MEAN DIMENSION AND AN EMBEDDING PROBLEM: AN EXAMPLE

ELON LINDENSTRAUSS, MASAKI TSUKAMOTO

ABSTRACT. For any positive integer D, we construct a minimal dynamical system with mean dimension equal to D/2 that cannot be embedded into $(([0,1]^D)^{\mathbb{Z}}, \text{shift})$.

1. Introduction

In this paper we study the problem of embedding a dynamical system (X, T) (a compact metric space X with a homeomorphism $T: X \to X$) into $(([0,1]^D)^{\mathbb{Z}}, \sigma)$. Here D is a positive integer, and $\sigma: ([0,1]^D)^{\mathbb{Z}} \to ([0,1]^D)^{\mathbb{Z}}$ is the shift transformation: $\sigma(x)_n = x_{n+1}$. "Embedding" means a topological embedding $f: X \to ([0,1]^D)^{\mathbb{Z}}$ satisfying $fT = \sigma f$.

An obvious obstacle for the embedding of a dynamical system (X,T) into $(([0,1]^D)^{\mathbb{Z}},\sigma)$ is given by the set of periodic points of X: if the set $\operatorname{Peri}_n(X,T)$ of periodic points of period n cannot be topologically embedded into $[0,1]^{Dn}$ for some n, then (X,T) cannot be embedded into $(([0,1]^D)^{\mathbb{Z}},\sigma)$ (an expanded discussion of this obstruction can be found in Gutman [4, Example 1.8].) When X has finite topological dimension Jaworski [6] (see also Auslander [1, Chapter 13, Theorem 9]) proved that if (X,T) has no periodic points then (X,T) can be embedded into the system $([0,1]^{\mathbb{Z}},\sigma)$. Our main concern in this paper is the case of (X,T) minimal.

Mean dimension (denoted $\operatorname{mdim}(X,T)$) is a natural invariant of dynamical systems introduced by Gromov [3]. It is zero for finite dimensional systems, and is equal to D for the dynamical system $(([0,1]^D)^{\mathbb{Z}},\sigma)$. Weiss and the first named author observed in [8] that mean dimension gives another, less obvious obstacle for embedding a dynamical system in another: namely, if (X,T) can be embedded into the system (Y,S) then $\operatorname{mdim}(X,T) \leq \operatorname{mdim}(Y,S)$. In particular, if (X,T) can be embedded in $(([0,1]^D)^{\mathbb{Z}},\sigma)$ then $\operatorname{mdim}(X,T) \leq D$. A construction of a minimal dynamical system (which in particular has no periodic points) whose mean dimension is greater than 1 is given in [8, Proposition 3.3]; it follows that this system cannot be embedded into $([0,1]^{\mathbb{Z}},\sigma)$ despite the fact that it has no periodic points.

Date: August 9, 2013.

²⁰¹⁰ Mathematics Subject Classification. 37B99, 54F45.

Key words and phrases. Mean dimension.

Masaki Tsukamoto was supported by Grant-in-Aid for Young Scientists (B) (21740048). Elon Lindenstrauss acknowledges the support of the ISF and ERC.

In [7] the first named author proved a partial converse to above necessary criterion for embeddedability of a dynamical system in $(([0,1]^D)^{\mathbb{Z}}, \sigma)$:

Theorem 1.1. There exists a positive number $c \geq 1/36$ satisfying the following: If a dynamical system (X,T) is an extension of an infinite minimal system and $\operatorname{mdim}(X,T) < cD$, then (X,T) can be embedded into the system $(([0,1]^D)^{\mathbb{Z}},\sigma)$.

This raises the interesting problems of determining the optimal value of the positive constant c in the above statement.

Recall the following classical result in dimension theory ([5, p. 56, Theorem V 2]): If X is a compact metric space with dim $X \leq D$, then X can be topologically embedded into $[0,1]^{2D+1}$. This motivates the following conjecture:

Conjecture 1.2. Let (X,T) be a dynamical system so that for every n we have that $\frac{1}{n}\dim(\operatorname{Peri}_n(X,T)) < D/2$ and $\min(X,T) < D/2$. Then (X,T) can be embedded into the system $(([0,1]^D)^{\mathbb{Z}},\sigma)$.

The main result of this paper is the following.

Theorem 1.3. Let D be a positive integer. There exists a minimal system (X,T) with $\operatorname{mdim}(X,T) = D/2$ but (X,T) cannot be embedded into the system $(([0,1]^D)^{\mathbb{Z}},\sigma)$.

This theorem shows that if Conjecture 1.2 is true then the condition $\operatorname{mdim}(X,T) < D/2$ is optimal.

Acknowledgments. We thank Gil Kalai for the reference to A. B. Skopenkov's paper [10] and Matoušek's book [9]. These references were the starting point for this work.

2. Some preliminaries

2.1. Review of mean dimension. We review the basic definitions of mean dimension; cf. Gromov [3] and Lindenstrauss-Weiss [8] for more details. Let (X, d) be a compact metric space. Let Y be a topological space, and let $f: X \to Y$ be a continuous map. For a positive number ε , we call f an ε -embedding if we have $\operatorname{Diam} f^{-1}(y) \leq \varepsilon$ for all $y \in Y$. We define $\operatorname{Widim}_{\varepsilon}(X, d)$ as the minimum integer $n \geq 0$ such that there exist an n-dimensional polyhedron (a topological space admitting a structure of simplicial complex) P and an ε -embedding $f: X \to P$. The following example (cf. Gromov [3, p. 332]) will be used later; for a proof, see [8, Lemma 3.2]:

Example 2.1.

$$\operatorname{Widim}_{\varepsilon}([0,1]^N, d_{\ell^{\infty}}) = N, \quad (0 < \varepsilon < 1),$$

where $d_{\ell^{\infty}}$ is the ℓ^{∞} -distance: $d_{\ell^{\infty}}(x,y) = \max_{i} |x_i - y_i|$.

We also note the following lemma:

Lemma 2.2. Let (X,d) and (Y,d') be compact metric spaces. Suppose that there is a continuous distance-increasing map from X to Y. Then $\mathrm{Widim}_{\varepsilon}(X,d) \leq \mathrm{Widim}_{\varepsilon}(Y,d')$ for all $\varepsilon > 0$. (A map $f: X \to Y$ is distance-increasing if $d(x,y) \leq d(f(x),f(y))$ for all $x,y \in X$.)

Proof. If $f: X \to Y$ is distance-increasing and $g: Y \to P$ is an ε -embedding, then $g \circ f: X \to P$ is also an ε -embedding.

Let $T: X \to X$ be a homeomorphism. For an integer $n \ge 0$, we define a distance d_n on X by $d_n(x,y) = \max_{0 \le i < n} d(T^i x, T^i y)$. We define the mean dimension $\operatorname{mdim}(X,T)$ by

$$\operatorname{mdim}(X,T) := \lim_{\varepsilon \to 0} \left(\lim_{n \to \infty} \frac{\operatorname{Widim}_{\varepsilon}(X,d_n)}{n} \right).$$

The function $n \mapsto \operatorname{Widim}_{\varepsilon}(X, d_n)$ is subadditive. Hence the above limit exists. The mean dimension $\operatorname{mdim}(X, T)$ is a topological invariant, i.e., it is independent of the choice of a distance d compatible with the topology. The fundamental example is the following (for the proof, see [8, Proposition 3.3]):

Example 2.3. Let D be a positive integer. Consider the D-dimensional unit cube $[0,1]^D$. Let $([0,1]^D)^{\mathbb{Z}}$ be the infinite product of the copies of $[0,1]^D$ indexed by \mathbb{Z} with the product topology. Let $\sigma:([0,1]^D)^{\mathbb{Z}}\to([0,1]^D)^{\mathbb{Z}}$ be the shift transformation: $\sigma(x)_n=x_{n+1}$. Then

$$\operatorname{mdim}(([0,1]^D)^{\mathbb{Z}},\sigma) = D.$$

In section 3, we use a "block-type" system. This type of construction was used in the context of mean dimension by Weiss and the first named author in [8, Proposition 3.5] and by Coornaert-Krieger [2]. Let K be a compact metric space, and let b be a positive integer. Let $B \subset K^b$ be a closed subset. We define a block-type system $X(B) \subset K^{\mathbb{Z}}$ by

$$X(B) := \{ x \in K^{\mathbb{Z}} | \exists k \in \mathbb{Z} \, \forall l \in \mathbb{Z} : x_{k+lb}^{k+lb+b-1} \in B \}$$

where $x_m^n = (x_m, x_{m+1}, \dots, x_n)$ for $m \leq n$. Let $\sigma : X(B) \to X(B)$ be the shift transformation.

Lemma 2.4.

$$\operatorname{mdim}(X(B), \sigma) \le \frac{\dim B}{h}.$$

Proof. Let d be a distance on K. We define a distance d' on $K^{\mathbb{Z}}$, compatible with the product topology, by

$$d'(x,y) := \sum_{n \in \mathbb{Z}} 2^{-|n|} d(x_n, y_n).$$

For $\varepsilon > 0$, we take a positive integer $L = L(\varepsilon)$ satisfying $\sum_{|n|>L} 2^{-|n|} < \varepsilon/\mathrm{Diam}(K)$. For a positive integer n, let $\pi_n : K^{\mathbb{Z}} \to K^{\{-L,-L+1,\ldots,n+L\}}$ be the natural projection. If two points $x,y \in K^{\mathbb{Z}}$ satisfy $\pi_n(x) = \pi_n(y)$, then $d'_n(x,y) < \varepsilon$.

We decompose X(B): $X(B) = X_0 \cup X_1 \cup \cdots \cup X_{b-1}$ where

$$X_k = \{ x \in K^{\mathbb{Z}} | \forall l \in \mathbb{Z} : x_{k+lb}^{k+lb+b-1} \in B \}.$$

By definition,

$$\dim \pi_n(X_k) \le \frac{n \dim B}{b} + const$$

where const is a positive constant independent of n. Recall the Sum Theorem in dimension theory [5, p. 30]: if a compact metric space Y is a countable or finite union of closed sets Y_i then $\dim Y = \max_i \dim Y_i$. Applying this theorem to the sets X_i we obtain

$$\dim \pi_n(X(B)) \le \frac{n \dim B}{b} + const.$$

Since $\pi_n: X(B) \to \pi_n(X(B))$ is an ε -embedding,

$$\operatorname{Widim}_{\varepsilon}(X(B), d'_n) \le \dim \pi_n(X(B)) \le \frac{n \dim B}{b} + const.$$

Hence

$$\operatorname{mdim}(X(B),\sigma) = \lim_{\varepsilon \to 0} \left(\lim_{n \to \infty} \frac{\operatorname{Widim}_{\varepsilon}(X(B), d'_n)}{n} \right) \le \frac{\dim B}{b}.$$

2.2. **Topological preliminaries.** First we fix some notations. For a topological space X we define its **cone** C(X) by $C(X) := [0,1] \times X / \sim$ where $(0,x) \sim (0,y)$ for all $x,y \in X$. The equivalence class of (t,x) is denoted by [tx]. We set σ_{n-1} to be the (n-1)-dimensional simplex

$$\sigma_{n-1} := \{ (t_1, \dots, t_n) \in \mathbb{R}^n | t_1, \dots, t_n \ge 0, t_1 + \dots + t_n = 1 \}.$$

For topological spaces X_1, \ldots, X_n we define their **join** $X_1 * \cdots * X_n$ by

$$X_1 * \cdots * X_n := \sigma_{n-1} \times X_1 \times \cdots \times X_n / \sim$$

where $(t_1, ..., t_n, x_1, ..., x_n) \sim (s_1, ..., s_n, y_1, ..., y_n)$ iff

$$t_i = s_i \ (\forall 1 \le i \le n)$$
 and $x_i = y_i \ (\forall 1 \le i \le n \text{ satisfying } t_i \ne 0).$

The equivalence class of $(t_1, \ldots, t_n, x_1, \ldots, x_n)$ is denoted by $t_1x_1 \oplus \cdots \oplus t_nx_n$. If X_1, \ldots, X_n admit the structure of a simplicial complex, so does $X_1 * \cdots * X_n$ in a canonical way.

Let Y be the **triod graph**, i.e. the graph of the shape "Y". (Rigorous definition is as follows. Let D_3 be the 3-points discrete space, and set $Y := C(D_3)$: the cone of D_3 .) Let d be the graph distance on Y (all three edges have length one). Let n be a positive integer, and let $d_{\ell^{\infty}}$ be the ℓ^{∞} -distance on Y^n : $d_{\ell^{\infty}}(x,y) := \max_i d(x_i,y_i)$. It is known that Y^n cannot be topologically embedded into \mathbb{R}^{2n-1} . A proof of this result based on the Borsuk-Ulam theorem can be found in A.B. Skopenkov [10, pp. 287-288], and more general results on the problem of embedding products of graphs into the Euclidean spaces in M. Skopenkov [11]. The purpose of this subsection is to prove an ε -embedding version of the above result:

Proposition 2.5. For any $0 < \varepsilon < 1$, there does not exist an ε -embedding from $(Y^n, d_{\ell^{\infty}})$ to \mathbb{R}^{2n-1} .

It is likely this proposition is known to some specialists. The proof below is an application of the method in Matoušek's book [9, Chapter 5]; probably it also follows from the method of [10].

The most important ingredient of the proof is the following form of the Borsuk-Ulam theorem [9, p. 23, (BU2a)]: There does not exist a \mathbb{Z}_2 -equivariant continuous map from S^n to S^{n-1} . Here $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$, and it acts on S^n by the antipodal map.

Let K be a (geometric) simplicial complex; in this subsection we consider only finite simplicial complexes. For a point $x \in K$ we denote by $\operatorname{supp}(x)$ the simplex of K containing x in its relative interior. Let $K^{*2} := K * K$ be the join of the two copies of K, and define the **deleted join** $K_{\Delta}^{*2} \subset K^{*2}$ by

$$K_{\Delta}^{*2} := \{(1-t)x_1 \oplus tx_2 | 0 \le t \le 1, x_1, x_2 \in K, \operatorname{supp}(x_1) \cap \operatorname{supp}(x_2) = \emptyset\}.$$

By convention, for any $x \in K$ both $x \oplus 0$ and $0 \oplus x$ are contained in K_{Δ}^{*2} . The group \mathbb{Z}_2 freely acts on this space by $(1-t)x_1 \oplus tx_2 \mapsto tx_2 \oplus (1-t)x_1$. For example, $(D_3)_{\Delta}^{*2}$ is \mathbb{Z}_2 -homeomorphic to S^1 .

The following fact is easy to prove (see [9, 5.5.2 Lemma]): Let K and L be simplicial complexes. Then we have a \mathbb{Z}_2 -homeomorphism:

$$(1) (K*L)^{*2}_{\Delta} \cong K^{*2}_{\Delta} * L^{*2}_{\Delta}.$$

(In the right-hand-side, \mathbb{Z}_2 acts on K_{Δ}^{*2} and L_{Δ}^{*2} simultaneously.) The following lemma is proved in [9, 5.5.4 Lemma].

Lemma 2.6. Set

$$R_n := (\mathbb{R}^n)^{*2} \setminus \left\{ \frac{1}{2} x \oplus \frac{1}{2} x | x \in \mathbb{R}^n \right\}.$$

 \mathbb{Z}_2 acts on R_n as in the above. Then there is a \mathbb{Z}_2 -equivariant continuous map from R_n to S^n .

Following Skopenkov [11, p. 193], we shall make use of the following fact:

Lemma 2.7. Let K and L be simplicial complexes, and CK and CL be their cones. Then there is a homeomorphism $f: CK \times CL \to C(K*L)$ such that for any simplex $\Delta \subset C(K*L)$ its preimage $f^{-1}(\Delta)$ is a union of (at most two) sets of the form $\Delta_1 \times \Delta_2$ (Δ_1 , Δ_2 are simplexes of CK, CL respectively). Here we use the natural simplicial complex structures of CK, CL and C(K*L).

Proof. Take a homeomorphism

$$\varphi: [0,1] \times [0,1] \to \{(S,T) | S \ge 0, T \ge 0, S + T \le 1\}, \quad (s,t) \mapsto (S,T),$$

such that $\varphi(\{s=0\}) = \{S=0\}$, $\varphi(\{t=0\}) = \{T=0\}$ and $\varphi(\{s=1\} \cup \{t=1\}) = \{S+T=1\}$. Let p,p',p'' be the base point of the cones C(K*L), C(K), and C(L), so that we may identify C(K*L) with $\{p\}*K*L$ (and similarly for p',p'' and C(K), C(L)). We define $f: CK \times CL \to C(K*L) = \{p\}*K*L$ by

$$f([sx], [ty]) := (1 - S - T)p \oplus Sx \oplus Ty, \quad (0 \le s, t \le 1, \varphi(s, t) = (S, T), x \in K, y \in L).$$

From $\varphi(\{s=0\})=\{S=0\}$ and $\varphi(\{t=0\})=\{T=0\}$, the map f is well-defined. Since φ is a homeomorphism, so is f. If Δ is a simplex in C(K) (which we identify with the appropriate simplex in C(K*L)), then $f^{-1}(\Delta)=\Delta\times\{p''\}$ and similarly for $\Delta\subset C(L)$, $f^{-1}(\Delta)=\{p'\}\times\Delta$. Otherwise, $\Delta\subset C(K*L)$ may either contain p in which case it has the form $C(\Delta_1*\Delta_2)$ or it does not in which case it has the form $\Delta_1*\Delta_2$ with $\Delta_1\subset K$ and $\Delta_2\subset L$. In the first case, $f^{-1}(C(\Delta_1*\Delta_2))=C(\Delta_1)\times C(\Delta_2)$ whereas in the second

$$f^{-1}(\Delta_1 * \Delta_2) = C(\Delta_1) \times \Delta_2 \cup \Delta_1 \times C(\Delta_2).$$

Proof of Proposition 2.5. $Y = C(D_3)$. By iterated applications of Lemma 2.7, there is a homeomorphism $f: Y^n \to C((D_3)^{*n}) =: K$ such that for any simplex $\Delta \subset K$ its preimage $f^{-1}(\Delta)$ is a union of sets of the form $\Delta_1 \times \cdots \times \Delta_n$ $(\Delta_1, \ldots, \Delta_n)$ are simplexes of Y). This property implies: if $x, y \in K$ satisfy $\sup(x) \cap \sup(y) = \emptyset$ then $d_{\ell^{\infty}}(f^{-1}(x), f^{-1}(y)) \ge 1$. (Note that the distance between two disjoint simplexes of Y is greater than or equal to 1.) Suppose that there is an ε -embedding $\varphi: (Y^n, d_{\ell^{\infty}}) \to \mathbb{R}^{2n-1}$ for $0 < \varepsilon < 1$. Then for any two points $x, y \in K$ with $\sup(x) \cap \sup(y) = \emptyset$ we have $\varphi \circ f^{-1}(x) \neq \varphi \circ f^{-1}(y)$. Then we can define a \mathbb{Z}_2 -equivariant continuous map from the deleted join K_{Δ}^{*2} to R_{2n-1} (defined in Lemma 2.6) by $(1-t)x \oplus ty \mapsto (1-t)\varphi \circ f^{-1}(x) \oplus t\varphi \circ f^{-1}(y)$. Hence by Lemma 2.6 there is a \mathbb{Z}_2 -equivariant continuous map from K_{Δ}^{*2} to S^{2n-1} . On the other hand, we have the following \mathbb{Z}_2 -homeomorphisms:

$$K_{\Delta}^{*2} = (\{p\} * (D_3)^{*n})_{\Delta}^{*2} \cong (\{p\})_{\Delta}^{*2} * \{(D_3)_{\Delta}^{*2}\}^{*n} \cong S^0 * (S^1)^{*n} \cong S^{2n}.$$

Here we have used the identification of $K = C((D_3)^{*n})$ with the join of $(D_3)^{*n}$ with a one-point space $\{p\}$, the identity (1), as well as the \mathbb{Z}_2 -homeomorphisms $(\{p\})^{*2}_{\Delta} \cong S^0$, $(D_3)^{*2}_{\Delta} \cong S^1$ and $S^l * S^m \cong S^{l+m+1}$. Therefore we conclude that there is a \mathbb{Z}_2 -equivariant continuous map from S^{2n} to S^{2n-1} . But this contradicts the Borsuk-Ulam theorem. \square

3. Proof of the main theorem

The construction of X below is based on Lindenstrauss-Weiss [8, pp. 10-11]. Let Y be the triod graph. Let D be a positive integer, and set $K := Y^D$. Let d be the graph distance on Y, and let $d_{\ell^{\infty}}$ be the ℓ^{∞} -distance on $K = Y^D$ introduced in Section 2.2. We

define a distance on $K^{\mathbb{Z}}$ by

$$\operatorname{dist}(x,y) := \sum_{n \in \mathbb{Z}} 2^{-|n|} d_{\ell^{\infty}}(x_n, y_n).$$

Let $\sigma:K^{\mathbb{Z}}\to K^{\mathbb{Z}}$ be the shift transformation.

Fix a sequence of rational numbers p_n $(n \ge 1)$ such that

(2)
$$\prod_{n=1}^{\infty} (1 - p_n) = \frac{1}{2}, \quad 0 < p_n < 1.$$

We will construct the following three objects satisfying the conditions (i)-(iv) below:

• A decreasing sequence of closed shift-invariant subsets of $K^{\mathbb{Z}}$:

$$K^{\mathbb{Z}} = X_0 \supset X_1 \supset X_2 \supset X_3 \supset \dots, \quad X := \bigcap_{n=0}^{\infty} X_n.$$

• A sequence of integers:

$$0 = a_0 < b_0 < a_1 < b_1 < \dots < a_n < b_n < a_{n+1} < b_{n+1} < \dots$$

- Closed subsets $B_n \subset K^{b_n}$ $(n \ge 1)$.
- (i) $a_0 = 0$ and $b_0 = 1$. $p_n = a_n/b_n$ $(n \ge 1)$. $b_n \mid b_{n+1}$ and $b_n \mid a_{n+1}$. Moreover

(3)
$$b_n\left(2\prod_{k\leq n}(1-p_k)-1\right)\to\infty\quad \text{as } n\to\infty.$$

(ii) X_n is the block-type space defined by B_n :

$$X_n = \{ x \in K^{\mathbb{Z}} | \exists k \in \mathbb{Z} \ \forall l \in \mathbb{Z} : x_{k+lb_n}^{k+lb_n+b_n-1} \in B_n \}.$$

 $B_0 = K$ and $X_0 = K^{\mathbb{Z}}$.

(iii) We define a decreasing sequence $\mathbb{Z} = I_0 \supset I_1 \supset I_2 \supset \dots$ by

$$I_n := \{ x \in \mathbb{Z} | \forall 0 \le k \le n, \exists j \in \{0, 1, \dots, b_k - a_k - 1\} : x \equiv j \bmod b_k \}.$$

We identify K^{b_n} with $K^{\{0,1,2,\dots,b_n-1\}}$, and let $\pi_n: K^{b_n} \to K^{\{0,1,2,\dots,b_n-1\}\setminus I_n}$ be the projection. Then there is $x(n) \in K^{\{0,1,2,\dots,b_n-1\}\setminus I_n}$ such that $B_n = \pi_n^{-1}(x(n))$ $(n \ge 1)$. The sequence $\{x(n)\}_{n\ge 1}$ satisfies the following compatibility condition: If $k \in \{0,1,2,\dots,b_{n+1}-1\}\setminus I_{n+1}$ and $k' \in \{0,1,2,\dots,b_n-1\}\setminus I_n$ satisfy $k \equiv k' \mod b_n$, then $x(n+1)_k = x(n)_{k'}$. This condition is equivalent to $B_{n+1} \subset B_n \times B_n \times \cdots \times B_n$ (and hence $X_{n+1} \subset X_n$).

(iv) For any
$$x, y \in X_n$$
 $(n \ge 1)$ there is $k \in \mathbb{Z}$ satisfying $\operatorname{dist}(\sigma^k(x), y) \le 2^{-n}$.

From the condition (iv) it easily follows that the system (X, σ) is minimal. Set $I := \bigcap_{n=0}^{\infty} I_n \subset \mathbb{Z}$. From the condition (i), for n < m, $b_n | a_m, b_m$ and hence $b_n \leq b_m - a_m$. So $I \cap \{0, 1, 2, \ldots, b_n - 1\} = I_n \cap \{0, 1, 2, \ldots, b_n - 1\}$. For each $n \geq 1$,

$$|I_{n+1} \cap \{0, 1, 2, \dots, b_{n+1} - 1\}| = \frac{b_{n+1} - a_{n+1}}{b_n} |I_n \cap \{0, 1, 2, \dots, b_n - 1\}|.$$

Hence

$$|I \cap \{0, 1, 2, \dots, b_n - 1\}| = |I_n \cap \{0, 1, 2, \dots, b_n - 1\}| = b_n \prod_{k=1}^n (1 - p_k).$$

Lemma 3.1. Under the above conditions, for any $n \ge 1$, there is a continuous distance-increasing map from $(Y^{Db_n}\prod_{k=1}^n(1-p_k), d_{\ell^{\infty}})$ to $(X, \operatorname{dist}_{b_n})$.

Proof. We have $Y^{Db_n}\prod_{k=1}^n(1-p_k)=K^{I\cap\{0,1,2,\dots,b_n-1\}}$. Fix a point $p\in K$. We define a map $K^{I\cap\{0,1,2,\dots,b_n-1\}}\to X$ by mapping each $x\in K^{I\cap\{0,1,2,\dots,b_n-1\}}$ to the point $x'\in X$ defined by

$$x'_{k} := \begin{cases} x_{k} & (k \in I \cap \{0, 1, 2, \dots, b_{n} - 1\}) \\ x(m)_{k'} & (\exists m \ge 1, \exists k' \in \{0, 1, 2, \dots, b_{m} - 1\} \setminus I_{m} : k' \equiv k \mod b_{m}) \\ p & (\text{otherwise}). \end{cases}$$

From the compatibility condition on $\{x(m)\}$, this map is well-defined. We can easily check that this is continuous and distance-increasing.

Lemma 3.2. $mdim(X, \sigma) = D/2$.

Proof. We have dim $B_n = D|I_n \cap \{0, 1, 2, ..., b_n - 1\}| = Db_n \prod_{k=1}^n (1 - p_k)$. From Lemma 2.4,

$$\operatorname{mdim}(X, \sigma) \leq \operatorname{mdim}(X_n, \sigma) \leq D \prod_{k=1}^{n} (1 - p_k).$$

Letting $n \to \infty$ and using (2), we get the upper bound $\operatorname{mdim}(X, \sigma) \le D/2$. On the other hand, from Lemma 3.1, for $0 < \varepsilon < 1$,

$$\frac{\operatorname{Widim}_{\varepsilon}(X,\operatorname{dist}_{b_n})}{b_n} \ge \frac{\operatorname{Widim}_{\varepsilon}(Y^{Db_n}\prod_{k=1}^n(1-p_k),d_{\ell^{\infty}})}{b_n} = D\prod_{k=1}^n(1-p_k).$$

Here we have used Example 2.1 and the fact that the space $(Y^{Db_n}\prod_{k=1}^n(1-p_k), d_{\ell^{\infty}})$ contains $([0,1]^{Db_n}\prod_{k=1}^n(1-p_k), d_{\ell^{\infty}})$. Letting $n \to \infty$ and $\varepsilon \to 0$, we get $\operatorname{mdim}(X,\sigma) \geq D/2$.

Lemma 3.3. (X, σ) cannot be embedded into $(([0, 1]^D)^{\mathbb{Z}}, \sigma)$.

Proof. Suppose that there is an embedding f from (X, σ) into $(([0, 1]^D)^{\mathbb{Z}}, \sigma)$. Take a distance d' on $([0, 1]^D)^{\mathbb{Z}}$. There exists $\varepsilon > 0$ such that if $d'(f(x), f(y)) \le \varepsilon$ then $\operatorname{dist}(x, y) \le 1/2$. Since f commutes with the shift transformations, for every $N \ge 1$, if two points $x, y \in X$ satisfy $d'_N(f(x), f(y)) \le \varepsilon$ then $\operatorname{dist}_N(x, y) \le 1/2$. We can take a positive integer $L = L(\varepsilon)$ such that if two points $x, y \in ([0, 1]^D)^{\mathbb{Z}}$ satisfy $x_n = y_n$ for $-L \le n \le L$ then $d'(x, y) \le \varepsilon$. Then, for every $N \ge 1$, if two points $x, y \in ([0, 1]^D)^{\mathbb{Z}}$ satisfy $x_n = y_n$ for $-L \le n \le N + L$ then $d'_N(x, y) \le \varepsilon$.

Let $\pi_{[-L,N+L]}: ([0,1]^D)^{\mathbb{Z}} \to ([0,1]^D)^{\{-L,-L+1,\dots,N+L\}}$ be the natural projection. Then the map $\pi_{[-L,N+L]} \circ f: (X,\operatorname{dist}_N) \to ([0,1]^D)^{\{-L,-L+1,\dots,N+L\}}$ becomes a 1/2-embedding.

Using Lemma 3.1, we conclude that for any $n \ge 1$ there exists a 1/2-embedding from $(Y^{Db_n}\prod_{k=1}^n(1-p_k), d_{\ell^{\infty}})$ to $[0, 1]^{D(b_n+2L+1)}$. Then Proposition 2.5 implies

$$D(b_n + 2L + 1) \ge 2Db_n \prod_{k=1}^{n} (1 - p_k),$$

hence $b_n(2\prod_{k=1}^n(1-p_k)-1)\leq 2L+1$ which for n large contradicts (3).

The last problem is to define X_n , a_n , b_n and B_n . (Recall that we fixed rational numbers p_n satisfying (2).) We construct them by induction. First we set $X_0 := K^{\mathbb{Z}}$, $a_0 := 0$, $b_0 := 1$, $B_0 := K$. Suppose that we have constructed X_n , a_n , b_n , B_n . Since block-type systems are topologically transitive, there is $\tilde{x} \in X_n$ whose orbit is dense in X_n . We can assume that $\tilde{x}_{lb_n}^{lb_n+b_n-1} \in B_n$ for all integers l.

Take a positive integer L such that for any $x \in X_n$ there is $k \in [-L, L]$ satisfying $\operatorname{dist}(\sigma^k(\tilde{x}), x) \leq 2^{-n-2}$. We take a positive even integer $a_{n+1} > b_n$ sufficiently large so that

- $b_n \mid (a_{n+1}/2)$.
- $a_{n+1} \gg L$. $(a_{n+1} \ge 2L + 2n + 10 \text{ will do. But the precise estimate is not important.})$
- There is a positive integer b_{n+1} such that $b_n < b_{n+1}$, $b_n \mid b_{n+1}$, $p_{n+1} = a_{n+1}/b_{n+1}$, and

$$b_{n+1}\left(2\prod_{k\leq n+1}(1-p_k)-1\right)\geq n+1.$$

Then a_{n+1} and b_{n+1} satisfy the condition (i).

We define $B_{n+1} \subset K^{b_{n+1}}$ as the set of $x \in K^{b_{n+1}}$ satisfying

$$x_{lb_n}^{lb_n+b_n-1} \in B_n \ (\forall l \in \mathbb{Z} \text{ with } 0 \le l < b_{n+1}/b_n), \quad x_{b_{n+1}-a_{n+1}}^{b_{n+1}-1} = \tilde{x}_{-a_{n+1}/2}^{a_{n+1}/2-1}.$$

Here $x_m^n = (x_m, x_{m+1}, \dots, x_n)$ for $m \leq n$ and $x = (x_0, x_1, \dots, x_{b_{n+1}-1}) \in K^{b_{n+1}}$. Let X_{n+1} be the block-type system defined by B_{n+1} (condition (ii)). From the definition of \tilde{x} and $a_{n+1} \gg L$, the system X_{n+1} satisfies the condition (iv). We define $x(n+1) \in K^{\{0,1,2,\dots,b_{n+1}-1\}\setminus I_{n+1}}$ (see the condition (iii)) by

$$x(n+1)_k := \begin{cases} x(n)_{k'} & (\exists k' \in \{0, 1, 2, \dots, b_n - 1\} \setminus I_n : k \equiv k' \bmod b_n) \\ \tilde{x}_{k-b_{n+1}+a_{n+1}/2} & (b_{n+1} - a_{n+1} \le k \le b_{n+1} - 1). \end{cases}$$

Since we assume $\tilde{x}_{lb_n}^{lb_n+b_n-1} \in B_n$ for all integers l, this is well-defined. (When n=0, we set $x(1)_k = \tilde{x}_{k-b_1+a_1/2}$ for $b_1 - a_1 \le k \le b_1 - 1$.) We can easily check that the condition (iii) is satisfied. This completes the proof of Theorem 1.3.

References

- [1] J. Auslander, Minimal flows and their extensions, North-Holland, Amsterdam (1988)
- [2] M. Coornaert, F. Krieger, Mean topological dimension for actions of discrete amenable groups, Discrete Contin. Dyn. Syst. **13** (2005) 779-793

- [3] M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999) 323-415
- [4] Y. Gutman, Embedding \mathbb{Z}^k -actions in cubical shifts and \mathbb{Z}^k -symbolic extensions, Ergodic Theory Dynam. Systems **31** (2011) 383-403
- [5] W. Hurewicz, H. Wallman, Dimension theory, Princeton University Press, Princeton (1941)
- [6] A. Jaworski, Ph.D. Thesis, University of Maryland (1974)
- [7] E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999) 227-262
- [8] E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000) 1-24
- [9] J. Matoušek, Using the Borsuk-Ulam theorem, Lectures on topological methods in combinatorics and geometry, Corrected 2nd printing, Springer-Verlag, Berlin Heidelberg (2008)
- [10] A. B. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, Surveys in contemporary mathematics, Cambridge University Press, Cambridge (2008) 248-342
- [11] M. Skopenkov, Embedding products of graphs into Euclidean spaces, Fund. Math. 179 (2003) 191-198

Elon Lindenstrauss

Einstein Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel *E-mail address*: elon@math.huji.ac.il

Masaki Tsukamoto

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan *E-mail address*: tukamoto@math.kyoto-u.ac.jp