̃, δ)

}
for C12 = log κ̃− 10− logK31 satisfies the estimate

m(Ψ′′) ≤ K16κ̃
1/2

(1− e−δ/2)
|φ([−T1, T1])| ≤ 2K31K16κ̃

1/2

(1− e−δ/2)
T1,

hence Ψ = φ−1(Ψ′′) satisfies

m(Ψ) ≤ 2K2
31K16κ

1/2

1− e−δ/2
T1.

It follows that if κ̃ was chosen appropriately (i.e. < c13δ
2 for a suffi-

ciently small absolute constant c13)

Λ \ (Ψ ∪Ψ′) 6= ∅.

If t ∈ Λ \ (Ψ ∪ Ψ′), then at least one of x = u(φ(t)).x2 or x = u(t).x′2
satisfies (10.1j) for some set S ′ with

δ(S ′; I) ≤ δ(S; I)/(1 + κ34)

as well as

x ∈ Ξ((1− δ) log T1 − C12, κ, δ).

Since (1−δ) log T1−C12 is clearly� k (with implicit constant depend-
ing only on δ), the Main Lemma follows. �

11. Proof of Theorem 3.8

Recall that

δ(S; I) = |I|−1

∫
I

dR(x, S) dx.

We note the following elementary property of δ(S; I):

11.1. Lemma. Let I be an interval, and S ⊂ I with ∂I ⊂ S. Then for
every t ∈ I there is a s ∈ S with

|t− s| ≤
√
δ(S; I) |I| .
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Proof. Suppose not. Then there would be an interval, say J , of length
> 2
√
δ(S; I) |I| in I with no point of S. But then

δ(S; I) ≥ |I|−1

∫
J

dR(x, S) dx

> 2

∫ √δ(S;I)

0

xdx ≥ δ(S; I)

in contradiction. �

11.2. Proposition. Let δ, κ ∈ (0, 1), and k ≥ k0(δ) (for an appropriate
choice of k0(δ)). Then for any

(A1) x1 ∈ Ξ(k + log(1/κ), κ, δ)

(A2) I ⊂ R a closed interval centered at 0 with |I| ≤ eκ37
√
k,

there is some s ∈ [−2ek, 2ek] and a set S ′ with ∂I ⊂ S ′ ⊂ I so that:

(B1) u(s).x1 ∈ Ξ(
√
k, κ̃, δ),

(B2) δ(S ′; I) ≤ k−κ41

(B3) every point of v(S ′)u(s).x1 is within 2e−κ40
√
k of a point in the

set(6)

BD
kK42u([−2ek, 2ek])v(∂I).x1.

Here κ̃, κ37, κ40, κ41, K42 depend only on δ.

Proof. We apply Lemma 10.1 iteratively, starting with x1, S1 = ∂I and
the given k. Let T1 = ek. After applying the lemma once, we get
a point x2 = u(s).x1 ∈ Ξ(κ38k, κ̃, δ) with |s| < ek and a set S2 with
∂I ⊂ S2 ⊂ I so that

(11.2a) d (v(τ).x2,ΩDu([−T1, T1])v(∂I).x1) < e−κ40k ∀τ ∈ S2.

We will now apply Lemma 10.1 again, on x2, S2 and k2 = αk for an
appropriately chosen 0 < α < 1/2. In order to satisfy (A1), i.e. that
x2 ∈ Ξ(k2, κ̃, δ), we need to require that α ≤ κ38. If we do that, we get
a point x3 and set S3 so that

(11.2b) d
(
v(τ)x3,ΩDu([−eαk, eαk])v(S2).x2

)
< e−κ40αk ∀τ ∈ S3.

As d(u(s).x, u(s).y)� s4d(x, y) we can deduce from (11.2a) and (11.2b)
that for any τ ∈ S3,

d
(
v(τ)x3,Ω

2
Du([−T2, T2])v(∂I).x1

)
< e−κ40αk + C1e

4αk−κ40k

with T2 = ek + eαk. Choosing α ≤ κ40
(4+2κ40)

and k0 large enough, we get

that the right hand side of the above equation is

≤ 2e−κ40αk.

(6)Recall that BD
R = {h ∈ D : ‖h− e‖ < R}.
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We continue iteratively in this way, obtaining points xj ∈ Ξ(αj−1k, κ̃, δ)

and sets Sj ⊂ I with δ(Sj; I) ≤ (1 + κ39)−j as longer as αjk ≥
√
k.

Stopping at j0 = blog k/2 log(1/α)c we get the proposition, with

qδ(Sj0 ; I) ≤ (1 + κ39)−j0 ≤ α−1k−κ41

for κ41 = log(1 + κ39)/2 logα and so that for any τ ∈ Sj0 ,

d
(
v(τ)xj0 ,Ω

j0
Du([−Tj0 , Tj0 ])v(∂I).x1

)
< 2e−κ40α

j0k

where Tj0 =
∑j0

j=0 e
αjk < 2ek. Note that Ωj0

D ⊂ BD
Cj0

for an appropri-
ately chosen C depending on ΩD, hence since j0 ∝ log k

Ωj0
D ⊂ BD

kK42 .

�

Proof of Theorem 3.8. Apply Proposition 11.2 on x1 for an interval I
of size |I| ≤ kκ41/4. Let S ′ be as in that proposition, in particular
δ(S ′; I) ≤ k−κ41 . By Lemma 11.1 it follows that any τ ∈ I will be
within k−κ41/4 of a point in S ′, hence

d(v(τ).x1, B
D
kK42u([−2ek, 2ek])v(∂I).x1) ≤ C2

(
2e−κ40

√
k + k−κ41/4

)
.

�

12. Applications to quadratic forms

In this section we relate Theorem 2.8 regarding effective density prop-
erties of orbits of H on G/Γ to value of quadratic forms, establishing
Theorem 1.10 and Corollary 1.12.

We note the following well-known fact, for which we include a proof
(or at least a sketch of one) for completeness:

12.1. Lemma. Let Q be a signature (2, 1) ternary quadratic form with
detQ = −1. Then there is a g ∈ G so that Q = Q0 ◦ g with

[g]Γ ∈ Xρ ρ = c1 ‖Q‖K43 .

Here, as we have done throughout this paper, Q0 denotes the qua-
dratic form y2 − 2xz.

Proof. Following a similar procedure as in §7.2, it is easy to find a basis
v1, v2, v3 of R3 so that

(12.1a)
Q(v1) = Q(v3) = Q(v1, v2) = Q(v2, v3) = 0

Q(v2) = 1 Q(v1, v3) = −2

with ‖vi‖ all controlled polynomially by ‖Q‖. Indeed, we choose v1 to
be any unit vector isotropic for Q (i.e. such that Q(v1) = 0), take

v3 = −2 ‖Qv1‖−2Qv1 + λv1
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with λ chosen so that Q(v3, v3) = 0 (here we identified Q with the ma-
trix representing it, so Qv1 is a vector in R3) and v2 a vector satisfying
the three linear equations

Q(v1, v2) = Q(v3, v2) = 0, det(v1, v2, v3) = 0.

The norm of ‖v3‖ can be easy controlled in terms of ‖Q‖ and ‖Q−1‖ �
‖Q‖2. In order to be able to control ‖v2‖ we need to show that the
one-dimensional subspace of R3 defined by Q(v1, x) = Q(v3, x) = 0 is
bounded away from the subspace generated by v1 and v2. If x is in this
one-dimensional subspace

Q(vi, x− a1v1 − a2v2) = −2a4−i for i = 1, 3

hence

‖x− a1v1 − a2v2‖ ≥ max
(
2 ‖Q‖−1 |a1|, 2 ‖Q‖−1 |a3|,
‖x‖ − |a1| ‖v1‖ − |a3| ‖v3‖

)
hence

‖x− a1v1 − a2v2‖ � ‖x‖min(‖v1‖−1 , ‖v3‖−1).

Setting h to be the matrix formed by the column vectors v1, v2, v3,
equation (12.1a) implies that Q0 = Q ◦ h, i.e. Q = Q0 ◦ (h−1). If
w ∈ h−1Z3, for at least one i we have that (w, vi) ∈ Z \ 0 hence
‖w‖ ≥ ‖vi‖−1. �

12.2. Proof of Theorem 1.10. LetQ1 be an indefinite, ternary quadratic
form as in the statement of the theorem. By Lemma 12.1, there is a
g1 ∈ G so that Q1 = Q0 ◦ g1 and [g1]Γ ∈ Xρ with ρ� ‖Q1‖K43 . It also

follows from the proof of that lemma that
∥∥g−1

1

∥∥� ‖Q1‖K43 .
Applying Theorem 2.8 on x1 = [g1]Γ for the given T we may conclude

that either there is a point x2 ∈ G/Γ with H.x2 periodic and with
discQ(H.x2) < T 3ε and d(x1, x2) ≤ T−1 or (ii) of Theorem 2.8 holds.

In the former case, writing x2 = [g2]Γ with dG(g1, g2) ≤ T−1, we may
conclude that the integral form

Q2 = λ(Q0 ◦ g2) λ = discQ(H.x2)1/3

satisfies that ∥∥Q1 − λ−1Q2

∥∥� ‖Q1‖ d(g1, g2),

establishing (i) of Theorem 1.10.
If (ii) of Theorem 2.8 holds we have a x2 = [g2]Γ = h1.x1 ∈ Xκ6 with

h1 ∈ BH
TK5

so that for every s ∈ [− log T κ7 , log T κ7 ] the point v(s).x2 is

within log T−κ7 of a point in the set BH
TK5

.x1.
As x2 ∈ Xκ6 , for appropriate c1, C2 > 0, there will be a vector

w = (w1, w2, w3)ᵀ ∈ g2Z3 with

c1 ≤ w3 ≤ ‖w‖ ≤ C2.
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Write w = g2n with n ∈ Z \ {0} and let q0 = Q0(w). Then for
any s ∈ R

Q0(v(s).w) = q0 − 2sw2
3.

If s ∈ [− log T κ7 , log T κ7 ] there will be some h(s) ∈ H with
∥∥h(s)

∥∥ <
TK5 so that d(v(s).x2, h(s).x1) < log T κ7 . It follows that in the lattice
corresponding to h(s).x1 there should be a vector w(s) = h(s)g1m(s)

satisfying ∥∥w(s) − v(s).w
∥∥� (log T )−κ7 ‖v(s).w‖
� (log T )−κ7(1 + |s|).

From this it follows that∣∣Q0(w(s))− q0 + 2sw2
3

∣∣� (log T )−κ7(1 + |s|2).

Note also that ∥∥m(s)

∥∥ ≤ ∥∥g−1
1

∥∥∥∥∥h−1
(s)

∥∥∥∥∥w(s)

∥∥
≤ C3 ‖Q1‖K43 TK5 .(12.2a)

As T ≥ T0(ε) ‖Q1‖K1 , then assuming K1 is large enough, (12.2a) ≤
T 1.1K5 . It follows that for any s ∈ [− log T κ7/3, log T κ7/3] there is a
m(s) ∈ Z3 with

∥∥m(s)

∥∥ ≤ T 1.1K5 and

Q1(m(s)) = Q0 ◦ g1(m(s)) = Q0 ◦ (h(s)g1)(m(s)) = Q0(w(s))

so that

min
{∣∣Q1(m)− q0 − 2sw2

3

∣∣ : m ∈ Z3, ‖m‖ < T 1.1K5
}
≤ C4 log T−κ7/3.

As |q0| ≤ 2C2
2 and |w3| ≥ c1, assuming that T0 is large enough so that

c2
1 log T κ7/3 > 2C2, it follows that for c5 = 1

2
c2

1

max
|ξ|≤c5 log T

κ7
3

min
{
|Q1(m)− ξ| : m ∈ Z3, ‖m‖ < T 1.1K5

}
≤ C4 log T−κ7/3,

proving the theorem. �

12.3. Before we prove Corollary 1.12, we recall some basic properties
of the logarithmic height of algebraic numbers.

Let K be a number field, i.e. a finite extension of Q with d = [K : Q].
If α ∈ K, its logarithmic height height(α) is defined to be

height(α) =
1

d

∑
v

log(max(1, |α|dvv ))

where the summation is over all valuations ofK, with the normalization
that if Kv is the completion of K with respect to v then |·|v restricted to
Q reduces to the ordinary p-adic or Euclidean absolute value; in these
cases we say v corresponds to the place w = p or ∞ of Q respectively,
and set dv = [Kv : Qw]. In particular, if Kv

∼= R then dv = 1 while
if Kv

∼= C then dv = 2. For more details, see [BG2, §1.3] (though
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the reader is warned that a different normalization is used there). The
following basic properties of height will be useful:

height(p
q
) = log(max(|p|, q)) for p

q
∈ Q

height(α) = height(α−1)

height(αβ) ≤ height(α) + height(β)

|α|v ≤ ed height(α) for any valuation v.(12.3a)

We also recall that in this normalization the height is independent of
the field in which it is evaluated.

We shall make use of the following bound of Liouville type:

12.4. Lemma (cf. [BG2, Thm. 1.5.21]). Let K be a number field of
degree d and α1, α2 distinct elements of K. Let v be any valuation of
K corresponding to w = p or ∞ on Q. Then

|α1 − α2|v ≥
(
2eheight(α1)+height(α2)

)−d/dv
with dv = [Kv : Qw].

12.5. Proof of Corollary 1.12. To deduce Corollary 1.12 from Theo-
rem 1.10 when needs to show two things: that ‖Q1‖ can be bounded in
terms of the heights and degrees of its coefficients (which is immediate
from (12.3a)), and that for an appropriate choice of ε > 0 case (i) of
Theorem 1.10 leads to contradiction.

Suppose the coefficients of Q1 are algebraic, but that Q1 is not pro-
portional to an integral form. Then there are two nonzero coefficients,
say α1, α2, of Q1 with α1/α2 6∈ Q. Let h1, h2 be the logarithmic heights
of α1, α2 respectively, and d = [Q(α1, α2) : Q]. Assume that there is an
integral form Q2 as in (i) of Theorem 1.10.

It follows that there is a λ ≥ T−ε/3 and integers n1, n2 so that
|αi − λni| < ‖Q1‖T−1. Moreover, if T > 10 ‖Q1‖min |αi|−1 both n1, n2

are nonzero, hence

(12.5a)

∣∣∣∣α1

n1

− α2

n2

∣∣∣∣ ≤ 2 ‖Q1‖T−1.

Clearly also

|ni| < 2λ−1 ‖Q1‖ .
However, by Lemma 12.4,∣∣∣∣α1

n1

− α2

n2

∣∣∣∣ ≥ (2eheight(α1/n1)+height(α2/n2))−d

= (2eheight(α1)+height(α2))−d(n1n2)−d

≥ (8eheight(α1)+height(α2))−d ‖Q1‖−2d λ−2d.

As λ ≥ T−ε/3, this leads to contradiction if ε < 3
2d

and T is large
enough. �
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