MEAN DIMENSION AND AN EMBEDDING PROBLEM: AN
EXAMPLE
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ABSTRACT. For any positive integer D, we construct a minimal dynamical system with
mean dimension equal to D/2 that cannot be embedded into (([0, 1]P)Z, shift).

1. INTRODUCTION

In this paper we study the problem of embedding a dynamical system (X, T") (a compact
metric space X with a homeomorphism 7' : X — X) into (([0,1)P)%,0). Here D is a
positive integer, and o : ([0, 1]P)% — ([0, 1]P)Z is the shift transformation: o(x), = 1.
“Embedding” means a topological embedding f : X — ([0, 1])% satisfying fT = o f.

An obvious obstacle for the embedding of a dynamical system (X, T') into (([0,1]P)Z, o)
is given by the set of periodic points of X: if the set Peri,(X,T) of periodic points of
period n cannot be topologically embedded into [0, 1]P™ for some n, then (X, T) cannot
be embedded into (([0, 1]P)%, o) (an expanded discussion of this obstruction can be found
in Gutman [4, Example 1.8].) When X has finite topological dimension Jaworski [6] (see
also Auslander [1, Chapter 13, Theorem 9]) proved that if (X, T") has no periodic points
then (X, T) can be embedded into the system ([0, 1]%, ). Our main concern in this paper
is the case of (X,T") minimal.

Mean dimension (denoted mdim(X,T')) is a natural invariant of dynamical systems
introduced by Gromov [3]. It is zero for finite dimensional systems, and is equal to D for
the dynamical system (([0, 1]P)%, o). Weiss and the first named author observed in [8] that
mean dimension gives another, less obvious obstacle for embedding a dynamical system
in another: namely, if (X, T") can be embedded into the system (Y, S) then mdim(X,T") <
mdim(Y; S). In particular, if (X, T') can be embedded in (([0, 1]”)%, ¢) then mdim(X,T) <
D. A construction of a minimal dynamical system (which in particular has no periodic
points) whose mean dimension is greater than 1 is given in [8, Proposition 3.3]; it follows
that this system cannot be embedded into ([0,1]% o) despite the fact that it has no
periodic points.

Date: August 9, 2013.
2010 Mathematics Subject Classification. 37TB99, 54F45.

Key words and phrases. Mean dimension.
Masaki Tsukamoto was supported by Grant-in-Aid for Young Scientists (B) (21740048). Elon Linden-

strauss acknowledges the support of the ISF and ERC.
1



2 E. LINDENSTRAUSS, M. TSUKAMOTO

In [7] the first named author proved a partial converse to above necessary criterion for

embeddedability of a dynamical system in (([0,1]”)%, o):

Theorem 1.1. There exists a positive number ¢ > 1/36 satisfying the following: If a
dynamical system (X, T') is an extension of an infinite minimal system and mdim(X,T) <
cD, then (X, T) can be embedded into the system (([0,1]°)%, o).

This raises the interesting problems of determining the optimal value of the positive
constant ¢ in the above statement.

Recall the following classical result in dimension theory ([5, p. 56, Theorem V 2|): If
X is a compact metric space with dim X < D, then X can be topologically embedded
into [0, 1]*P*1. This motivates the following conjecture:

Conjecture 1.2. Let (X,T) be a dynamical system so that for every n we have that
L dim(Peri, (X, T)) < D/2 and mdim(X,T) < D/2. Then (X,T) can be embedded into
the system (([0,1]P)%, o).

The main result of this paper is the following.

Theorem 1.3. Let D be a positive integer. There exists a minimal system (X, T) with
mdim(X,T) = D/2 but (X, T) cannot be embedded into the system (([0,1]P)%, o).

This theorem shows that if Conjecture 1.2 is true then the condition mdim(X,7") < D/2

is optimal.

Acknowledgments. We thank Gil Kalai for the reference to A. B. Skopenkov’s paper

[10] and Matousek’s book [9]. These references were the starting point for this work.

2. SOME PRELIMINARIES

2.1. Review of mean dimension. We review the basic definitions of mean dimension;
cf. Gromov [3] and Lindenstrauss-Weiss [8] for more details. Let (X,d) be a compact
metric space. Let Y be a topological space, and let f : X — Y be a continuous map.
For a positive number ¢, we call f an e-embedding if we have Diamf~!(y) < ¢ for all
y € Y. We define Widim,. (X, d) as the minimum integer n > 0 such that there exist an n-
dimensional polyhedron (a topological space admitting a structure of simplicial complex)
P and an e-embedding f : X — P. The following example (cf. Gromov [3, p. 332]) will
be used later; for a proof, see [8, Lemma 3.2]:

Example 2.1.
Widim, ([0, 1]V, dp=) = N, (0<e< 1),

where dy~ is the (>*-distance: dy~(z,y) = max; |z; — y;|.

We also note the following lemma:
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Lemma 2.2. Let (X,d) and (Y,d') be compact metric spaces. Suppose that there is a
continuous distance-increasing map from X to'Y. Then Widim.(X,d) < Widim.(Y,d')
foralle > 0. (A map f: X — Y is distance-increasing if d(z,y) < d(f(x), f(y)) for all
r,ye X.)

Proof. It f : X — Y is distance-increasing and g : ¥ — P is an c-embedding, then
go f: X — P is also an e-embedding. 0

Let T : X — X be a homeomorphism. For an integer n > 0, we define a distance d,
on X by d,(z,y) = maxg<;<, d(T'x, T'y). We define the mean dimension mdim(X,T) by

mdim(X, T) — lim (lim W1d1m€(X, dn)) |

e—0 \ n—oo n

The function n — Widim, (X, d,) is subadditive. Hence the above limit exists. The mean
dimension mdim (X, T) is a topological invariant, i.e., it is independent of the choice of a
distance d compatible with the topology. The fundamental example is the following (for
the proof, see [8, Proposition 3.3]):

Example 2.3. Let D be a positive integer. Consider the D-dimensional unit cube [0, 1]7.
Let ([0, 1]7)Z be the infinite product of the copies of [0, 1] indexed by Z with the product
topology. Let o : ([0, 1]2)Z — ([0, 1]P)Z be the shift transformation: o(z), = z,11. Then

mdim(([0, 1]”)%, o) = D.

In section 3, we use a “block-type” system. This type of construction was used in the
context of mean dimension by Weiss and the first named author in [8, Proposition 3.5]
and by Coornaert-Krieger [2]. Let K be a compact metric space, and let b be a positive
integer. Let B C K° be a closed subset. We define a block-type system X (B) C K% by

X(B):={r € K¥ 3k e€ZVI €Z: 2} € B}

where 7', = (T, Tmi1s - -, n) for m < n. Let 0 : X(B) — X(B) be the shift transfor-

mation.

Lemma 2.4.
dim B
mdim(X (B), o) < ”21 .
Proof. Let d be a distance on K. We define a distance d’ on K%, compatible with the
product topology, by

d(z,y) = Z 27 Md(z,, yn).

neZ

For £ > 0, we take a positive integer L = L(e) satisfying >_,, ./ 27Inl < ¢/Diam(K). For

points z,y € K% satisfy m,(x) = m,(y), then d,(z,y) < €.
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We decompose X (B): X(B) = XoU X, U---UX,_; where
X, ={re K¥VI€Z  «iT*"" " € B}.

By definition,
ndim B

b

where const is a positive constant independent of n. Recall the Sum Theorem in dimension

+ const

theory [5, p. 30]: if a compact metric space Y is a countable or finite union of closed sets
Y; then dim Y = max; dimY;. Applying this theorem to the sets X; we obtain

dim 7, (X(B)) < "dm B

+ const.

Since 7, : X(B) — m,(X(B)) is an e-embedding,

Widim, (X(B), d.) < dimm,(X(B)) < ~4m8

mdim(X (B), o) = lim ( lim Vidim(X(B), d’n)>

+ const.

Hence
dim B
T

IN

e—0 \ n—oo n

O

2.2. Topological preliminaries. First we fix some notations. For a topological space X
we define its cone C(X) by C(X) :=[0,1] x X/ ~ where (0,z) ~ (0,y) for all z,y € X.
The equivalence class of (¢, z) is denoted by [tz]. We set 0,,_1 to be the (n—1)-dimensional
simplex

Op—1 = {(tl,...,tn) GRn|t1,...,tn >0t 4+---+t,= 1}
For topological spaces X1, ..., X, we define their join X; *--- % X, by

Xt Xy, =01 X Xy X X X,/ ~
where (t1,...,tn, T1, ... @n) ~ (S1,- oy Sny Y1y -+ Ypn) iff
ti=s (V1<i<n) and z; =vy; (V1 <1< n satisfying t; # 0).

The equivalence class of (t1,...,t,, 21, ..., z,) is denoted by ty21®- - - Bt x,. If Xq,..., X,
admit the structure of a simplicial complex, so does X7 * - -+ x X, in a canonical way.

Let Y be the triod graph, i.e. the graph of the shape “Y”. (Rigorous definition is
as follows. Let D3 be the 3-points discrete space, and set Y := C(Dj3): the cone of Ds.)
Let d be the graph distance on Y (all three edges have length one). Let n be a positive
integer, and let dyp< be the *®-distance on Y": dy=(x,y) := max; d(z;,y;). It is known
that Y™ cannot be topologically embedded into R?*~!. A proof of this result based on
the Borsuk-Ulam theorem can be found in A.B. Skopenkov [10, pp. 287-288], and more
general results on the problem of embedding products of graphs into the Euclidean spaces
in M. Skopenkov [11]. The purpose of this subsection is to prove an e-embedding version
of the above result:
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Proposition 2.5. For any 0 < € < 1, there does not exist an e-embedding from (Y™, dy)
to R?n1,

It is likely this proposition is known to some specialists. The proof below is an appli-
cation of the method in Matousek’s book [9, Chapter 5]; probably it also follows from the
method of [10].

The most important ingredient of the proof is the following form of the Borsuk-Ulam
theorem [9, p. 23, (BU2a)]: There does not exist a Zy-equivariant continuous map from
S™ to S"L. Here Zy = Z/27Z, and it acts on S™ by the antipodal map.

Let K be a (geometric) simplicial complex; in this subsection we consider only finite
simplicial complexes. For a point x € K we denote by supp(x) the simplex of K containing
x in its relative interior. Let K*? := K x K be the join of the two copies of K, and define
the deleted join K32 C K*? by

KR = {(1—t)ay ® tay|0 <t < 1,2y, 29 € K, supp(zy) N supp(a) = 0},

By convention, for any x € K both & 0 and 0 @ z are contained in K}2. The group
Zs freely acts on this space by (1 — )z @ txy + toy & (1 — t)x;. For example, (D3)3 is
Zs-homeomorphic to S?.

The following fact is easy to prove (see [9, 5.5.2 Lemmal): Let K and L be simplicial
complexes. Then we have a Zy-homeomorphism:

(1) (K« L) =~ K32« L2,

(In the right-hand-side, Z, acts on K3* and L%’ simultaneously.) The following lemma is
proved in [9, 5.5.4 Lemma].

Lemma 2.6. Set

1 1

Zo acts on R, as in the above. Then there is a Zo-equivariant continuous map from R,
to S™.

Following Skopenkov [11, p. 193], we shall make use of the following fact:

Lemma 2.7. Let K and L be simplicial complexes, and CK and CL be their cones. Then
there is a homeomorphism f : CK x CL — C(K x L) such that for any simplex A C
C(K x L) its preimage f~Y(A) is a union of (at most two) sets of the form Ay X Ay (A,
Ay are simplexes of CK, CL respectively). Here we use the natural simplicial complex

structures of CK, CL and C(K * L).
Proof. Take a homeomorphism

0 :[0,1] x [0,1] = {(S,T)|S>0,T>0,S+T <1}, (s,t)—(S,T),
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such that o({s = 0}) = {S =0}, p({t = 0}) = {T =0} and p({s = 1} U {t = 1}) =
{S+T =1}. Let p,p,p” be the base point of the cones C(K * L), C(K), and C(L), so
that we may identify C'(K * L) with {p} * K * L (and similarly for p/, p"” and C(K),C(L)).
We define f: CK x CL — C(K x L) ={p} « K % L by

f(sz],[ty) =(1=S—-T)p@ Sxd Ty, (0<s,t<1,¢(s,t)=(S,T),x€ K,ye€L).

From p({s =0}) = {S =0} and o({t = 0}) = {T' = 0}, the map f is well-defined. Since
¢ is a homeomorphism, so is f. If A is a simplex in C'(K) (which we identify with the
appropriate simplex in C'(K * L)), then f~'(A) = A x {p"} and similarly for A c C(L),
fHA) = {p'} x A. Otherwise, A C C(K * L) may either contain p in which case it has
the form C'(A; * Ay) or it does not in which case it has the form A; x Ay with A} C K
and Ay C L. In the first case, f~1(C(A; x Ay)) = C(A;) x C(Ay) whereas in the second

FHAL* Ay) = C(A1) x Ay UA; x C(Ay).
0

Proof of Proposition 2.5. Y = C(D3). By iterated applications of Lemma 2.7, there is a
homeomorphism f : Y™ — C((D3)*) =: K such that for any simplex A C K its preimage
f7Y(A) is a union of sets of the form Ay x ---x A, (Ay,..., A, are simplexes of Y). This
property implies: if z,y € K satisfy supp(z) Nsupp(y) = 0 then dp (f~(z), f~1(y)) > 1.
(Note that the distance between two disjoint simplexes of Y is greater than or equal to 1.)

Suppose that there is an e-embedding ¢ : (Y™, dps) — R?"7! for 0 < ¢ < 1. Then for
any two points z,y € K with supp(x) Nsupp(y) = 0 we have p o f~1(z) # po f71(y).
Then we can define a Z,-equivariant continuous map from the deleted join K32 to Ra, 1
(defined in Lemma 2.6) by (1 —t)z &ty — (1 —t)po f~H(z) ®tpo f~'(y). Hence by
Lemma 2.6 there is a Zs-equivariant continuous map from K32 to S?"~!. On the other
hand, we have the following Z,-homeomorphisms:

K32 = ({p}  (Da)™)2 2 ({ph)2 « (Do)} 2 5 (51)7 = 57,

Here we have used the identification of K = C((D3)*") with the join of (Ds)*" with a
one-point space {p}, the identity (1), as well as the Zy-homeomorphisms ({p})3 = S°,
(D3)R2 =2 St and S' % ™ = SHm+L Therefore we conclude that there is a Zy-equivariant

continuous map from S?* to S**~!. But this contradicts the Borsuk-Ulam theorem. [J

3. PROOF OF THE MAIN THEOREM

The construction of X below is based on Lindenstrauss-Weiss [8, pp. 10-11]. Let YV
be the triod graph. Let D be a positive integer, and set K := Y”. Let d be the graph
distance on Y, and let dy be the ¢>*-distance on K = Y? introduced in Section 2.2. We
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define a distance on KZ by
dist(z,y) := 22_|n|d[oo<xn, Yn)-
neZ

Let 0 : K% — K% be the shift transformation.
Fix a sequence of rational numbers p, (n > 1) such that

o0

1
2 1—pp)==, 0<p,<1.
(2) L[l( Pa) =5 p
We will construct the following three objects satisfying the conditions (i)-(iv) below:

e A decreasing sequence of closed shift-invariant subsets of K?:
KZ:XODX13X23X3D...7 X:ﬂXn
n=0

e A sequence of integers:
O=ay<bp<ar<b<---<a,<b, <api1 <byy1 <....

e Closed subsets B,, C K’ (n > 1).
(i) ap =0 and by = 1. p, = a, /b, (n >1). b, | byy1 and b, | a,.1. Moreover

(3) by, <2H(1—pk)—1)%oo as n — 00.

k<n
(ii) X, is the block-type space defined by B,:
X,={x e K*|3k € ZVI € Z: x )" """ € B, }.
By, = K and X, = KZ.
(iii) We define a decreasing sequence Z = Ip D Iy D I D ... by
I, ={r€Z|V0<k<n,35€{0,1,...,bp —ar — 1} : x = jmod by }.

We identify K% with K {01201} “andlet 7, : Kb — K{0L2-:bn=1N\In he the projection.
Then there is x(n) € K{®12bn=1\n gych that B, = 7, (z(n)) (n > 1). The sequence
{z(n)},>1 satisfies the following compatibility condition: If k € {0,1,2,...,b,41—1}\ L1
and k¥ € {0,1,2,...,b, — 1} \ I, satisfy k& = ¥ modb,, then z(n + 1), = x(n). This
condition is equivalent to By1 C By, X By X --- X B, (and hence X, 11 C X,,).

-~

bn+1/bn
(iv) For any @,y € X,, (n > 1) there is k € Z satisfying dist(c*(x),y) < 27"
From the condition (iv) it easily follows that the system (X, o) is minimal. Set I :=
N~y I, C Z. From the condition (i), for n < m, by|ay,, by, and hence b, < by, — @y, S0
In{0,1,2,...;b,— 1} =1,n{0,1,2,...,b, — 1}. For each n > 1,

bn - Un
Lot N{0,1,2, ... by — 1}| = “b—a“unm{o,l,z...,bn — 1}
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Hence
1040,1,2,... b, — 1} =L, {0,1,2,... b, — 1} = b, [ J(1 = pr)-
k=1
Lemma 3.1. Under the above conditions, for any n > 1, there is a continuous distance-
increasing map from (Y PorIlE=(=p6) d,0) to (X, disty, ).

Proof. We have Y Pbnllizi(=pr) — [I{01.2,.0n=1}  Rix a point p € K. We define a map
K012 =1} X' by mapping each @ € K!M012:00=1} 6 the point 2/ € X defined
by

T, (keInd{0,1,2,...,b, —1})
=< x(m)y (Gm>1,3K €{0,1,2,...,by — 1} \ I, : k¥ = kmod b,,)
p (otherwise).

From the compatibility condition on {z(m)}, this map is well-defined. We can easily

check that this is continuous and distance-increasing. (]
Lemma 3.2. mdim(X,0) = D/2.

Proof. We have dim B,, = D|I,, N {0,1,2,...,b, —1}| = Db, [[}_,(1 — p). From Lemma
2.4,

mdim(X, o) < mdim(X,,,0) < H 1 — pi).

Letting n — oo and using (2), we get the upper bound mdlm(X, o) < D/2. On the other
hand, from Lemma 3.1, for 0 < e < 1,

Widim, (X, dist Widim, (Y Pbr [Te=1(1=P8) | 0 n

k=1

Here we have used Example 2.1 and the fact that the space (Y20 Ik=1(0-7%) d,0.) contains
([0, 1)PPn ITes1(0=P8) dy0). Letting n — 0o and € — 0, we get mdim(X, o) > D/2. O

Lemma 3.3. (X,0) cannot be embedded into (([0,1]”)% o).

Proof. Suppose that there is an embedding f from (X, o) into (([0,1]P)% o). Take a
distance d’ on ([0, 1]”)%. There exists € > 0 such that if d'(f(z), f(y)) < e then dist(z,y) <
1/2. Since f commutes with the shift transformations, for every N > 1, if two points
x,y € X satisfy dy(f(x), f(y)) < e then disty(x,y) < 1/2. We can take a positive integer
L = L(g) such that if two points x,y € ([0,1]P)% satisfy x, = y, for =L < n < L then
d'(z,y) < e. Then, for every N > 1, if two points =,y € ([0, 1]P)Z satisfy z, = y, for
—L <n < N+ L then dy(z,y) <e.

Let m_znir) ¢ ([0,112)2 — ([0,1)P){=L=L4LN+L} he the natural projection. Then
the map 7z nip o f 1 (X, disty) — ([0, 1]P) 7L L4 NFLY becomes a 1/2-embedding.
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Using Lemma 3.1, we conclude that for any n > 1 there exists a 1/2-embedding from
(Y PorIlima(0=Pk) o) to [0, 1]PGn+2L4D)  Then Proposition 2.5 implies

D(b, + 2L +1) Hl—pk

hence b,(2][;_,(1 —px) — 1) < 2L 4 1 which for n large contradicts (3). O

The last problem is to define X,,, a,, b, and B,,. (Recall that we fixed rational numbers
pn satisfying (2).) We construct them by induction. First we set X, := K%, ay := 0,
by := 1, By := K. Suppose that we have constructed X,, a,, b,, B,. Since block-type
systems are topologically transitive, there is € X,, whose orbit is dense in X,,. We can

assume that x”’"“’”_l

€ B, for all integers [.
Take a positive integer L such that for any z € X, there is k € [—L, L] satisfying
dist(c*(z),z) < 27"2. We take a positive even integer a,,; > b, sufficiently large so

that

o b, | (an41/2).
® a,.1 > L. (441 > 2L+2n+10 will do. But the precise estimate is not important. )
e There is a positive integer b,1 such that b, < b,i1, by | bus1, Pns1 = Any1/bni1,

b1 (2 H (1—pk)—1> >n+ 1.

k<n+1

and

Then a,1 and b, satisfy the condition (i).
We define B,,,; C K"+ as the set of z € K+ satisfying

plbn+bn—1 . b1 /21
lb : Bn <VZ E Z Wlth 0 S l < bn+1/bn>, {lenii_an-‘—l = xtia‘:,i/l/2 :
Here a7, = (¥m, Tm41;- .-, @) for m < nand @ = (20, 21,...,24,,,-1) € K"+, Let

X,41 be the block-type system defined by B, (condition (ii)). From the definition of
Z and a,41 > L, the system X, satisfies the condition (iv). We define xz(n + 1) €
K012 bna=I\ s (see the condition (iii)) by

x(n) (k" €{0,1,2,...,b, — 1} \ I, : k = kK" mod b,)
r(n+1) =<
xkfb,b+1+an+1/2 (anrl — Ap+41 S k S bn+1 - 1)
Since we assume xfﬁ”“’" ' € B, for all integers [, this is well-defined. (When n = 0, we

set £(1)r = Tp—py4a,/2 for by —ay <k < by —1.) We can easily check that the condition
(iii) is satisfied. This completes the proof of Theorem 1.3.
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