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Abstract. We consider measures on locally homogeneous spaces Γ\G which

are invariant and have positive entropy with respect to the action of a single

diagonalizable element a ∈ G by translations, and prove a rigidity statement
regarding a certain type of measurable factors of this action.

This rigidity theorem, which is a generalized and more conceptual form

of the low entropy method of [Lin2, EKL] is used to classify positive entropy
measures invariant under a one parameter group with an additional recurrence

condition for G = G1 × G2 with G1 a rank one algebraic group. Further

applications of this rigidity statement will appear in forthcoming papers.
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1. Introduction

A well known problem in modern dynamics is to classify measures invariant
under natural partially hyperbolic algebraic Zd and Rd-actions for d ≥ 2. The sim-
plest example is Furstenberg’s Conjecture regarding the classification of probability
measures on R/Z invariant under a nonlacunary multiplicative subgroup of Z× (e.g.
the group generated by ×2 and ×3).

A slightly more sophisticated class of systems exhibiting the same type of phe-
nomenology is the action of multidimensional R-diagonalizable groups H on a lo-
cally compact space Γ\G where G is an algebraic group over R. A prototypical
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example of such an action is the action of the subgroup of n× n-diagonal matrices
of SL(n, R) on SL(n, Z)\SL(n, R). This particular example is linked to several open
problems in number theory, including — as pointed out by Margulis — a conjecture
by Littlewood regarding simultaneous Diophantine approximations. It is natural to
expand the class of systems we are considering by working over more general local
fields instead of R, as well as considering products of linear groups over several dif-
ferent fields. In particular, the case where G is an S-algebraic group, i.e. a product
of linear groups over R or p-adic fields appears naturally in applications (see e.g.
[Lin2, EKl]).

So far, all of the progress regarding classifying invariant measures in such sys-
tems has been under the additional assumption of positive entropy; a prototypical
example are the theorems of Rudolph and Johnson which state that a probability
measure µ on R/Z invariant and ergodic under the action of a nonlacunary mul-
tiplicative semigroup either has zero entropy with respect to any single element of
the acting semigroup or is Lebesgue.

In the locally homogeneous context, work by Katok, Spatzier, and Kalinin
[KS, KaS] required additional assumptions regarding the mixing properties of the
invariant measure, assumptions which are very hard to verify in many applications.

One method which overcomes this problem in the locally homogeneous context
— the high entropy method — has been introduced by M. E. and A. Katok. This
method is inherently based on having non-proportional Lyapunov exponents and
hence indeed an action of a multidimensional group. It moreover requires the
restriction of the measure to leaves of two different (and transverse) foliations of the
space by orbits of two distinct noncommuting unipotent subgroups be nontrivial,
and in particular requires more than just positive entropy for one element of the
action. Initially it was developed only for actions of R-split Cartan subgroups
of R-split simple algebraic groups [EK1], but has been generalized to essentially
an action of an arbitrary two-dimensional diagonalizable subgroup of S-algebraic
groups in [EK2].

A different method, the low entropy method, has been introduced by E.L. in
[Lin2], and subsequently used in conjunction with the high entropy method in our
paper with A. Katok in [EKL]. It is this method that we set to generalize in this
paper. In essence, it is not about the action of a multiparameter diagonalizable
group but about a single parameter group, and gives a subtle restriction on the rich
and rather wild class of probability measures invariant under such a one parameter
group.

We remark that in all currently known approaches to measure classification in
the locally homogeneous context, including both the low entropy and the high
entropy method as well as [KS] and implicitly even in [Rud2], the notion of leafwise
measures (which are also known as restricted measures or conditional measures
along the leaves of a foliation) play a central role. Very generally, whenever we
have a reasonable action of a locally compact group U on a locally compact(1) space
X, and for any locally finite measure µ on X, we can obtain a system of leafwise
measures µU

x which can be viewed as a map from X to the space of locally finite
measures on U satisfying certain compatibility relations (see Section 3 for details).
In the context of classifying measures invariant under diagonalizable actions, one is

(1)We implicitly assume that all locally compact spaces are also σ-compact.
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mostly concerned with leafwise measures on orbits of one or more unipotent groups
normalized by the action.

In [Lin2] (as well as [EKL]) essential use was made of ideas used by Ratner in her
study of unipotent flows, and particularly from her earlier work on the horocyclic
flow [Ra2, Ra1, Ra3]. Superficially, the measure classification results of [Lin2, EKL]
have little in common with these results of Ratner. But as shown below, our main
theorem can be interpreted as a theorem about factors of non-measure preserving
actions, reminiscent of Ratner’s factor rigidity theorem [Ra1].

To present our main result, we need the following:

Definition 1.1. Let X be a locally compact metric space with a Borel probability
measure µ, let H be a locally compact metric group acting continuously and locally
free on X. We denote the action by h.x for h ∈ H and x ∈ X. Let φ : X → Y be
a measurable map to a Borel space Y . Then φ is locally H-aligned modulo µ (or
simply locally H-aligned if µ is understood) if for every ε > 0 and neighborhood
O 3 e in H there exists X ′ ⊂ X with µ(X ′) > 1− ε and some δ > 0 such that for
every x ∈ X ′

(1.1) {x′ ∈ X ′ : φ(x′) = φ(x)} ∩Bδ(x) ⊂ O.x.

In other (less precise) words, φ is locally H-aligned modulo µ if up to a set of
negligible µ measure, the level set φ(x) = c are locally contained in a single H-orbit.

Another notion we will need is recurrence, and more specifically relative to a
Borel map φ.

Definition 1.2. With the notations of Definition 1.1:
(i) µ is H-recurrent if for every set B of positive µ-measure and a.e. x ∈ B the

set {h ∈ H : h.x ∈ B} is unbounded (i.e. has non-compact closure).
(ii) µ is H-transient if for every ε > 0 there is a set B ⊂ X with µ(B) > 1− ε

so that for every x ∈ B the set {h ∈ H : h.x ∈ B} is bounded.
(iii) µ is H-recurrent relative to φ if for every set B of positive µ-measure and

a.e. x ∈ B

(1.2) {h ∈ H : h.x ∈ B and φ(x) = φ(h.x)}
is unbounded.

(iv) µ is H-transient relative to φ if for every ε > 0 there is a set B ⊂ X with
µ(B) > 1−ε so that for every x ∈ B the set of return times (1.2) is bounded.

Finally, we will need the following standard definition(2). For any Borel space
X, Y , etc. we let X ,Y, . . . denote the corresponding Borel σ-algebra.

Definition 1.3. Let X and Y be Borel spaces, H a locally compact group acting
(Borel measurably) on both X and Y , and µ a Borel probability measure on X. A
Borel map φ : X → Y is a factor map modulo µ for H if there is a set X ′ ⊂ X of
full µ-measure so that for every pair x, h.x ∈ X ′ (h ∈ H)

φ(h.x) = h.φ(x).

The space X we consider will be of the from Γ\G where G is either a Lie group
or an S-algebraic linear group, and Γ < G a discrete subgroup. By an S-algebraic
linear group we mean a finite product of linear algebraic groups Gσ defined over

(2)The notion of factor is standard, but perhaps less so in the context of actions on measure
spaces which do not even preserve the measure class.
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various local fields Kσ for σ ∈ S (where we allow repetitions). Unless otherwise
stated, Kσ may have any characteristic (which may even depend on σ). An S-
algebraic group will be said to be of characteristic zero if all of the fields Kσ are
such.

For a Lie group G we will use g to denote its Lie algebra, and similarly for
algebraic groups over a field with zero characteristic. We extend the conventional
definition of g, log, Ad more generally as follows:

• if G =
∏

σ∈S Gσ is an S-algebraic group of fields of zero characteristic,
we let gσ denote the Lie algebra of Gσ and g =

∏
σ∈S gσ, and extend the

definitions of log and Ad in the obvious way (component by component).
• in the case where at least one of the fields Kσ has positive characteristic, it

will be useful to use a more generalized notion(3): for every σ ∈ S we take gσ

to be some (more or less arbitrary) vector space over Kσ, equipped with a
homeomorphism log from a neighborhood of e ∈ Gσ into a neighborhood Ωσ

of 0 in some algebraic subvariety Ω̄Z
σ of gσ containing zero, with log(e) = 0.

We take Ad to be a linear representation of G on g so that

Ad(g)[log(h)] = log(ghg−1) whenever both sides are defined.

We can now again define g =
∏

σ∈S gσ and extend log and Ad to g in the
obvious way; also let Ω =

∏
σ Ωσ.

We will say that an element a = (aσ) in an S-algebraic group G is diagonalizable
if Ad(aσ) is diagonalizable over the respective field of definition Kσ at every σ ∈ S.
We say a is of class A if additionally(4) (i) for every σ, if λ, λ′ are eigenvalues of
Ad(aσ) with |λ|σ = |λ′|σ then λ = λ′, (ii) for every σ, if λ is an eigenvalue of
Ad(aσ) with |λ|σ = 1 then λ = 1, (iii) for some σ the map Ad(aσ) has at least one
eigenvalue of absolute value > 1 and at least one with absolute value < 1. If G is
a Lie group we say that a ∈ G is diagonalizable if Ad(a) is diagonalizable over R
and that it is class A if all the eigenvalues are positive, at least one is > 1 and at
least one is < 1.

We fix some class A element a ∈ G, and let g− (and similarly g+) denote
the subspace of g (in the S-algebraic case, the

⊕
σ∈S Kσ-submodule) generated

by all eigenspaces of Ad(a) corresponding to eigenvalues of absolute value < 1
(respectively, > 1). We let g0 denote the eigenspace(s) of Ad(a) for the eigenvalue
1. We will also need the related groups

(1.3)

G− = {g ∈ G : anga−n → e for n →∞},
G+ = {g ∈ G : anga−n → e for n → −∞},
G0 = CG(a).

Note that log is a continuous injective map from a neighborhood of e ∈ G− to a
neighborhood of 0 ∈ g−, and similarly for G+, G0.

Let U < G be a closed group which is (i) normalized by a, (ii) U ≤ G−. If G is
an S-algebraic group, we assume further that (iii) U is a direct product of Zariski

(3)While Lie algebras make perfect sense over any field, there is no reasonable log function
defined on a neighborhood of the identity e ∈ Gσ to the Lie algebra. Since we do want to use
a map to a linear space — still called the log, we need to loosen the definition of Lie algebra

accordingly (see Section 6.1).
(4)This is somewhat more general than the notion of class A elements used by Tomanov and

Margulis in [MT2].
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closed unipotent subgroups Uσ of Gσ for σ ∈ S and (iv) Ad restricted to Uσ is an
algebraic representation (this is automatic in the zero characteristic case, but needs
to be assumed explicitly in the more general context). When we talk about Zariski
closed subgroups of U we always mean direct products of Zariski closed subgroups
of Uσ for σ ∈ S (even if two algebraic groups for different elements of S are over
the same field). If G is a (not necessarily algebraic) Lie group, we can still consider
U as an algebraic group over R since log(·) and exp(·) can be extended to give
bijections between U and its Lie algebra which we can consider as an affine space.
Moreover, Zariski closed subgroups of U are precisely the subgroups closed and
connected with respect to the Hausdorff topology.

Theorem 1.4 (Main Theorem). Suppose X = Γ\G, a ∈ G, and U < G are
as above, with G a Lie group or an S-algebraic group, g its “Lie algebra” in the
generalized sense considered above, and a of class A . Let µ be an a-invariant
U -recurrent measure on X, and let φ : X → Y be a factor map modulo µ for the
action of the group aZU . Assume that

(Φ) the map x 7→ µU
x is φ−1(Y)-measurable,

(U-1) for almost every x there is no a-normalized Zariski closed proper subgroup
of U supporting µU

x ,
(U-2) for all nonzero w ∈ g+, it holds that Ad(U)[w] 6⊂ g+ ⊕ g0.

Then µ is the convex combination of two a-invariant measures µ1 and µ2 such that:
(LE-1) φ is locally CG(U) ∩G0-aligned modulo µ1

(LE-2) µ2 is CG(U) ∩G−-recurrent relative to φ.

Note that in the case of an ergodic measure, the above establishes one of the
properties (LE-1) or (LE-2) must hold for µ. A particularly interesting case for
the factor map φ is the map x 7→ µU

x (or more precisely the map taking x to the
equivalence class of µU

x under proportionality, which determines µU
x — see Section

3 for more details). This is, for instance, the choice of φ used in the proof of
Theorem 1.5 below.

The above theorem generalizes the low entropy method developed by E.L. in
[Lin2] and extended in a joint paper of the authors with A. Katok [EKL]. While
the main outline of the proof remains the same, the general case considered here
requires several new ideas. The main new difficulty is that unlike the case in
[Lin2, EKL] the group U need not be one dimensional — indeed, it may be a
pretty general nilpotent group. This requires careful analysis of the structure of
the leafwise measure of µU

x . Another novelty is the extraction of an abstract form
of the low entropy method — which is essentially a rigidity statement regarding a
one parameter diagonalizable flow(5). We note that in the terminology of [EKL]
the possibility (LE-1) corresponds to exceptional returns. Moreover, the condition
(LE-2) satisfied by µ2 implies in many cases, just as in [Lin2] and [EKL], that
µ2 has further invariance properties under groups generated by unipotents, which
allows one to use the powerful tools from the theory of unipotent flows such as
Ratner’s measure classification theorem [Ra4] to study the ergodic components of
µ (or more precisely µ2).

(5)Note that even the additional recurrence condition which was present in [Lin2] as a weak

substitute for additional invariance is not explicitly used, though implicitly additional invariance

or recurrence is needed to find a suitable factor map for which both (LE-1) and (LE-2) convey
meaningful information.
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Note that by decomposing µ and by passing to an algebraic subgroup if necessary,
it is always possible to reduce to the case that U satisfies (U-1). Assumption (U-2)
however is a substantial assumption which seems fairly difficult to remove. As the
applications below show it is mild enough to allow us to apply our main theorem in
many contexts, e.g. it is always satisfied if G is semisimple and U = G−. However
there certainly are interesting cases where Theorem 1.4 cannot be applied because
of it. A simple example of a situation where Theorem 1.4 is not applicable is when

G = SL(3, R), a =

t 0 0
0 1 0
0 0 t−1

 and U the one-dimensional unipotent subgroup1 s 0
0 1 0
0 0 1

 of G since in this case w =

0 0 0
0 0 0
0 1 0

 is an element of g+ which

is invariant under Ad(U). On the other hand, for the same a and G the group

U ′ =

1 0 s
0 1 0
0 0 1

 does satisfy (U-2) of Theorem 1.4.

The low entropy method was originally developed in [Lin2] to study measures
on Γ\SL(2, R)×SL(2, Qp), Γ an irreducible lattice such as SL(2, Z[1/p]), which are
invariant under the diagonal subgroup of SL(2, R) and recurrent under the action
of the group SL(2, Qp). Such measures arise naturally when one studies how Hecke
Maass forms on Γ\H are distributed. As a relatively straightforward application
of our main theorem we prove the following generalization of [Lin2, Theorem 1.1]
to products G = G1 × G2 where G1 is a general (zero characteristic) rank one
semisimple algebraic group. Theorem 1.4 can also be used to study this question
in the positive characteristic case, but as this involves some complications we defer
the positive characteristic case to a later paper.

Recall that if G1 is a Kσ-rank one semisimple algebraic group defined over a
local field Kσ, if A1 < G1 is a maximal Kσ-split torus then the centralizer CG1(A1)
is a reductive group with a nontrival Kσ-character χ; if we set M1 = kerχ then M1

is compact (cf. [PR, Thm. 3.1, pg. 108]) and A1M1 is of finite index in CG1(A1).
We recall that an orbit of a group H on Γ\G is called periodic if it supports

a finite H-invariant measure; a measure on Γ\G is called homogeneous if it is the
unique H-invariant probability measure on a periodic H-orbit.

Theorem 1.5. Let G = G1 ×G2 where G1 is a semisimple linear algebraic group
over a characteristic zero local field Kσ with Kσ-rank 1 and G2 is a zero characteris-
tic S-algebraic group. Let Γ ⊂ G be a discrete subgroup. Let A1 be a Kσ-split torus
of G1 and let χ be a nontrivial Kσ-character of A1 that can be extended to CG(A1).
Let M1 = {h ∈ CG(A1) : χ(h) = 1}. Let µ be an A1-invariant, G2-recurrent prob-
ability measure on Γ\G such that

(1) almost every A1-ergodic component of µ has positive ergodic theoretic en-
tropy with respect to some a ∈ A1 with |χ(a)|σ 6= 1 and

(2) for µ-a.e. x the group

{h ∈ M1 ×G2 : h.x = x}
is finite.

Then µ is a convex combination of homogeneous measures. Each of these homge-
neous measures is supported on an orbit of a subgroup H which, after restriction of
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scalars(6) to a a local subfield Fσ, contains a finite index subgroup of a semisimple
algebraic subgroup of G1 of Fσ-rank one.

In case of characteristic zero considered here the subfield Fσ of Kσ can be taken
to be R resp. Qp.

This theorem for the characteristic zero case has been announced(7) in [EL2,
Thm. 2.9]. Condition (1) regarding entropy is due to limitations of our techniques
(as well as any other technique known in this context) to deal with zero entropy
measures. We expect a similar theorem to hold without it, but the proof of such
a theorem is well beyond the reach of current technology. Condition (2) on the
other hand is essential: as explained in Section 8, if it fails very little information is
conveyed by the fact that µ is G2-recurrent, and without this recurrence condition
it is well-known that there is an abundance of a-invariant measures on X.

There is also a straightforward analog for Lie groups:

Theorem 1.6. Let G = G1 ×G2 where G1 is a rank 1 semisimple Lie group with
finite center and G2 is any Lie group. Let Γ ⊂ G be a discrete subgroup. Let
a ∈ G be of class A, and let M1 be a maximal compact subgroup of G0

1. Let µ be
an a-invariant, G2-recurrent probability measure on Γ\G such that

(1) almost every a-ergodic component of µ has positive ergodic theoretic entropy
and

(2) for µ-a.e. x the group

{h ∈ M1 ×G2 : h.x = x}
is finite.

Then µ is a convex combination of a-ergodic and invariant homogeneous measures.

The proof is very similar to that of Theorem 1.5 and is left to the reader.

Further applications of Theorem 1.4 will appear in subsequent papers, in partic-
ular:

(1) A partial classification of A-invariant and ergodic probability measures on
quotients of S-algebraic groups G where A is a maximal S-split torus in G,
which generalizes the results from [EKL] (see [EL2, §2] for more details).
Here we have to assume positive entropy and have to allow the possibility
that the measure is supported on an orbit of a subgroup which allows a rank
one factor (which is the situation occuring in certain examples constructed
by M. Rees [Ree] and their generalizations).

(2) A full classification of joinings for the actions of higher rank S-split tori
on quotients of S-algebraic groups by lattices which do not have (global)
rank one factors. This generalizes the result of [EL1] (where it was assumed
that the action had no local rank one factors, i.e. all simple factors of the
groups involved had rank ≥ 2) to the general case of S-algebraic groups

(6)More formally: If G1 is the algebraic group defined over Kσ whose group of Kσ-points equals

G1 = G1(Kσ), then H as in the theorem contains a finite index subgroup L(Fσ)◦ of some algebraic

semisimple subgroup L < ResKσ/Fσ
G1 defined over Fσ . The groups L(Fσ)◦ are in an appropriate

sense the connected component of L(Fσ) containing e (this is literally true in the Archimedean
case). See Section 8.1–8.2 for more details.

(7)The statement given in [EL2] is inaccurate: the assumption |Γ ∩ {e} ×G2| < ∞ given there

is insufficient for a general rank one group G1 and needs to be replaced with the assumption (2)
of Theorem 1.5.



8 MANFRED EINSIEDLER AND ELON LINDENSTRAUSS

where the quotients do not allow rank one factors. An example of a case
which has local rank one factors but no (global) rank one factors and whose
analysis requires the use of Theorem 1.4 is the classification of self-joinings
of the action of a maximal R-split torus A on Γ\SL(R)× SL(R) with Γ an
irreducible lattice.
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employed by Clay Mathematics Institute (CMI) as Research Fellow and Research
Scholar respectively. This support was extremely helpful and is much appreciated.
We also thank the NSF for its support.

We dedicate this paper, which is a culmination of a long period of intensive work,
to two giants in the field — Gregory Margulis and Marina Rather.

2. Outline of the proof of the main theorem

In this section we give a sketch of the proof of the following slightly weaker
version of Theorem 1.4:

Theorem 2.1. Under the assumptions of Theorem 1.4, at least one of the following
two possibilities holds:
(LE-1′) φ is locally CG(U)-aligned modulo µ
(LE-2′) µ is not CG(U) ∩G−-transient relative to φ.

For convenience we let

H = CG(U) H− = H ∩G− H0 = H ∩G0

here and throught the proof of Theorems 1.4 and 2.1.
To see that Theorem 2.1 is indeed a weaker form of Theorem 1.4, suppose µ =

tµ1 +(1− t)µ2 for t ∈ [0, 1], µ1 satisfying (LE-1) and µ2 satisfying (LE-2). If t = 1,
i.e. µ = µ1, by (LE-1) we have that φ is H0-aligned modulo µ, and so in particular
H-aligned and µ satisfies (LE-1′). If t < 1 the H−-recurrence of µ2 relative to φ
implies that µ is not H−-transient relative to φ, and µ satisfies (LE-2′). In the
Section 4 we will show how to deduce the formally stronger Theorem 1.4 from
Theorem 2.1.

We also note that condition (LE-2′) above is equivalent in this context to the
following statement (see Corollary 4.4):

(LE-2′′) Every subset X0 ⊂ X of full measure contains two distinct points x, y with
H−.x = H−.y and φ(x) = φ(y).

As we have mentioned in the introduction, our proof borrows heavily ideas from
Ratner’s papers [Ra2, Ra1, Ra3]. A fundamental observations there is the follow-
ing(8): for a unipotent subgroup U < G and two nearby points x, y the fastest
divergence (shearing) of u.x, u.y for u ∈ U is along H = CG(U). Furthermore, this
divergence is a polynomial function of u. This (together with the pointwise ergodic
theorem, and using Lusin theorem) eventually leads to the statement that any U -
invariant and ergodic probability measure µ is stabilized by the fastest divergence

(8)The papers [Ra2, Ra1, Ra3] are written for G = SL(2, R); these results where generalized

by D. Witte-Morris in [Mor]. We also note that the polynomial nature of unipotent actions is
central in G. A. Margulis’ proof of nondivergence of unipotent trajectories [Mar].
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direction of two nearby (sufficiently typical) points. In [Ra3] Ratner extracts an
axiomatic version of the properties of U -action used in her proof and calls a system
satisfying these properties an H-flow. This property of unipotent actions is also
referred to as Ratner’s H-property.

The low entropy method, also uses the above mentioned polynomial divergence.
However, now the measure µ is not assumed to be invariant under a unipotent group.
Instead we will assume invariance under a ∈ G, and use in a crucial way the leafwise
measures µU

x . A basic property of these leafwise measures is that µU
x is the Haar

measure on U a.s. if and only if µ is U -invariant — the case considered by Ratner.
The assumption (U-1) of Theorem 1.4 that there is a.s. no a-normalized Zariski
closed proper subgroup of U supporting µU

x can be viewed as a week substitute to
U -invariance, which when coupled with invariance under a, is still sufficient for us
to make effective use the shearing properties of the U -flow (cf. D. Rudolph’s paper
[Rud1] for another use of a similar idea).

We will have to study these leafwise measures and their properties quite carefully
in Section 3 and Section 6 below; but for the purposes of this section the main
property we shall use is that the map that sends x ∈ X to µU

x is essentially a
factor map modulo µ for the action of the group aZU in the sense of Definition 1.3
— more precisely: (i) the map that takes x to the equivalence class [µU

x ] of the
measure µU

x under proportionality is a measurable map from X to a compact space
PM∗

∞(U) of equivalence classes of locally finite measures on U satisfying a certain
growth condition, (ii) this map is a factor map modulo µ and moreover (iii) the
equivalence class [µU

x ] determines µU
x a.s.

Let φ : X → Y be a factor map modulo µ as in Theorem 1.4; since Y is a
(standard) Borel space we can (and will) endow Y with the structure of a locally
compact metric space. Assume in contradiction to Theorem 2.1 that the factor map
φ is not locally H-aligned modulo µ but the measure µ is H−-transient relative to φ.

By Lusin’s theorem we can find a large compact set K ⊂ X on which φ is
continuous. Then for any n0 and for most x we have that µU

x -most u ∈ a−n0BU
1 an0

satisfy u.x ∈ K, where BU
1 denote the unit ball around e ∈ U . If φ is not locally

H-aligned, we can find two distinct nearby points x, y not on the same local H-orbit
with φ(x) = φ(y) (and hence by condition (Φ) of Theorem 1.4, µU

x = µU
y ) so that

for µU
x -most u ∈ a−n0BU

1 an0 both u.x and u.y are in K. If we chose K to also
be a subset of the conull set on which φ behaves nicely, then φ(u.x) = φ(u.y) for
any such u. If u is additionally of the right size and sufficiently generic — because
of the polynomial divergence property an element not too close to certain varieties
will do — u.x and u.y differ approximately by some bounded nontrivial element of
H− (i.e. an element belonging to some fixed compact set in H− \ {e}). We will
choose n0 such that sufficiently generic u ∈ a−n0BU

1 an0 satisfy this.
However, the two conditions on u ∈ a−n0BU

1 an0 above

• u is µU
x -typical inside a−n0BU

1 an0 and
• u is algebraically sufficiently generic

might not be compatible since a priori we do not know how µU
x is distributed

on a−n0BU
1 an0 . In other words, the leafwise measure µU

x could give almost all of
the mass of a−n0BU

1 an0 to a small neighborhood of some subvariety of U . Since
µU

x = aµU
a.xa−1 (this follows form x 7→ [µU

x ] being a factor map for a; cf. (LM-5) in
Section 3.1) this property of µU

x is equivalent to µU
an0 .x assigning almost all of the

mass of BU
1 to a small neighborhood of some subvariety of U .
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Using the assumption (U-1) of Theorem 1.4, namely that U is the smallest Zariski
closed a-normalized subgroup of U supporting µU

x a.s., we will show in Section 6 that
for most points z this does not happen for µU

z . But an0 .x might be an exception,
since we have very little control on its position (n0 was dictated to us by algebraic
considerations)!

To avoid that problem we will replace x and y by xk = ak.x and yk = ak.y for
some k. This changes the relative position of the two points and so the size of u for
which u.xk and u.yk have the right distance from each other. Let nk be such that
sufficiently generic u ∈ a−nkBU

1 ank have that property. Since φ is a factor map for
aZU , we still have φ(xk) = φ(yk). Again we need to ask how the leafwise measure
µU

xk
restricted to a−nkBU

1 ank , or equivalently, µU
ank .xk

restricted to BU
1 looks like.

Here ank .xk = ank+k.x, and it will be crucial to study nk as a function of k (as we
will do in Section 7). For if nk + k = n0 we are still asking about the properties of
the point an0 .x. However, if nk + k is changing, we have a chance for choosing k
such that ank .xk is generic enough so that µU

ank .xk
has good properties. This will

happen precisely when the direction of maximal shear between u.x and u.y is not
along G0, and our technical assumption (U-2) on a ∈ G and U < G is used to
ensure this does not happen. When choosing k, we also want to make sure that
xk and yk are still close together (since we want to use the polynomial divergence
of U to separate them). It turns out that in order to ensure xk and yk are still
close together we need to be able to control the g+ component of the difference
between x and y in terms of the shearing “time” n0 - which will again follow from
our technical assumption (U-2).

Using now the polynomial divergence of the action of U we will find u ∈ a−nkBU
1 ank

such that two things happen at once: u.xk, u.yk ∈ K and these two points differ
approximately by some nontrivial element of H−. The construction makes sure
that φ(u.xk) = φ(u.yk). Choosing the original two points x, y ever closer together,
going to the limit, and using continuity of φ inside K, the argument above shows
that every set of sufficiently high measure contains two points of the same H-orbit,
establishing (LE-2′′), and hence showing that µ is not transient relative to φ.

3. Leafwise measures along orbits and their properties

3.1. Basic properties of leafwise measures. Let A be a countably generated
σ-algebra of Borel sets in a locally compact metric space X. For any x ∈ X the
atom [x]A of x is defined to be the intersection of all elements A of A that contain
x.

Any countably generated σ-algebra A gives a system of conditional measures
µAx with each such measure supported by the respective atom [x]A and the map
x 7→ µAx is A-measurable. For any f ∈ L1

µ,

(3.1) Eµ(f |A)(x) =
∫

f dµAx for a.e. x

and this equation determines µAx up to a set of measure zero.
Suppose now that U is a locally compact group acting continuously on X, and

let µ be a probability measure on X so that the action of U on X is free outside a
µ-null set.
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We recall that a countably generated σ-algebra A is said to be subordinate(9) to
U if for µ-a.e. x, there is some δ > 0 so that

(3.2) BU
δ .x ⊂ [x]A ⊂ BU

δ−1 .x.

A countably generated σ-algebra A is subordinate to U on Y if Y ∈ A and (3.2)
holds for µ-a.e. x ∈ Y .

The foliation of X into orbits of U also allows us to define a system of leaf-
wise measures for this foliation. Despite the similar notation, this construction is
quite different from the conditional measures for a countably generated σ-algebra
discussed above. It would be most convenient to us, following [Lin2] to view the
leafwise measures as a Borel measurable map x 7→ µU

x from X to the space M∞(U)
of locally finite Borel measures on U . We use the weak∗ topology on M∞(U), i.e.
the coarsest topology for which ρ 7→

∫
U

f(y) dρ(y) is continuous for every compactly
supported continuous f . For any two measures ν1 and ν2 on U we write ν1 ∝ ν2 if
ν2 and ν2 are proportional, i.e. ν1 = Cν2 for some C > 0.

While the equivalence class with respect to proportionality of µU
x is defined in

a pretty canonical way, the exact representative is chosen in a fairly arbitrary
way: indeed, in [Lin2] by demanding that µU

x (BU
1 ) = 1 (so, in particular, the ∝

equivalence class [µU
x ] determines the measure µU

x ).
We recall the basic properties of leafwise measures for leaves of a foliation (see

[Lin2, Sect. 3] for details); in the following X ′ is an appropriately chosen subset of
X of full µ-measure:
(LM-1) The map x 7→ µU

x ∈M∞(U) is measurable.
(LM-2) For every x ∈ X ′ and u ∈ U with u.x ∈ X ′, we have that µU

x ∝ (µU
u.x)u,

where (µU
u.x)u denotes the push forward of the measure µU

u.x under the map
v 7→ vu.

The following two properties uniquely determine the µU
x :

(LM-3) For every x ∈ X ′ we have µU
x (BU

1 ) = 1, and µU
x (BU

ε ) > 0 for every ε > 0.
(LM-4) For any Y ⊂ X, for every σ-algebra A subordinate to U on Y and a.e. x ∈ Y

the probability measure µAx is proportional to µU
x .x|[x]A .(10)

If, like in our case we have a larger group G > U acting on X, and the measure
µ is preserved under the action of an element a in the normalizer NG(U) of U in
G, we furthermore have that:(11)

(LM-5) For x ∈ X ′ we have a.x ∈ X ′ and µU
a.x ∝ a(µU

x )a−1.
The space M∞(U) is not locally compact. However, in most cases, and in par-

ticular in the case at hand here where X = Γ\G, U < G a unipotent subgroup, and
µ a measure on X invariant under the action of an element a ∈ G contracting U ,
one can impose an a priori growth condition on the measures µU

x of the form

(3.3)
∫

U

ρ(u) dµU
x (u) < ∞

for some strictly positive function ρ on U (see Proposition 3.9 below). The space
M∗
∞(U) of locally finite measures on U which satisfy (3.3) (for an implicitly fixed

(9)Note that implicitly this notion also depends on the measure µ.
(10)More formally: define Vx ⊂ U by Vx.x = [x]A (this can be done for a.e. x by definition

of subordinate σ-algebra). Then µAx is proportional to the push forward of µU
x |Vx under the map

u 7→ u.x.
(11)We think of a as fixed, and in particular the choice of X′ is allowed to be dependent on a.
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function ρ) is a nice locally compact space (and so in particular is a standard Borel
space). Another advantage with working with M∗

∞(U) is that the space PM∗
∞(U) of

equivalence classes of measures in M∗
∞(U) under proportionality can also be given

the structure of a locally compact metric space by choosing from each equivalence
class [ν] the representative according to which the integral of ρ is 1.

With Proposition 3.9 in mind, (LM-1)–(LM-2) can be summarized as saying that
the map x 7→ [µU

x ] is a factor map for U in the sense of Definition 1.3, where U acts
on PM∗

∞(U) by right translations. Property (LM-5) shows that this map is in fact
a factor map for the action of a bigger group — the solvable group generated by U
and a (where a act on PM∗

∞(U) by taking an equivalence class of measures [ν] to
its push forward under the map u 7→ aua−1).

Leafwise measures along U -orbits convey much information about how the mea-
sure interacts with the action of the group U . In particular, we have the following:

Lemma 3.1. Let U be a locally compact group acting continuously on a locally
compact metric space X. Suppose that µ is a locally finite measure on X and that
the action of U is free outside a µ-null set. Then:

(1) µ is U -recurrent iff for µ-a.e. x the leafwise measure µU
x is an infinite

measure;
(2) µ is U -transient if and only if for µ-a.e. x the leafwise measure µU

x is a
finite measure;

(3) µ is U -invariant iff for µ-a.e. x the leafwise measure µU
x is left Haar mea-

sure;
(4) more generally, µ is L-invariant for L < U iff for µ-a.e. x the leafwise

measure µU
x is left L-invariant.

For proof of (1) and (2) see [Lin2, Prop. 4.1]; (3) is proved in [Lin2, Prop. 4.3];
the same proof also gives (4) (we leave the details to the reader).

The following useful property is not explicitly stated in [Lin2, Sect. 3], but is
an immediate corollary of the construction there (again, we leave the proof to the
reader):

Lemma 3.2. Let U be a closed subgroup of a locally compact group V . Assume
that V acts continuously on a locally compact metric space X, that µ is a locally
finite measure on X and that the action of V is free outside a µ-null set. Assume
moreover that for µ-a.e. x, the measure µV

x is supported on U . Then, identifying
M∞(U) as a subspace of M∞(V ) in the obvious way(12),

µV
x ∝ µU

x for µ-a.e. x.

3.2. An almost subordinate σ-algebra and some consequences. We will
be mostly considering the leafwise measures µU

x for U a unipotent group as in
Theorem 1.4 normalized and contacted by a, where µ is an a-invariant probability
measure on X = Γ\G. This setting simplifies some of the aspects of the study of
these leafwise measures.

The results we present in this vain here are fairly standard, and related results
can be found e.g. in [LS, LY1, LY2], and were adapted to the locally homogeneous
setting in [MT1, Sect. 9]. In particular, we quote the following:

(12)I.e. via the push forward under the identity map U ↪→ V .
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Proposition 3.3 ([MT1, Prop 9.2]). Let G be a Lie group or a product of linear
groups over various local fields, let a ∈ G be diagonalizable, and let Γ < G be a
discrete subgroup. Let G− be the contracting horospheric subgroup of a as above.
Let µ be an a-invariant and ergodic probability measure on X = Γ\G. Then there
is a countably generated σ-algebra A such that

(1) A is a-decreasing (i.e. a−1A ⊂ A),
(2) A is subordinate to G− (i.e. for a.e. x (3.2) holds).
(3) hµ(a) = Hµ(A | a−1A).

We remark that Margulis and Tomanov considered only fields of zero charac-
teristic; however, the proof carries through also to the positive characteristic con-
text. For an explicit treatment of both the zero and the positive characteristic case
see [EL3].

It would be convenient in Section 5.2 to be able to work with a given (non-
ergodic) a-invariant measure µ without passing first to ergodic components. For
this will give the following (simpler) variant of Proposition 3.3:

Proposition 3.4. Let G be a Lie group or a product of linear groups over various
local fields, let a ∈ G be diagonalizable, and let Γ < G be a discrete subgroup. Let µ
be an a-invariant probability measure on X = Γ\G. Let U < G− be an a-normalized
and contracted subgroup. For every ε > 0 there exists some R > 1, a measurable
set Q ⊂ X, and a countably generated σ-algebra AU such that

(1) µ(Q) > 1− ε,
(2) AU is a-decreasing,
(3) for a.e. x ∈ Q the AU -atom [x]AU

of x satisfies BU
1 .x ⊂ [x]AU

⊂ BU
R .x.

In particular, if µ is ergodic, this σ-algebra will be U -subordinate, since for
almost every x there will be some n ≥ 0 for which an.x ∈ Q and hence

[x]A ⊂ [x]a−nA = a−n[anx]A ⊂ a−nBU
Ran.x.

Similarly since a.s. a−n′ .x ∈ Q for some n′ ≥ 0

[x]A ⊃ [x]an′A = an′ [a−n′x]A ⊃ an′BU
1 a−n′ .x.

Proposition 3.3.(3) implies the following regarding AU :

Lemma 3.5. Let G, a, Γ, U < G− be as above, and let µ be a-invariant and ergodic.
Let AU be a countably generated U -subordinate σ-algebra. Then Hµ(AU |a−1AU ) ≤
hµ(a).

Proof. Let
Iµ(anAU | AU )(x) = − log(µAU

x ([x]anAU
));

note that for any x, n this value is nonnegative. Moreover,

(3.4) Iµ(an+mAU | AU )(x) = Iµ(amAU | AU )(anx) + Iµ(anAU | AU )(x).

Let I1 = Iµ(aAU | AU ); then by (3.4)

Iµ(anAU | AU )(x) =
n−1∑
k=0

I1(akx).

It follows (using the pointwise ergodic theorem) that

Hµ(AU | a−1AU ) =
∫

I1(x) dµ(x) = lim
n→∞

1
n

Iµ(anAU | AU ).
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Let A be a G−-subordinate σ-algebra as in Proposition 3.3, ε > 0 arbitrarily. By
(3) of that proposition (and the discussion above) a.s. 1

nIµ(anA |A) → hµ(a). The
random variable

Zn =
µAx ([x]anA)

µAU∨A
x ([x]anA)

has expected value 1 for every n. Fix some ε > 0. By Borel-Cantelli and Chebyshev
we have for a.e. x and all n large enough that Zn ≤ exp(εn). Therefore,

lim sup
n→∞

1
n

Iµ(anA | A ∨ AU )(x) = lim sup
n→∞

1
n

(log Zn + Iµ(anA | A))(x)

≤ ε + lim
n→∞

1
n

Iµ(anA | A)(x)

= ε + hµ(a) for µ-a.e. x

Since AU is U -subordinate and A is G−-subordinate we can find δ > 0 small
enough so that on a set Q ⊂ X of measure µ(Q) > 0.99

[x]A ⊂ BG−

δ−1(x) [x]AU
⊃ BU

δ (x)

and let k0 be such that ak0(BG−

δ−1 ∩ U)a−k0 ⊂ BU
δ (x). Since µ(Q) > 0.99, µ(Q ∩

ak0Q) > 0.98. Suppose for some x, anx ∈ Q ∩ a−k0Q. Then

[x]an+k0A ∩ [x]AU
⊂ [x]anAU

,

and

Iµ(an+k0A ∨AU | AU )(x) = Iµ(an+k0A | AU )(x) ≥ Iµ(anAU | AU )(x).

Since µ is ergodic, for µ-a.e. x this will happen infinitely often, hence if µAU
([x]AU∨A) >

0 (which again happens a.e.)

Hµ(AU | a−1AU ) = lim
n→∞

1
n

Iµ(anAU | AU )(x)

≤ lim sup
n→∞

1
n

Iµ(anA | AU )(x)

= lim sup
n→∞

1
n

Iµ(anA | AU ∨ A)(x) ≤ ε + hµ(a).

�

The proof of Proposition 3.4 relies on the following two elementary lemmata:

Lemma 3.6. Let X be some metric space and let µ be a probability measure on
X. Then for any x ∈ X and (Lebesgue-)a.e. r > 0 the set P = Br(x) satisfies
µ(Bρ(P )∩Bρ(X\P )) < Cρ for some constant C = C(x, r) > 0 and every 0 < ρ < r.
Here Bρ(A) =

⋃
x∈A Bρ(x) are all points with distance less than ρ to some point in

a set A ⊂ X. In particular, the boundary ∂P must be a null set.

Proof. Define f(r) = µ(Br(x)). Then clearly f is an increasing function and so for
a.e. r differentiable. Fix one such r and let P = Br(x). Since Bρ(P )∩Bρ(X \P ) ⊂
Br+ρ(x) \Br−ρ(x) this implies for small enough ρ that

µ(Bρ(P ) ∩Bρ(X \ P )) ≤ f(r + ρ)− f(r − ρ) ≤ 2(f ′(r) + 1)ρ.

�
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Lemma 3.7. Let Gσ be a Lie group or a linear algebraic group over a local field Kσ,
let a ∈ G be semisimple, and let Uσ < G−

σ be a closed a-normalized and contracted
subgroup. There exists a left invariant metric dσ(·, ·) on G, a monotone function
f : (0, 1) → R+ with limt→0 f(t) = 0, and a constant χ ∈ (0, 1) such that

(3.5) dσ(anua−n, e) ≤ χnf(dσ(u, e))

for all n ≥ 0 and u ∈ BUσ
1 .

Proof. If G is a Lie group or Kσ is R or C, then we fix some inner product on the
Lie algebra of G and using it define a Riemannian metric dσ(·, ·) on G. Taking
the restriction of the inner product to the Lie algebra of Uσ we get similarly a
Riemannian metric dUσ (·, ·) on Uσ with dσ(·, ·) ≤ dUσ (·, ·) on Uσ. Now define
f(t) = diamUσ (BGσ

t ∩Uσ) to be the diameter of BGσ
t ∩Uσ with respect to dUσ (·, ·).

Since Uσ is closed we have limt→0 f(t) = 0. Finally one checks easily that there
exists some χ < 1 with dUσ

(aua−1, e) ≤ χdUσ
(u, e). This implies the lemma in the

Archimedean case.
For p-adic and positive characteristic fields there always exists a compact and

open subgroup K < Gσ. We then define the left invariant metric on K by averag-
ing any matrix norm dK(k1, k2) =

∫
K
‖k(k1 − k2)‖dk where dk denotes the Haar

measure on K. Without loss of generality we may assume that dK(·, ·) < 1. Now
define dσ(g1, g2) = 1 if g1K 6= g2K and dσ(g1, g2) = d(e, k) if g2 = g1k for some
k ∈ K. That this defines a left invariant metric follows from the left invariance of
dK(·, ·) under K. It is easy to check that for u ∈ Uσ ∩ K there exists χ < 1 and
C > 0 with dσ(anua−n, e) < Cχndσ(u, e). The function f is used to absorb C. �

Proof of Proposition 3.4. By assumption G is a Lie group or a product of linear
groups. Using Lemma 3.7 we get a metric on G also satisfying the conclusion of
Lemma 3.7 for all u ∈ U .

Let K ⊂ X be compact with µ(K) > 1− ε. Choose some r ∈ (0, 1) such that for
every x ∈ K the set B2r(x) is the injective image BG

2r.x of BG
2r ⊂ G. Now choose

for every x ∈ K a ball Brx(x) with rx < r such that the conclusion of Lemma
3.6 holds. Choose finitely many points x1, . . . , x` such that the corresponding balls
form a subcover of K and let P be the partition of X generated by these balls. We
define PU to be the σ-algebra generated by P and the images (A ∩ BG

r ).xi for all
left U -invariant Borel sets A = UA ⊂ G and i = 1, . . . , `. Then PU is countably
generated and for almost every x ∈ K

(3.6) BU
ρ .x ⊂ [x]PU

⊂ BU
R .x

for some ρ > 0 (that is allowed to depend on x) and some fixed R > 0. (The
only points for which this fails are the boundary points of one of the balls in the
construction.) In fact, the construction is such that

(3.7) [x]PU
= ((BG

2r ∩ U).x) ∩ P

for any x that belongs to one of the balls Brxi
(xi) and x ∈ P ∈ P.

We claim that A =
∨∞

n=0 a−nPU also satisfies (3.6) instead of PU for almost
every x ∈ K (but possibly a different ρ). First note that the upper bound carries
over trivially since A ⊃ PU .

Now define for ρ ∈ (0, 1)

∂ρP = {x ∈ X : Bρ(x) 6⊂ P for all P ∈ P}.
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Then by Lemma 3.6 and the construction of P we know

(3.8) µ(∂ρP) ≤ Cρ

for some fixed constant C > 0. Suppose BU
ρ .x 6⊂ [x]A, then there exists n ≥ 0 such

that anBU
ρ .x 6⊂ [anx]PU

. By the properties of the chosen metric

anBU
ρ .x = (anBU

ρ a−n).(an.x) ⊂ BU
χnf(ρ).(a

n.x).

If an.x belongs to P ∈ P, then (3.7) shows (if f(ρ) < 2r) that BU
χnf(ρ).(a

n.x) 6⊂ P

for an.x ∈ P ∈ P. This again implies an.x ∈ ∂χnf(ρ)P and so

x ∈ Eρ =
∞⋃

n=0

a−n∂χnf(ρ)(P).

Since a preserves µ we have µ(Eρ) ≤
∑∞

n=0 Cχnf(ρ) = Cf(ρ)
1−χ by (3.8). Since the

upper bound goes to zero with ρ → 0, we have that almost every x ∈ K satisfies the
claim. More precisely we have shown that BU

ρ .x ⊂ [x]A ⊂ BU
R .x for a.e. x where ρ

depends on x and is such that x ∈ X \ Eρ.
Now choose ρ such that µ(K \ Eρ) > 1 − ε. For large enough m we have

BU
1 ⊂ a−mBU

ρ am and so the set Q = a−m(K \Eρ) and the σ-algebra a−mA satisfy
the claims of the proposition. �

We also quote the following two facts:

Lemma 3.8 ([Lin2, Cor. 5.4]). Let a, U < G−, G, Γ, and X = Γ\G be as in
Proposition 3.4. Let µ be an a-invariant probability measure on X = Γ\G and E0 a
countably generated σ-algebra of a-invariant sets. Then for µ-a.e. x, for µE0

x a.e. y

(µE0
x )U

y = µU
y .

The proof of this lemma follows easily from the well-known fact that for any
a-invariant measurable subset E ⊂ X one can find a G−-invariant set E′ so that
µ(E \E′) = 0 and the properties of leafwise measures discussed in Section 3.1. We
refer the reader to [Lin2] for details.

Proposition 3.9. Again let a, U < G−, G, Γ, and X = Γ\G be as in Proposi-
tion 3.4. Let µ be a a-invariant probability measure on X, and µ =

∫
X

µEx dµ(x) its
ergodic decomposition. Then for µ-a.e. x ∈ X

(1)

Dµ(U, a)[x] = lim
|n|→∞

∣∣log µU
x (anBU

1 a−n)
∣∣

|n|
exists;

(2) Dµ(U, a)[x] ≤ hµEx
(a), with equality holding if U = G− (where hµEx

(a) de-
note the ergodic theoretic entropy of µEx with respect to the action of a);

(3) Dµ(U, a)[x] = 0 iff µU
x is equal to the δ-measure at e ∈ U .

Proof. All of these facts are well-known, we give a proof for the convenience of the
reader. Note that by Lemma 3.8 we may assume that µ is ergodic. Let ε > 0
be arbitrary, and let AU be as in Proposition 3.4, or in the case U = G− as in
Proposition 3.3; note that in both cases we obtain a σ-algebra which is subordinate
to U .
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Let, for every x and σ-algebra Ã subordinate to U , BU (x, Ã) be a subset of U

satisfying(13)

BU (x, Ã).x = [x]Ã.

By (LM-4) it follows that for a.e. x

(3.9) log
(

µU
x (BU (x,AU ))

µU
x (BU (x, a−nAU ))

)
= log µa−nAU

x ([x]AU
) = −Iµ(AU | a−nAU )(x)

and it follows that
(3.10)

lim
n→∞

1
n

log µU
x (BU (x, a−nAU )) = lim

n→∞

1
n

Iµ(AU | a−nAU )(x)

= lim
n→∞

1
n

n−1∑
i=0

Iµ(AU | a−1AU )(aix)

=
∫

X

Iµ(AU | a−1AU )(x) dµ(x) = Hµ(AU | a−1AU ),

where we have used (3.9) and the pointwise ergodic theorem to pass from the second
to the third line of (3.10).

Let

Q̃ =

{
x ∈ X : sup

n

1
n

n−1∑
i=0

1Q{(aix) ≤
√

ε

}
.

By the maximal inequality, µ(Q̃) ≥ 1 −
√

ε. From the definition of Q̃, it follows
that for any x ∈ Q̃, for any n ∈ N there are n1, n2 with n(1 − 2

√
ε) ≤ n1 ≤ n ≤

n2 ≤ n(1 + 2
√

ε) with an1 .x, an2 .x ∈ Q, hence

(3.11) a−n1BU
1 an1 ⊂ a−n1BU (an1x,A)an1 = BU (x, a−n1A) ⊂ BU (x, a−nA)

and similarly

(3.12) BU (x, a−nA) ⊂ BU (x, a−n2A) ⊂ a−n2BU
Ran2 .

It follows from (3.11) and (3.10) that for every x ∈ Q̃

lim sup
n→∞

1
n

log µU
x (a−nBU

1 an) ≤ (1− 2
√

ε)−1 lim
n→∞

1
n

log µU
x (BU (x, a−nA))(3.13)

= (1− 2
√

ε)−1Hµ(A | a−1A).(3.14)

Similarly, since there is some fixed n0 for which BU
R ⊂ a−n0BU

1 an0 , we have by
(3.12) and (3.10) that

lim inf
n→∞

1
n

log µU
x (a−nBU

1 an) = lim inf
n→∞

1
n

log µU
x (a−nBU

Ran)

≥ (1 + 2
√

ε)−1 lim
n→∞

1
n

log µU
x (BU (x, a−nA))

= (1 + 2
√

ε)−1Hµ(A | a−1A).

Since ε was arbitrary, we see that a.s.

lim sup
n→∞

1
n

log µU
x (a−nBU

1 an) = lim inf
n→∞

1
n

log µU
x (a−nBU

1 an) = Hµ(AU | a−1AU ).

(13)Since a contracts U by Poincare recurrence if µ is preserved by a for µ-a.e. x, the map
u 7→ u.x is injective on U and hence BU (x, Ã) is well-defined.
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By Lemma 3.5 and Proposition 3.3 Hµ(AU | a−1AU ) ≤ hµ(a), with equality if
U = G−. This establishes statements (1) and (2) of the proposition.

Part (3) of this proposition also follows as (3.13) implies that

lim
n→∞

1
n

log µU
x (a−nBU

1 an) = 0 only if Hµ(A | a−1A) = 0.

In this case, for a.e. x we have that for every n, m ∈ Z with m < n′

µa−nA
x ([x]a−mA) = 1

or in other words that
µU

x (BU (x, a−nA))
is independent of n. In view of (LM-3) and equations (3.11) and (3.12) (and the
corresponding similar inclusions for negative n) the only way this could happen is
if µU

x is the δ-measure e ∈ U . �

We also quote the following related phenomenon (the reference given is by no
means the first place this lemma is proved; indeed, this fact has been used already
in [KS] and many other papers):

Lemma 3.10 ([EK2, Lem 5.10]). Under the assumptions of Proposition 3.9, for
µ-a.e. x ∈ X the groups

StabU (µU
x ) =

{
u ∈ U : uµU

x = µU
x

}
and

StabU ([µU
x ]) =

{
u ∈ U : uµU

x is proportional to µU
x

}
coincide. The same statement holds for right multiplication µU

x 7→ µU
x u.

We remark that Proposition 3.9 can be used to give an alternative proof to
Lemma 3.10 to the one given in [EK2]. Indeed, if StabU (µU

x ) ( StabU ([µU
x ]) for

a set of x of positive measure, then for those x it would follow that the measure
µU

x (a−nBU
1 an) grows super exponentially in n contradicting Proposition 3.9.

Another useful corollary of Proposition 3.9 is the following:

Proposition 3.11. Notations as in Proposition 3.9. Let µ be a-invariant proba-
bility measure on X = Γ\G. Then µ is G−-recurrent if and only if for a.e. ergodic
component µEx of µ with respect to the action of a satisfies that hµEx

(a) > 0.

Proof. This is an immediate corollary of Proposition 3.9 and Lemma 3.1.(1). �

4. Reduction of main theorem from Theorem 2.1

In this section we will deduce Theorem 1.4 from the formally weaker Theo-
rem 2.1. Recall that the assumptions to these two theorems were identical, but the
conclusions were different: in Theorem 2.1 we conclude that one of the following
two possibilities holds:
(LE-1′) φ is locally CG(U)-aligned modulo µ
(LE-2′) µ is not CG(U) ∩G−-transient relative to φ

whereas Theorem 1.4 gives that we can express µ as a convex combination of two
measures µ1, µ2 satisfying the stronger restrictions that:
(LE-1) φ is locally CG(U) ∩G0-aligned modulo µ1

(LE-2) µ2 is CG(U) ∩G−-recurrent relative to φ.
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Recall the notation

H = CG(U) H− = H ∩G− H0 = H ∩G0

from Section 2.
We deduce Theorem 1.4 from Theorem 2.1 byt showing that we can decompose

µ into tµ1 +(1− t)µ2 with both µ1 and µ2 satisfying the conditions of Theorem 1.4
and where µ1 is H−-transient relative to φ and µ2 is H−-recurrent relative to φ.
Along the way we prove that (LE-2′) is equivalent to (LE-2′′), which is the form of
this condition we have used in the sketch of proof of Theorem 2.1.

Applying Theorem 2.1 to µ1 we may conclude that µ1 satisfies (LE-1′) i.e. φ
is locally H-aligned modulo µ1, and using the a-invariance of µ1 and Poincare
recurrence we will conclude that in fact µ1 satisfies the formally stronger (LE-1)
(see Proposition 4.1).

4.1. (LE-1′) implies (LE-1). This will follow from the following more general
statement which generalizes [EKL, Lemma 4.2]:

Proposition 4.1. Let G be a Lie group or an S-algebraic group and a ∈ G a
class A element as in Theorem 1.4. Let µ be an a-invariant probability measure
on X = Γ\G, and φ a factor map with respect to the action of the group generated
by a. Suppose that H < G is a closed subgroup so that for sufficiently small δ0 we
have that log(BH

δ0
) ⊂ g0 ⊕ g−. Then φ is locally H-aligned modulo µ if and only if

φ is locally H ∩G0-aligned modulo µ.

Proof. We need to show that if φ : X → Y is H-aligned modulo µ it is also H ∩G0-
aligned (the other direction is tautological). Let Ỹ be the image under φ−1 of the
Borel σ-algebra on Y , let ε > 0, and let X ′ ⊂ X be a subset as in Definition 1.1
with µ(X ′) > 1− ε .

For every measurable subset B ⊂ X, we have that µ(B \ B̃) = 0 where

B̃ =
{

x : µỸx (B) > 0
}
∈ Ỹ

since
µ(B \ B̃) =

∫
X\B̃

µỸx (B \ B̃) dµ(x) ≤
∫

X\B̃
µỸx (B) dµ(x) = 0.

By applying this to X ′ ∩ Ui with Ui a countable basis for the topology of X it
follows that for almost every x ∈ X ′ and every δ > 0

(4.1) µỸx (X ′ ∩Bδ(x)) > 0.

Fix norms on g0 and g− satisfying that
(1) the norm on g0 is Ad(a)-invariant
(2) there is some c < 1 so that for every w ∈ g−, ‖Ad(a)[w]‖ < c ‖w‖.

Let δ be much smaller than δ0 — sufficiently small so that(
Bg0

δ (0)×B
g−
δ (0)

)
∩ log(BH

δ0
(e)) =

(
Bg0

δ (0)×B
g−
δ (0)

)
∩ log(BH

δ0/10(e)).

For any η ≤ δ we let

B(δ, η) =
(
Bg0

δ (0)×Bg−
η (0)

)
∩ log(BH

δ0
(e)).

Applying (4.1) and the alignment condition (1.1) we see that for a.e. x ∈ X ′ and
every η < δ it holds that

fδ(x, η) = µỸx (expB(δ, η).x) > 0.
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For a fixed x the function fδ(x, η) is monotone non-decreasing in η. Furthermore,
since φ is a factor for a and µ is a-invariant, it follows that a.µỸx = µỸa.x and hence

(4.2)

fδ(x, η) = µỸx (expB(δ, η).x)

µỸa.x(exp (Ad(a)[B(δ, η)]) .(a.x))

≤ µỸa.x(expB(δ, cη).(a.x)) = f(a.x, cη) ≤ fδ(a.x, η).

Using Poincare recurrence we conclude that equality holds throughout (4.2) and
consequently almost surely fδ(x, η) = fδ(a.x, η). It follows that fδ(x, η) is almost
surely constant on the interval η ∈ (0, δ).

Let

X ′′ =
{
x ∈ X ′ : fδ(x, τ) = fδ(x, τ ′) ∀τ, τ ′ ∈ (0, δ)

and µỸx (expB(τ, τ).x) > 0 for every τ > 0
}
.

It follows from the discussion above that µ(X ′ \X ′′) = 0 and in particular µ(X ′′) >
1− ε.

If x, x′ ∈ X ′′ are sufficiently close with φ(x) = φ(x′) then x′ ∈ expB(δ/2, δ/2).x
(since X ′′ ⊂ X ′ and the definition of X ′). Also, by definition of leafwise measures,
µỸx = µỸx′ , and since x′ ∈ X ′′ we also know that µỸx′(expB(τ, τ).x′) > 0 for every
τ > 0. Suppose x′ = exp(w0+w−).x with w0 ∈ g0, w− ∈ g−, w0+w− ∈ B(δ/2, δ/2)
and w− 6= 0. Then for any ε > 0

µỸx (expB(δ, ‖w−‖ − ε).x) < µỸx (expB(δ, ‖w−‖+ ε).x)

since if τ is sufficiently small

expB(τ, τ).x′ ⊂ (expB(δ, ‖w−‖+ ε).x) \ (expB(δ, ‖w−‖ − ε).x)

— and hence fδ(x, ·) is not constant.
Thus we conclude that w− = 0, i.e. that x′ ∈ expB(δ/2, 0).x. Since exp B(δ/2, 0)

gives arbitrarily small neighborhood of e ∈ H ∩ G0 for sufficiently small δ we
conclude that φ is locally H ∩G0-aligned modulo µ. �

4.2. Recurrence and transience relative to φ. Let X be a locally compact
space, U a locally compact group acting on X and φ : X → Y a Borel map. Let
Φ : X → X × Y be the map Φ(x) = (x, φ(x)). The group U acts on X × Y by
u.(x, y) = (u.x, y).

We start by considering the notions of recurrence and transience relative to φ in
more detail, showing that it can be rephrased as ordinary recurrence (transience)
on X × Y .

Proposition 4.2. A probability measure µ on X is U -recurrent (transient) relative
to φ if and only if the measure µ̃ = Φ∗(µ) on X × Y is U -recurrent (transient,
respectively).

Proof. Suppose X is U -recurrent relative to φ. Let B̃ ⊂ X×Y be a Borel sets with
µ̃(B̃) > 0. Let B = Φ−1(B̃); by definition of µ̃, we have that µ(B) = µ̃(B̃) > 0. It
follows that for every x ∈ B in a subset B′ ⊂ B of full measure

(4.3) {u ∈ U : u.x ∈ B and φ(u.x) = φ(x)} = {u ∈ U : u.Φ(x) ∈ Φ(B)}

is unbounded. Since µ̃-a.e. x̃ ∈ B̃ is of the form Φ(x) for x ∈ B′ it follows that µ̃
is U -recurrent.
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Conversely, suppose µ̃ is U -recurrent. Let B ⊂ X be arbitrary with µ(B) > 0.
Let B̃ = Φ(B). Since Φ is an injective Borel map B̃ is a Borel subsets of X × Y

and by definition µ̃(B̃) > 0. Since µ̃ is U -recurrent, it follows that for µ̃-a.e.
x̃ = (x, φ(x)) ∈ X × Y

{u ∈ U : u.Φ(x) ∈ Φ(B)}
is unbounded, where again invoking (4.3) we may conclude that µ is U -recurrent
relative to φ.

We leave the proof of the equivalence of U -transience of the measure µ on X
relative to φ and U -transience of the corresponding measure µ̃ on X × Y to the
reader. �

Let U be a locally compact group acting on a locally compact space X. Any
locally finite measure µ on X can be written as µ = µ1 + µ2 with µ1 transient
under U and µ2 recurrent under U . This can be shown directly (see [Lin1, Prop.
2.4] or via the connection with leafwise measures given in Lemma 3.1: simply take
B =

{
x : µU

x is a finite measure
}
. Then one can easily check that µ1 = µ|B is

U -transient, µ2 = µ|B{ is U -recurrent, and of course µ = µ1 + µ2. Using Proposi-
tion 4.2 we can deduce:

Corollary 4.3. Under the conditions of Theorem 1.4 we may decompose µ as a
convex combination of two probability measures µ1, µ2 satisfying the conditions of
Theorem 1.4, with µ1 H−-transient relative to φ, and µ2 H−-recurrent relative
to φ.

Proof. Let Φ : X → X×Y and µ̃ be as in Proposition 4.2. As we have noted above,
we can represent µ̃ as a convex combination of two probability measures µ̃1 and µ̃2

with µ̃1 a H−-recurrent measure and µ̃2 a H−-transient measure on X × Y . Let π
denote the natural projection X × Y → X. Then by definition µ = π∗(µ̃), and we
can represent it as a convex combination of µ1 = π∗(µ̃1) and µ2 = π∗(µ̃2). As both
µ̃i are supported on the graph of Φ we have that for both i = 1, 2 µ̃i = Φ∗(µi).
It now follows from Proposition 4.2 that µ1 is H−-transient relative to φ and µ2 is
H−-recurrent relative to φ. �

We conclude our discussion of relative recurrence and transience by showing that
(LE-2′) and (LE-2′′) of Section 2 are equivalent:

Corollary 4.4. Let a, φ, X = Γ\G and µ be as in Theorem 1.4. Let H− be a
subgroup of G− normalized by a. Then µ is H−-transient modulo φ iff there is a
subset X0 ⊂ X of full measure so that for any y ∈ Y we have that φ−1(y) ∩ X0

intersects every H−-orbit in at most one point.

Proof. The existence of such an X0 clearly implies that µ is H−-transient modulo
φ. Suppose µ is H−-transient relative to φ, and let Φ and µ̃ = Φ∗µ be as in
Proposition 4.2. Recall that we have assumed that a acts also on Y and that φ
is a factor map for this action. Denote the diagonal action of a on X × Y by
∆(a).(x, y) = (a.x, a.y); then Φ(a.x) = ∆(a)Φ(x) and hence µ̃ = Φ∗µ is ∆(a)-
invariant. Since µ is H− transient relative to φ, the measure µ̃ on X × Y is
H−-transient (with respect to the action h.(x, y) = (h.x, y)), and so by Lemma 3.1
the leafwise measure µ̃H−

x is finite almost surely. But since µ̃ is ∆(a)-invariant, and
since ∆(a).(h.x̃) = (aha−1).(∆(a).x̃) we have that µ̃-a.e.,

[µ̃H−

∆(a).x̃] = [aµ̃H−

x̃ a−1].
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Since conjugation by a contracts H− it follows that µ̃H−

x̃ is a.e. proportional to the
δ-measure supported on e ∈ H−.

Let as before π be the projection X×Y → X, let X̃ ′ ⊂ X×Y be a set on which
(LM-1)–(LM-5) are satisfied for the action of H− on X × Y . Set

X̃0 =
{

x̃ ∈ X × Y : [µH−

x ] = [δae]
}
∩ X̃ ′.

This is a subset of full measure of X × Y and by (LM-2) and (LM-3) there can be
no pair of distinct points x̃, ỹ ∈ X̃0 on the same H−-orbit.

Since Φ(X) also a µ̃ co-null subset of X × Y , we have that X̃0 ∩Φ(X) is co-null
and since π is a Borel isomorphism on Φ(X) we have that X0 = π(X̃0 ∩ Φ(X0)) =
Φ−1(X̃0) is µ-co null. But the fact that X̃0 contains no two points in the same
H−-orbit implies that X0 does not contain any two distinct points on the same
H−-orbit with the same φ-value. �

5. Proof of the main theorem (modulo some technical steps)

In this section we will give an almost complete proof of Theorem 1.4 (or more
precisely of Theorem 2.1 which implies the formally stronger Theorem 1.4 as already
shown in Section 4). To make the outline of the proof given in Section 2 work, we
need to start by defining various sets which are needed to justify the arguments.

5.1. The assumptions, our goal, and the set X ′. Let X = Γ\G, a ∈ G, U < G,
φ and µ be as in Theorems 1.4 and 2.1, H = CG(U) and H− = CG(U)∩G−. Assume
in contradiction to Theorem 2.1 that neither (LE-1′) nor (LE-2′) hold, i.e. that φ
is not locally H-aligned modulo µ but that µ is H−-transient relative φ.

The first set we are going to use is an a-invariant subset X ′ ⊂ X of full measure
on which various typical properties occure. In particular, we assume that

(A-1) the properties (LM-2), (LM-3), and (LM-5) (cf. Section 3.1) hold on X ′,
(A-2) for every y ∈ X ′ a leafwise measure µU

x is not supported by any a-normalized
Zariski closed proper subgroup of U (cf. (U-1) of Theorem 1.4),

(A-3) X ′ does not contain any two distinct points x, y on the same H−-orbit with
φ(x) = φ(y) (cf. Corollary 4.4).

Consider now a neighborhood OH 3 e in H, sufficiently small to be in the domain
of the definition of log. Since log is injective on a small neighborhood of e ∈ G if
OH is sufficiently small

log OH ⊂ Cg(U) := {w ∈ g : Adu(w) = w ∀u ∈ U} .

Let OH be some fixed relatively compact neighborhood of e ∈ H of this form.
Our assumption that φ is not locally H-aligned modulo µ clearly implies the

following:

(*) There is some ε0 so that for every measurable B ⊂ X with µ(B) > 1 − ε0
and every δ > 0 there exists x, y ∈ B with distance d(x, y) < δ and with
φ(x) = φ(y) but y 6∈ OH .x

Throughout the proof we assume ε < ε0 and also that ε is smaller than some
constant which we will derive from a, U and G in Section 5.6.
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5.2. A, µU
x , and the set X1. We now apply Proposition 3.4 to find an a-decreasing

σ-algebra A, a measurable subset X1 ⊂ X, and some (probably big) R > 1 so that

µ(X1) > 1− 1
2
ε2, and(5.1)

BU
1 .x ⊂ [x]A ⊂ BU

R .x for x ∈ X1.(5.2)

Recall that a σ-algebra A is a-decreasing if a−1.A ⊂ A.
In addition to A we will also need some regularity properties of µU

x on X1. The
first of which is easy; modifying X1 there exists some (probably big) M > 0 such
that

(5.3) µU
x (BU

R ) < M for x ∈ X1.

To see this recall that µU
x is a Radon measure, i.e. it is locally finite and so µU

x (BU
R ) <

∞ a.s. By choosing M accordingly we can ensure that both (5.1) and (5.3) hold.
The second regularity property we require for x ∈ X1 is that µU

x restricted to
BU

1 should not have most of its mass too close to proper Zariski closed subsets of
U . We will show in Section 6 that our assumption (U-1) regarding the support of
µU

x will imply this type of regularity on a set of large measure. More precisely by
Corollary 6.4 we have the following: Let D be the maximal degree of Adu(w) as a
polynomial in u for any w ∈ g. There exists η > 0 such that (after shrinking X1

once more, but by a sufficiently small amount so that (5.1) is not violated) we have

(5.4) µU
x

(
{u ∈ BU

1 : ‖f(u)‖ ≥ η}
)
≥ η

for every x ∈ X1 and every polynomial f of degree less than D (defined on any of
the factors of U) that has a coefficient of norm one. Here ‖w‖ is some norm on
g (more precisely, ‖w‖ = maxσ ‖wσ‖σ, with ‖·‖σ some norm on gσ), and we may
assume without loss of generality (since we can rescale ‖·‖ at our pleasure) that
for any polynomial f as above with coefficients of norm at most one, if the image
of f(BU

1 ) ⊂ Ω̄Z =
∏

σ Ω̄Z
σ then in fact f(BU

1 ) is contained in some fixed compact
subset of Ω (where Ω, Ω̄Z are as on p. 4).

5.3. The compact set K. As we have already done several times, we may assume
that φ is a map from X to some locally compact space Y . Having found ε,M , and
η we let K ⊂ X ′ be a compact Lusin set for φ, i.e. φ depends continuously on
x ∈ K, with measure

(5.5) µ(K) > 1− ε2η

4M
.

5.4. The set X2. Since A is a-decreasing, the sequence a−n.A is a decreasing
sequence of σ-algebras. By the martingale maximal inequality we have

µ

({
x : sup

n>0
Eµ

(
1− χK

∣∣a−n.A
)
≥ η

2M

})
≤ ‖1− χK‖1

η/(2M)
<

ε2

2
.

Thus there is a set X2 ⊂ X ′ such that

(5.6) Eµ

(
χK |a−n.A

)
(x) ≥ 1− η

2M
for x ∈ X2 and n > 0

satisfying that

(5.7) µ(X2) > 1− 1
2
ε2.
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5.5. The set X3, and the points xδ, yδ ∈ X3. Since a preserves µ, we can apply
the maximal inequality for ergodic averages, and obtain that for any integrable
f : X → R≥0

µ

({
x : sup

N≥1

1
N

N−1∑
n=0

f(an.x) ≥ ε

})
<
‖f‖1

ε
.

We define f = χX\(X1∩X2), then ‖f‖1 < ε2 by (5.1) and (5.7). Therefore, we find
the set X3 of measure µ(X3) > 1− ε such that∣∣{n ∈ [0, N − 1] : an.x ∈ X1 ∩X2

}∣∣ > (1− ε)N

for N ≥ 1 and x ∈ X3. Without loss of generality we may require that X3 is
compact.

Since µ(X3) > 1−ε, there exists by assumption (*) in Section 5.1 for every δ > 0
two points xδ, yδ = gδ.xδ ∈ X3 with (i) gδ is inside the domain of definition of log
and log(gδ) 6∈ Cg(U) (ii) ‖log(gδ)‖ < δ, (iii) φ(xδ) = φ(yδ). Note that (iii) implies
that µU

xδ
= µU

yδ
, since by assumption (Φ) of Theorem 1.4 the Borel map x 7→ µU

x is
measurable with respect to the σ-algebra corresponding to φ.

5.6. The points x′δ, y
′
δ ∈ X2 with regularity of the leafwise measures at the

correct scale. Our aim in this section is to find starting from the pair of points
xδ, yδ constructed in the previous subsection a new pair of points which would
satisfy some additional regularity properties. These points would have the form
x′δ = ak.x, y′δ = ak.yδ and we restrict the range of permissible k so as to ensure
that x′δ and y′δ are still fairly close together (though possibly not as close as xδ and
yδ). In order to find these new points we shall make use of some auxiliary results we
defer to Section 7. Note that since φ(xδ) = φ(yδ), and since φ respects the action
of a, we will automatically have that φ(x′δ) = φ(y′δ).

Recalling the assumptions made in the introduction, Adu(log(gδ)) is a g-valued
polynomial in u, and since log(gδ) 6∈ Cg(U) this polynomial is not constant. Let
w = log(gδ).

Since a contracts U , the coefficients of the polynomial Ada−n0uan0 (w), which we
recall are elements in the Lie algebra g, grow (exponentially) in n0. In particular,
we can choose n0 such that some coefficient has norm in (c, 1] and all others have
norm in [0, 1] — where c > 0 is some fixed constant that only depends on a ∈ G and
U < G. Here n0 will grow indefinitely when δ becomes smaller. More generally,
for any k we define in Section 7 a function nk = nk(w) so that the norms of the
coefficients of Ada−nk uank (Adak(w)) satisfy the above stated conditions. As we will
show in Proposition 7.5 below for ‖w‖ < δ0 and when k is restricted to be in [0, κn0]
(with both δ0, κ positive constants depending only on a, U,G) the function nk can
be written as

(5.8) nk = min
1≤j≤J

bsjk + τj(w)c .

Here the slopes sj depend only on a, U,G (the dependence of nk on w is via the
constant coefficients τj = τj(w)), and what is crucial for us is that all the sj 6= −1.
In particular, this implies that for any j, the function k + bsjk + τjc attains any
value at most 1 + |sj + 1|−1 times.

As we shall see in Proposition 7.4, assumption (U-2) implies that for an appro-
priate choice of κ, for every k ∈ [0, κn0]

(5.9) ‖Adak(w)‖ ≤ ‖w‖1/2
.
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In particular (assuming δ0 was chosen to be sufficiently small), this guarantees that
nk > 0 when k is in the above range. On the other hand, (5.8) applied to k = 0
implies that for some j we have τj < n0+1. Therefore nk ≤ k maxj sj +n0 for all k,
and if k is in the above range (i.e. k ∈ [0, κn0]) in fact nk ≤ N := (1+κ maxj sj)n0.

We want to find k ∈ [0, κn0] so that both

ak.xδ, a
k.yδ ∈ X2(5.10)

ak+nk .xδ, a
k+nk .yδ ∈ X1.(5.11)

By definition of X3 3 xδ, yδ,∣∣{0 ≤ k ≤ κn0 : ak.xδ 6∈ X2

}∣∣ ≤ εκn0,

and similarly for yδ. By (5.8), the definition of X3, and the bounds 0 ≤ nk ≤ N
for any k ∈ [0, κn0] show that∣∣{0 ≤ k ≤ κn0 : ak+nk .xδ 6∈ X1

}∣∣ ≤ J(1 + max
j
|sj + 1|−1)×

×
∣∣{0 ≤ ` ≤ N : a`.xδ 6∈ X1

}∣∣
≤ C0εn0,

with C0 depending on a, U,G. Again the same holds for yδ. Assuming we have
chosen ε < min(0.01, 0.01κC−1

0 ) we are guaranteed by these bounds to have some
k ∈ [0, κn0] so that both (5.10) and (5.11) are satisfied.

5.7. Applying the regularity to find x′′δ , y′′δ ∈ K. We claim the properties of
x′δ, y

′
δ = g′.x′δ with g′ = akgδa

−k that are implied by (5.10) and (5.11) are enough
to apply the shearing properties of the U -flow successfully. This will give at the
end of this step points x′′δ = u.x′δ, y

′′
δ = u.y′δ ∈ K that differ approximately by

some element of G− ∩H. Since φ is a factor map for aZU , the equality of φ-values
φ(x′′δ ) = φ(y′′δ ) is preserved. Let n = nk and w′ = log(g′); recall that by (5.9)
‖w′‖ ≤ δ1/2.

Since x′δ ∈ X2 we have

(5.12) µa−n.A
x′δ

(K) > 1− η

2M

by (3.1) and (5.6). Since an.x′δ ∈ X1 and A satisfies (5.2) we have

BU
1 .(an.x′δ) ⊂ [an.x′δ]A ⊂ BU

R .(an.x′δ)

and so by going back to x′δ we get

(5.13) (a−nBU
1 an).x′δ ⊂ [x′δ]a−n.A ⊂ (a−nBU

Ran).x′δ.

The above equation that allow us to work with (a−nBU
1 an).x′δ and (a−nBU

1 an).y′δ
instead of the somewhat random pieces of U -leaves [x′δ]a−n.A and [y′δ]a−n.A respec-
tively.

Moreover, µU
an.x′δ

(BU
R ) < M and so µU

x′δ
(a−nBU

Ran) < MµU
x′δ

(a−nBU
1 an) by (LM-

5). By (LM-1) and the upper bound in (5.13) this implies µa−nA
x′δ

(a−nBU
1 an.x′δ) >

1
M , i.e. when we restrict ourselves to (a−nBU

1 an).x′δ we do, in a quantitative way,
not lose all of the mass. From this and (5.12) we see that

µa−n.A
x′δ

(
(a−nBU

1 an).x′δ ∩K
)

µa−n.A
x′δ

(
(a−nBU

1 an).x′δ
) > 1− η

2
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or equivalently by (LM-1)

µU
x′δ

(
{u ∈ a−nBU

1 an : u.x′δ ∈ K}
)

>
(
1− η

2

)
µU

x′δ
(a−nBU

1 an).

The same holds for y′δ, and since µU
x′δ

= µU
y′δ

we get

(5.14) µU
x′δ

(
{u ∈ a−nBU

1 an : u.x′δ, u.y′δ ∈ K}
)

> (1− η)µU
x′δ

(a−nBU
1 an).

Let p(u) denote the g-valued polynomial p(u) = Ada−nuan(w′). This polynomial
has degree less than D and by definition of nk ≡ n has coefficients of norm at most
one and at least one of norm bigger than some fixed constant c > 0. Therefore,
since an.x′δ ∈ X1 by (5.4)

µU
an.x′δ

(
{u ∈ BU

1 : ‖p(u)‖ ≥ ηc}
)
≥ η.

Using (LM-5) this shows for x′δ that

(5.15) µU
x′δ

(
{u ∈ a−nBU

1 an : ‖Adu(w′)‖ ≥ ηc}
)
≥ ηµU

x′δ
(a−nBU

1 an).

Combining (5.14)–(5.15) we find that there exists some uδ ∈ a−nBU
1 an such that

(5.16) x′′δ = uδ.x
′
δ, y′′δ = uδ.y

′
δ ∈ K ‖Aduδ

(w′)‖ ≥ ηc.

We will show in Section 7.2 that uδg
′u−1

δ is very close to H− so that x′′δ and y′′δ
are almost on the same H−-orbit. More precisely: by Lemma 7.3 and Lemma 7.2
for any ρ > 0 if δ is small enough there is some v ∈ Cg(U) ∩ g− so that

‖Aduδ
(w′)− v‖ < ρ.

Let Ω ⊂ g be as in p. 4. Since for small u we have that the polynomial
p(u) defined above takes values in Ω — indeed, by its very definition p(u) =
log(a−nuanga−nu−1an) — and since all the coefficients of p(u) have norm at most
one, our choice of ‖·‖ in Section 5.2 implies that Aduδ

(w′) ∈ p(BU
1 ) is in some

fixed compact subset of Ω; using equation (5.16) we can in fact conclude that
Aduδ

(w′) ∈ p(BU
1 ) is in some fixed compact subset of Ω \ {0}. In particular

Aduδ
(w′) = log(g′′δ ) for some g′′δ ∈ G.

5.8. Letting δ → 0. We apply the above procedure to find x′′δ , y′′δ ∈ K for a
sequence of δ that converge to zero, with y′′δ = g′′δ .y′′δ , and recall that there is a
sequence of vδ in a fixed compact subset of Cg(U)∩g−\{0} so that ‖log(g′′δ )− vδ‖ →
0 as δ → 0. By compactness of K and continuity of φ on K there exist some limit
points x and y with φ(x) = φ(y) and y = g.x for some g with log(g) ∈ (Cg(U) ∩
g−) \ {0}. But log(g) ∈ Cg(U) implies that g commutes with a neighborhood of
e ∈ U : hence since this is an algebraic condition g ∈ CG(U). Similarly, log(g) ∈ g−

implies that g ∈ G−. And obviously log(g) 6= 0 implies that g 6= e.
Since K ⊂ X ′ we have found two distinct points in X ′ with the same φ-value

on the same H−-orbit contradicting assumption (A-3) of Section 5.1. This con-
tradiction completes the proof of Theorem 2.1, and hence in view of the results of
Section 4 establishes our main theorem, Theorem 1.4.
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6. Regularity of leafwise measures

In this section we consider the leafwise measures µU
x under the assumption (U-1)

of Theorem 1.4 and will show that typically µU
x does not have most of its mass

close to subvarieties. Recall our assumption that G is either a Lie group or a direct
product of linear groups and that in the latter case U is isomorphic to a direct
product of Zariski closed unipotent groups. We start by analyzing polynomials
on U .

6.1. The log-map in positive characteristic. In the case where Gσ ⊂ GLm(Kσ)
is an algebraic group over a local field Kσ of positive characteristic the standard
power series for the logarithm does not define a map (due to all primes appearing in
the denominator of some term in the series). Here we may use the following crude
replacement(14) of the Lie algebra and the logarithm map: We set g = Matm(Kσ)
to be the matrix algebra containing G and let log(g) = g− I where I is the identity
matrix. Moreover, if we define the adjoint action by conjugation Adg(w) = gwg−1

for g ∈ G and w ∈ g, then clearly Adg(log h) = log(ghg−1) for all g, h ∈ G.
With this notation in mind, we do not have to distinuish between zero and positive
characteristic below.

6.2. a-homogeneous polynomials. The basic assumption we had on a in Theo-
rem 1.4 is that Ada is diagonalizable. We denote the eigenvalues of Ada acting on
g by letters ξ, λ, . . . and the eigenspaces by gξ, gλ, . . .. Note that in the S-algebraic
case, the eigenvalues are elements in any one of the fields Kσ over which G is de-
fined. Moreover, even if Kσ

∼= Kσ′ for σ 6= σ′ we view them as distinct fields,
and so in particular each gλ is by definition a subspace of some gσ. We study the
conjugation map u 7→ aua−1 for u ∈ U in the following lemma.

Lemma 6.1. Under the assumptions of Theorem 1.4 each of the subgroups Uσ is
isomorphic as a variety to a product of affine spaces

∏
λ Aλ such that conjugation

by a corresponds to multiplication by λ on Aλ
∼= Kd(λ)

σ .

For characteristic zero (or large enough positive characteristic) the above is an
easy consequence of the polynomial maps log and exp defined between U and its
Lie algebra.

A Kσ-valued or g-valued polynomial p(u) defined on Uσ is a-homogeneous of
weight λ if λ ∈ Kσ and p(aua−1) = λp(u) for all u ∈ Uσ. Here we assume that
multiplication by λ ∈ Kσ annihilates gσ′ for any σ′ 6= σ, so that an a-homogeneous
g-valued polynomial automatically only depends on the coordinates in Uσ and has
its values in gσ. Since a is Ad-diagonalizable, every polynomial is a unique sum of
a-homogeneous polynomials.

The above lemma provides us with the choice of independent a-homogeneous
variables generating the coordinate ring Kσ(Uσ). When we consider coefficients of
a polynomial on U we will implicitly assume that we expressed the polynomial in
terms of these variables.

Proof of Lemma 6.1 in positive characteristic. We only sketch the proof by indicat-
ing how to use the Lie algebra of Uσ to find independent a-homogeneous variables in
Kσ(Uσ). For this recall the following definition of the Lie algebra: If me < Kσ(Uσ)

(14)Using these definitions, strictly speaking, (U-2) becomes an assumption on the concrete
realization of G as a linear group.
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is the ideal of polynomials vanishing at e ∈ U , then the Lie algebra is given by the
dual space to me/m2

e. The semisimple a acts also on me/m2
e which also decomposes

into eigenspaces. Now we can choose for every eigenvalue λ some a-homogeneous
polynomials xλ,1, . . . , xλ,d(λ) of weight λ such that they form modulo m2

e a basis
of the corresponding eigenspaces in me/m2

e. By induction on the weights one can
show that these variables generate the coordinate ring Kσ(Uσ). However, since the
dimension of me/m2

e equals the dimension of U it follows that these variables must
be algebraically independent. �

6.3. The mass distribution for the leafwise measures. We will first show
that the Zariski closure of the support of µU

x is almost surely a subgroup.

Proposition 6.2. Let X = Γ\G, let a ∈ G be class A, and let U < G− be an
a-normalized direct product of closed unipotent subgroups Uσ of Gσ for σ ∈ S. Let
µ be an a-invariant probability measure on X. Then for almost every x the Zariski
closure Px of supp(µU

x |BU
1
) is a Zariski closed a-normalized subgroup of U with

supp(µU
x ) ⊂ Px.

The above proposition is general in the sense that we have not assumed that µ
satisfies the assumption (U-1) in Theorem 1.4, under this assumption we get the
following immediate corollary.

Corollary 6.3. Suppose in addition to the assumptions of Proposition 6.2 that µ
satisfies (U-1) in Theorem 1.4. Then for almost every x and any nonzero polyno-
mial (defined on any of the factors of U) we have

supp(µU
x |BU

1
) 6⊂ Z(f) = {u ∈ U : f(u) = 0}.

However, what we need for the low entropy argument is not only that the sup-
port of the leafwise measure is not contained in a variety, but in fact the stronger
statement saying that the mass is not too closely concentrated near varieties. As
we shall see the above and a simple compactness argument implies this. We will
prove the next corollary after we finish the proof of Proposition 6.2.

Corollary 6.4. Let D ≥ 1 and ε > 0. Under the same assumption as in Corol-
lary 6.3, there exists η > 0 and a set Q ⊂ X of measure µ(Q) > 1− ε such that

µU
x ({u ∈ BU

1 : ‖f(u)‖ ≥ η}) ≥ η

for every x ∈ Q and every polynomial f of degree less than D (defined on any of
the factors of U) that has a coefficient of norm one.

This justifies the assertion (5.4) made in Section 5.2. The main step towards the
proposition is contained in the following lemma.

Lemma 6.5. Let Px be the Zariski closure of supp(µU
x |BU

1
). Then for almost every

x the ideal defining Px is a-homogeneous, i.e. it is generated by finitely many a-
homogeneous polynomials and so Px is normalized under the action of a. Moreover,
supp(µU

x ) ⊂ Px so that Px is also the Zariski closure of supp(µU
x ).

Proof. Let K be a Lusin set for µU
x of almost full measure such that (LM-5) holds

for points in K. Then by Poincaré recurrence for almost every x ∈ K there exists
a sequence nk → −∞ such that ank .x ∈ K and ank .x → x for k → ∞. For
any such x we claim that the lemma holds. Let m ≥ 1 be fixed. Since µU

ank .x ∝
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ankµU
x a−nk by (LM-5) and ankBU

1 a−nk (for large negative nk) contains BU
m we see

that supp(µU
ank .x|BU

m
) ⊂ ank(suppµU

x |BU
1
)a−nk .

Let f(u) be a polynomial that vanishes on supp(µU
x |BU

1
). Then

(6.1) f(a−nkuank) vanishes on supp(µU
ank .x|BU

m
).

If f is not already homogeneous, then we can write f = flt +frem. Here the leading
term flt is a-homogeneous of some weight λ and the remaining polynomial frem is a
sum of a-homogeneous polynomials of weights that all have norm bigger than ‖λ‖.
For this notice that we cannot have two weights of equal norm since a is of class A.
Also recall that all nontrivial weights are in norm less than 1 since U is contracted
by a. Then

lim
k→∞

λnkf(a−nkuank) = flt(u)

is a-homogeneous. Using (6.1) and that µU
ank .x|BU

m
→ µU

x |BU
m

we see that flt also
vanishes on supp(µU

x |BU
m

). Replacing f by f − flt and continuing by induction we
can write f as a sum of a-homogeneous polynomials that all vanish on supp(µU

x |BU
m

).
This is true for all generators of the ideal defining Px, and — since m was arbitrary
— supp(µU

x ) ⊂ Px. �

Lemma 6.6. For µ-a.e. x and µU
x -a.e. u0 ∈ U we have Pu0.xu0 = Px.

Proof. First recall that µU
u0.xu0 ∝ µU

x whenever x, u0.x ∈ X ′ by (LM-4). There-
fore, the support satisfies supp(µU

u0.x)u0 = (supp(µU
x )) and so Pu0.xu0 = Px by

Lemma 6.5. �

Lemma 6.7. Let f(u) be an a-homogeneous polynomial of weight λ. Let u0 ∈ U
be fixed. Then f(uu−1

0 ) = f(u)+f0(u) where any a-homogeneous term in f0(u) has
a weight of absolute value bigger than λ.

Proof. By definition a polynomial is obtained by taking sums of products of matrix
coefficients — where we can assume that a is a diagonal matrix with its eigenvalues
arranged in increasing order. Therefore, it is enough to check the statement for
matrix coefficients. However, for these the statement follows from the structure
of multiplication for upper triangular matrices: Any matrix coefficient of uu−1

0 is
the sum of the corresponding matrix coefficients of u and u−1

0 and of products of
matrix coefficients of u and u−1

0 . Here the weights of the matrix coefficients of u
respectively u−1

0 must give as a product the weights of the matrix coefficient of
uu−1

0 currently considered. However, we leave u0 fixed and so the lemma follows
once we recall that all weights considered are in absolute value less than one. �

Proof of Proposition 6.2. Suppose x satisfies Lemma 6.5 and 6.6 and, moreover,
that u0.x also satisfies Lemma 6.5 for µU

x -a.e. u0 ∈ U . Take such an u0, and let
f be an a-homogeneous polynomials of weight λ that vanishes on Pu0.x. Then the
polynomial f(uu−1

0 ) in u vanishes on Px by Lemma 6.6. By Lemma 6.7 we know
f(uu−1

0 ) = f(u) + f0(u) where f0(u) has only terms of weight that are in absolute
value bigger than λ. By Lemma 6.5 we conclude that f(u) vanishes on Px. Since
the ideal for Pu0.x is generated by such polynomials, Px ⊂ Pu0.x. The proof of the
opposite inclusion is the same.

Therefore, Px = Pu0.x = Pu0.xu0 = Pxu0 for µU
x -a.e. u0 ∈ U by Lemma 6.6

again. Since V = {u0 ∈ U : Px = Pxu0} is itself a Zariski closed subset of U , it
follows that Px ⊂ V by definition. Therefore, Px is a subgroup of U . �
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Corollary 6.3 follows immediately from Proposition 6.2, to see Corollary 6.4 we
will combine Corollary 6.3 with the following lemma. The norm of a polynomial
defined on U is the maximum of the norms of the coefficients when writing the
polynomial in terms of the variables given in Lemma 6.1.

Lemma 6.8. Fix some D ≥ 1. Then for every probability measure ν on BU
1 either

(1) there is a nonzero polynomial f on U of degree less than D such that
supp(ν) ⊂ Z(f) = {u ∈ U : f(u) = 0}, or

(2) there exists an η > 0 depending only on ν such that for all polynomials of
degree less than D with norm one we have

(6.2) ν
(
{u ∈ BU

1 : ‖f(u)‖ ≥ η}
)
≥ η.

We define ην = 0 in the first case and let ην be the maximal η satisfying (6.2) in
the second case. Then the set of probability measures ν with ην ≥ ε is weak∗ closed.

Proof. Suppose (2) fails for ν. Then for every η = 1
n there exists some polynomial

fn as in (2) with ν({u ∈ BU
1 : ‖fn(u)‖ ≥ η}) ≤ η. Choosing a subsequence we may

assume that fnk
→ f where f is a polynomial of degree less than D and norm one.

Let ε > 0, then for large enough k we have {u ∈ BU
1 : ‖f(u)‖ < ε} ⊃ {u ∈ BU

1 :
‖fnk

(u)‖ < 1
nk
}. This implies that ν({u ∈ BU

1 : ‖f(u)‖ < ε}) ≥ 1 − ε and so ν is
supported on Z(f) as claimed in (1).

For the second claim let νn → ν and let ηνn
≥ ε. Let f be a polynomial of degree

less than D and norm one, then by definition νn({u ∈ BU
1 : ‖f(u)‖ ≥ ε}) ≥ ε for all

n. Since {u ∈ BU
1 : ‖f(u)‖ ≥ ε} is compact, the same holds as well for the weak∗

limit ν. �

Proof of Corollary 6.4. Define νx to be the renormalized restriction of µU
x to BU

1 .
By Corollary 6.3 case (1) in Lemma 6.8 happens µ-almost never, i.e. ηνx

> 0 a.e.
and depends measurably on x. This implies that for small enough η

µU
x ({u ∈ BU

1 : ‖f(u)‖ ≥ η}) ≥ ηµU
x (BU

1 ) ≥ η

on a set Q of measure bigger than 1−ε. To get rid of the closure we can use (LM-5)
and take the image of Q under a to get

µU
x ({u ∈ aBU

1 a−1 : ‖f(u)‖ ≥ η}) ≥ ηµU
x (aBU

1 a−1).

for x ∈ a.Q. Here aBU
1 a−1 ⊂ BU

1 is some fixed neighborhood of e ∈ U and so by
(LM-3) we can give a uniform lower bound c ∈ (0, 1) on its measure for x ∈ a.Q
after possibly making Q smaller. Now the corollary follows for cη instead of η. �

7. Quantative shearing estimates and the function nk

In this section we define nk and provide the missing details of the step described
in Section 5.6. Let us note that this section is purely algebraic, the considerations
do not use µ or properties of a particular point in X. All the results hinge upon
the assumption (U-2) of Theorem 1.4:
(U-2) for all nonzero w ∈ g+, it holds that Ad(U)[w] 6⊂ g+ ⊕ g0.

we isolate explicitly the following corollary of this assumption:
(U-∗) Cg(U) = {w ∈ g : Adu(w) = w for all u ∈ U} ⊂ g0 + g−.
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7.1. The definition of nk. Given w ∈ g we have assumed that Adu(w) depends
polynomially on u ∈ U . We decompose Adu(w) in two different ways: We first
decompose w into its components in the eigenspaces wλ ∈ gλ and consider Adu(wλ).
We can further decompose Adu(wλ) into components in the eigenspaces Adξ

u(wλ) ∈
gξ.

Lemma 7.1. The gξ-valued polynomial map Adξ
u(wλ) in u ∈ U is a-homogeneous

of weight ξ
λ .

Proof. By definition
Adaua−1(wλ) = λ−1 Adau(wλ).

By taking components according to the weight ξ we get

Adξ
aua−1(wλ) = λ−1 Ada ◦Adξ

u(wλ) =
ξ

λ
Adξ

u(wλ)

which proves the lemma. �

Applying the lemma we get

Ada−nuan ◦Adak(w) =
∑
λ,ξ

Adξ
a−nuan ◦Adak(wλ) =

∑
λ,ξ

λk

(
λ

ξ

)n

Adξ
u(wλ).

Since U is uniformly contracted, we must have ‖ξ/λ‖ < 1 for all nontrivial terms
in the sum unless the corresponding term Adξ

u(vλ) = vλ is a constant polyno-
mial and ξ = λ. In particular, this shows that the coefficients of all nonconstant
Ada−nuan(akwa−k) grow exponentially with growing n.

We define the norm of a g-valued polynomial on U as the maximum of the norms
of the coefficients, where we use a fixed set of independent homogeneous variables
in U as in Lemma 6.1 and a fixed basis of g consisting of eigenvectors. Then the
integer valued linear function

nk(λ, ξ) =

⌊
log(‖λ‖−k‖Adξ

u(wλ)‖−1)
log ‖λ‖ − log ‖ξ‖

⌋
= bsλ,ξk + τλ,ξ(w)c

for

(7.1) sλ,ξ = − log ‖λ‖
log ‖λ‖ − log ‖ξ‖

τλ,ξ(w) = − log ‖Adξ
u(wλ)‖

log ‖λ‖ − log ‖ξ‖
satisfies

‖Adξ
a−nuan(akwλa−k)‖ ∈ (c, 1]

for n = nk(λ, ξ) — unless Adξ
u(wλ) is constant and nk(λ, ξ) = ∞. Here c > 0 is

some absolute constant that only depends on the action of a on U . Clearly for
0 ≤ n < nk(λ, ξ) the norm is also less than 1. Therefore, if

nk = nk(w) = min
λ,ξ

nk(λ, ξ)

is finite, it satisfies

(7.2) ‖Ada−nk uank (akwa−k)‖ ∈ (c, 1].

Assume now w 6∈ Cg(U), then by construction nk : Z → Z is (the integer part of)
a piecewise linear function and the slopes only depend on the weights of a.
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7.2. The directions v of fastest divergence along U . Just as in the last subsec-
tion, we treat Adu(w) as a polynomial (i.e. regular function) in u with coefficients
in g.

For any w ∈ g let Adlt
u(w) be the sum of the smallest weight terms in Adu(w)

for the a-action on U (smallest a-homogeneous weight), i.e. for w ∈ Cg(U) we take
Adlt

u(w) = w and for w 6∈ Cg(U) we write

Adu(w) = Adlt
u(w) +

∑
ξ,λ:‖ξ/λ‖>ζ̃

Adξ
u(wλ); Adlt

u(w) =
∑

ξ,λ:‖ξ/λ‖=ζ̃

Adξ
u(wλ)

with ζ̃ chosen so that Adlt
u(w) is not identically equal to zero.

Note that Adlt
u(w) is the part of Adu(w) with fastest expansion when a−1 acts

on U . It is not necessarily true that Adlt
u(w) has values in one of the eigenspaces

of g. However, since by assumption all eigenvalues of Ad(a) have distinct absolute
values, if w ∈ gλ then Adlt

u(w) is a-homogeneous with some weight ζ, and its values
lie in gξ with ζ = ξ

λ by Lemma 7.1.
We define the subspace v ⊂ g of directions of fastest divergence along U to be

the linear hull of the coefficients of Adlt
u(w) for all w ∈ g \ Cg(U).

Lemma 7.2. We have
(1) that v is contained in Cg(U),
(2) that v is a direct sum of subspaces of weight spaces gξ for various weights

ξ (and hence is normalized by Ada),
(3) and under the assumption (U-∗), that v is contained in g−.

Proof. We first remark that for any w =
∑

λ wλ ∈ g we have that the polynomial
Adlt

u(w) is in the linear span of the polynomials Adlt
u(wλ). This holds since there

is no cancellation between terms arising from different weights — indeed, since we
have assumed that a is class A by Lemma 7.1 for any ξ the polynomials Adξ

u(wλ)
for all possible values of λ have different a-homogeneous weight, and hence do not
cancel. Moreover, if w 6∈ Cg(U) the a-homogeneous weight of the low order term
Adlt

u(w) has absolute value < 1, and hence Adlt
u(w) is in the linear span of the

polynomials Adlt
u(wλ) for wλ 6∈ Cg(U). This fact implies (2) above, and shows that

in proving (1) and (3) we need only to consider eigenvectors wλ ∈ gλ \ Cg(U).
Consider now for wλ ∈ gλ (not in Cg(U)) the expansion

(7.3) Adu0(w
λ) = Adlt

u0
(wλ) + . . .

and assume that ξ is such that Adlt
u0

(wλ) = Adξ
u0

(wλ) — it is uniquely determined
by wλ. Here and below the dots indicate terms in weight spaces of bigger weight.
Now fix u0 and apply Adu to get

(7.4) Aduu0(w
λ) = Adu

(
Adξ

u0
(wλ) + . . .

)
= Adξ

uu0
(wλ) + . . .

Here we do not have any terms of weight in absolute value smaller than ξ on the
far right of (7.4) since uu0 ∈ U and ξ was choosen minimally in (7.3).

Recall that Adu

(
Adξ

u0
(wλ)

)
−Adξ

u0
(wλ) can only have nontrivial components in

gη where η has absolute value less than ‖ξ‖ (again using Lemma 7.1 and that U
is contracted by a). However, if this polynomial would have a nonzero component
f(u) in the weight space gη for some η as above then some eigenvector component
vu0 of Adu0(w

λ) that appears on the right of (7.3) as part of the dots would also
have to give a component Adη

u(vu0) ∈ gη in order for (7.4) to hold. However,
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Adη
u(vu0) and f(u) considered as a polynomial in u have different a-homogeneous

degree by Lemma 7.1. Therefore, Adu(Adξ
u0

(wλ)) = Adξ
u0

(wλ) cannot contain any
nonzero terms in a weight space of lower weight. This shows that the leading terms
coming from eigenvectors wλ belong to Cg(U), establishing (1) of the lemma.

To prove (3), we distinguish between two cases: If ‖λ‖ ≤ 1, then since U ∈ G−

for any u ∈ U

(7.5) Adu(wλ)− wλ ∈ g−

and hence all the coefficients of this polynomial (which in particular include the
coefficients of the polynomial Adlt

u(wλ)) are in g−. Note that (7.5) is not identically
zero since wλ 6∈ Cg(U). If ‖λ‖ > 1, then for any wλ ∈ gλ we know that there exists
some u ∈ U with Adu(wλ) 6∈ g++g0 by assumption (U-∗). In particular, this shows
that in this case Adlt

u(wλ) also has its coefficients in g−, completing the proof of
statement (3) of the lemma. �

The next lemma establishes that indeed v can be interpreted as the space of
directions of fastest divergence along U :

Lemma 7.3. For every ρ > 0 there exists δ > 0 such that ‖w‖ < δ for w ∈ g
implies that for any n ≤ n0 = n0(w) and any u ∈ a−nBU

1 an there exists an v ∈ v
such that ‖Adu(w)− v‖ < ρ.

Proof. Without loss of generality we may assume that w ∈ gλ, for otherwise we
can decompose w accordingly and the result for the components easily implies the
same for w.

Fix inside every weight space gξ a linear complement to v∩ gξ and take the sum
of these to obtain a linear complement v⊥ ⊂ g to v. For every w ∈ gλ and a given
weight ξ of smaller norm than λ we claim that the norm of the component of Adξ

u(w)
in v⊥ is bounded by a multiple of the maximum of the norms of Adζ

u(w) for weights
ζ smaller than ξ. This follows by considering the kernel of the corresponding maps;
if the sum of Adζ

u(w) for all weights ζ that are smaller than ξ would have a bigger
kernel than the projection of Adξ

u(w) to v⊥ we would have an element w ∈ gλ

whose leading term Adlt
u(w) has weight ζ and a nontrivial component in v⊥ which

contradicts the definition of v. Therefore, the norm of the component of Adξ
u(w) in

v⊥ is bounded by a constant multiple of the norm of Adζ
u(w) for some ζ of smaller

norm.
By Lemma 7.1 we know that Adξ

u(w) has bigger a-homogeneous weight than
Adζ

u(w), in other words when applying conjugation by a−1 to u the projection of
Adξ

u(w) to v⊥ will grow at a slower exponential rate than Adζ
u(w). Recall that

n = n0(w) was chosen so that at least one coefficient of Ada−nuan(w) has size one.
Together with the above the lemma follows. �

7.3. (U-2) implies control on the a-divergence. In our main argument we
need to show that the points x′δ and y′δ are still close together. These points are
produced out of two nearby points xδ and yδ via the action of ak which makes it
important to restrict the parameter k.

Proposition 7.4. Assuming (U-2) there exists some κ > 0 such that for sufficiently
small w ∈ g and 0 ≤ k ≤ k0 = κn0(w) implies ‖Adak(w)‖ ≤ ‖w‖1/2.
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Proof. By assumption (U-2) the expression Adu(w)− w (considered as a g-valued
polynomial in u) depends injectively on w when restricted to g+. In particular,
‖w‖ is bounded by a multiple of ‖Adu(w) − w‖. Therefore, for every weight λ
of norm bigger than one and every wλ ∈ gλ there exists a weight ξ such that the
constant term τλ,ξ = − log ‖Adξ

u(wλ)‖
log ‖λ‖−log ‖ξ‖ in the linear function nk(λ, ξ) (cf. (7.1)) is

bounded by −C1 log ‖wλ‖+ C2 for two absolute constants C1, C2 > 0. This shows
that n0(wλ) ≤ −C1 log ‖wλ‖+C2 whenever λ has norm bigger than one. We choose
κ > 0 such that κ < (2 log C1‖λ‖)−1 for all such weights. In particular, this shows
that κn0(wλ) < − log ‖wλ‖

2 log ‖λ‖ for all small enough wλ.
Let w ∈ g and w =

∑
λ wλ. Then Adak(w) =

∑
λ λkwλ. The lemma follows

since by the above ‖λkwλ‖ < ‖wλ‖1/2 for all λ of norm greater than one and all
k ≤ κn0(w) ≤ κn0(wλ). �

7.4. (U-∗) implies that there is no sub interval of slope −1. To be able to
use a density argument to find k in Section 5.6 we need to know that nk has no
sub intervals of slope −1.

Proposition 7.5. Assumption (U-∗) implies that there are some δ0, κ > 0, an
integer J and real numbers s1, . . . , sJ all 6= −1 (all of these parameters depend only
on a, U,G), so that for w ∈ g with ‖w‖ < δ0 and k ∈ [0, κn0(w)] we may write

nk(w) = min
1≤j≤J

bsjk + τj(w)c.

Proof. Recall that nk is defined as the minimum of nk(λ, ξ) = bsλ,ξk + τλ,ξ(w)c for
all weights λ, ξ and that sλ,ξ = −1 iff ξ = 1 (see (7.1)).

To prove the proposition, we need to show that if w and k satisfy the con-
ditions of the proposition nk cannot equal to nk(λ, ξ) if ξ = 1. Suppose this
were false. Without loss of generality we may suppose w = wλ ∈ gλ and let
w′ = Adak(w). By Proposition 7.4 ‖w′‖ < ‖w‖1/2. By definition of nk(λ, ξ) the
polynomial Adξ

a−nk uank
(w′) has a coefficient of almost norm one – in particular

there exist some u ∈ BU
1 such that ‖Ad1

a−nk uank (w′)‖ has a fixed lower bound.
However, Lemma 7.3 shows that Ada−nk uank (w′) is close to v if w is small enough.
This gives a contradiction to v < g−, therefore nk < nk(λ, 1) for all weights λ if
only δ0 is small enough (smaller than some constant depending only on a, U,G). �

8. Application: Invariant measures on Γ\G1 ×G2

In this section, we prove Theorem 1.5 regarding A1-invariant, G2-recurrent mea-
sures on Γ\G1×G2 where G1 is a rank one group over a local field Kσ, A1 ⊂ G1 is
a Kσ-split torus and G2 is any zero characteristic S-algebraic group. We let a ∈ A1

be an element for which χ(a) ∈ Qσ and |χ(a)|σ 6= 1 for all roots χ. (Clearly, it
is enough to ask this for the unique positive indivisible root of G1 since all other
roots are powers of this one.)

8.1. Some algebraic facts for semisimple groups of rank one. The following
two lemmata will be helpful for the discussion of all possible homogeneous measures
as in Theorem 1.5 as well as in the justification of the assumptions to Theorem 1.4.
To simplify the notation in these algebraic facts, we will write G for the semisimple
group of Kσ-rank one instead of G1.
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Lemma 8.1. Let G be a semisimple algebraic group over a characteristic zero local
field Kσ of Kσ-rank one. Let a ∈ A be a diagonalizable element of the maximal
split torus A in G with |χ(a)|σ 6= 1 as above, let U ≤ G− be a nontrivial algebraic
subgroup normalized by a. Then for any g ∈ G+ there exists some u ∈ U such that
ugu−1 6∈ G+G0.

Note that this is quite easy from the structure of linear representations in the
case where G is SL(2, Kσ), and as shown below the general case can be reduced to
this one.

Proof. Let u = expu for some eigenvector u of Ad(a) restricted to the Lie algebra
of U . By the Jacobson-Morozov theorem, we can find h,n completing u to an
sl(2, Kσ)-triplet, i.e. [h,u] = −2u, [h,n] = 2n and [u,n] = 2h.

Since Ad(a) is diagonalizable over Kσ, we can decompose the Lie algebra g of G
into weight spaces g =

⊕
λ gλ which are by definition eigenspaces for Ad(a). We

have assumed that u is an eigenvector, i.e. it belongs to g−λ0 for some positive root
λ0 (where we use additive notation for the roots). Let h =

∑
λ hλ and n =

∑
λ nλ

with hλ,nλ ∈ gλ. Then as [gλ, gη] ⊂ gλ+η we have that u, h0, and nλ0 are also an
sl(2, Kσ) -triplet, hence without loss of generality we can assume that h = h0 and
n = nλ0 .

Let h be the Lie algebra generated by u,h and n. Clearly, both u and n generate
Lie algebras to unipotent algebraic subgroups of G. The algebraic subgroup H
generated by these must have h as its Lie algebra(15). Therefore, H is isomorphic
to either SL(2, Kσ) or to PGL(2, Kσ). Since G is of Kσ-rank one and since the torus
AH in H whose Lie algebra contains h commutes with a, it follows that A = AH

is this torus in H.
Now let x = expx ∈ G+. Write x =

∑
λ xλ where xλ ∈ gλ. For each λ,

for sufficiently large k, ad(u)kxλ ∈ g−. Moreover, from the representation theory
of sl(2, Kσ) it follows also that if xλ ∈ gλ is nonzero for some positive λ, then
ad(u)2λxλ ∈ g−λ is nonzero. Therefore,

Ad(exp(tu))(xλ) =
∑

n

1
n!

ad(tu)nxλ 6∈ g+,

and the result follows by summing over all λ and choosing t ∈ Kσ to avoid cancel-
lation. �

Lemma 8.2. Let G be a semisimple algebraic group over a characteristic zero local
field Kσ of Kσ-rank one. Let a ∈ A be a diagonalizable element of the maximal split
torus A in G with |χ(a)|σ 6= 1, let U ≤ G− and U+ ≤ G+ be nontrivial algebraic
subgroups normalized by a. Then U and U+ generate a finite index normal subgroup
L◦ of a simple algebraic subgroup L of G containing a. In fact, L◦ is the subgroup
generated by all one dimensional unipotent subgroups(16) of G.

(15)To see this note first there is no proper Lie subalgebra of h containing u and n, so that
the Lie algebra of H contains h. Next notice that the unipotent groups leave h invariant and so

the same must be true for H. This shows that h is a Lie ideal in the Lie algebra of H. However,

for algebraic groups semisimple ideals in the Lie algebra correspond to normal Zariski closed
subgroups which shows the claim.

(16)As before, we suppress here a few of the algebraic phrases, i.e. more precisely L◦ is the

subgroup generated by all Kσ-points of one dimensional unipotent algebraic subgroups of G defined
over Kσ .
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Proof. Let L be the algebraic subgroup generated by the algebraic groups U and
U+. We claim first that L is a simple algebraic subgroup of G which contains A.
For this we proceed similar to the proof of Lemma 8.1. Let l be the Lie algebra
of L. Let u = expu for some eigenvector u ∈ l−λ0 of Ad(a) for some positive λ0.
Note that l contains the Lie algebra of U , so there is such an element. As before
we know by the Jacobson-Morozov theorem that there exists an sl(2, Kσ)-triplet u,
h, n consisting of eigenvectors for Ad(a). Then, ad(u) maps the eigenspace lλ into
lλ−λ0 and the correct iterate gives for positive λ an injective map from lλ to l−λ.
By the symmetry of positive and negative weights in our assumptions, this shows
that the map ad(u)2 restricted to lλ0 is surjective onto l−λ0 . This shows that l
contains an sl(2, Kσ)-triplet consisting of eigenvectors for Ad(a). In fact, the above
shows that there is some n′ ∈ lλ0 for which u = ad(u)2(n′), which implies that
n′, h′ = ad(u)(n′), and u is sl(2, Kσ)-triplet. (In fact, this triplet is equal to the
orginal triplet considered above.) Just as in the proof of Lemma 8.1 this implies
that A < L.

For the above claim it remains to show that L is simple. So suppose first that
L has a unipotent radical, which by the above is normalized by A. So let u be an
eigenvector for Ad(a) restricted to the Lie algebra of the radical. Clearly, the weight
cannot be zero since the centralizer of A does not contain any unipotent subgroups
in a semisimple group. So we may assume the weight is positive, but then the above
shows that u is contained in an sl(2, Kσ)-triplet which is contained in l. This is a
contradiction to u being in the Lie algebra of the unipotent radical of L. Finally
note that since L is unipotently generated its radical equals the unipotent radical,
therefore L is semisimple. If L would have several simple factors, then only one
of them could be isotropic since G has Kσ-rank one. However, this is impossible
since L is generated by unipotent subgroups and these can only be contained in the
isotropic factor.

Let now L◦ be as in the lemma. We first claim that L◦ is open, i.e. it con-
tains a neighborhood of the identity. Let U ′ = (u(t) : t ∈ Kσ) < U be an A-
normalized one dimensional unipotent subgroup. Note that a neighborhood of the
identity in L is homeomorphic to a neighborhood of zero in Kdim L

σ (via log and
exp). We will show that it is possible to conjugate U ′ by elements of L◦ to ob-
tain dim L many conjugates Uj = (uj(t) : t ∈ Kσ) whose Lie algebras together
span l. Assuming this, it follows that the map from Kdim L

σ to L which is by
(t1, . . . , tdim L) 7→ u1(t1) · · ·udim L(tdim L) has an invertible derivative at 0. In this
case, the claim follows by the inverse function theorem.

Let U1 = U ′. We now construct the conjugates Uj for j > 1. Suppose we
have already constructed k < dim L many such conjugates that have transverse
Lie algebras. Then the span l′ of these Lie algebras is a subspace of l. If l′ is not
invariant under both U and U+, then we may conjugate some Uj by an element
of U or U+ to obtain an new conjugate Uk+1 whose Lie algebra is transversal
to the ones constructed earlier. Otherwise, l′ is normalized by L since L is the
algebraic subgroup generated by U and U+. Since the Lie bracket [·, ·] is obtained
by taking the derivative of the adjoint representation, it follows that l′ is a normal
Lie subalgebra of l. This is impossible unless k = dim L since L and, therefore also,
l are simple.

Note that in the case of Kσ = R it follows that L◦ is precisely the connected
component of L (in the Hausdorff topology). This proves the lemma in the real
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case. In the case of p-adic groups we have to use the structure theory of algebraic
groups once more. Our first goal here is to show that L◦ ∩A has finite index in A.
For this, note first that as before there exists an algebraic subgroup H < L which
is isomorphic to SL(2, Kσ) or PGL(2, Kσ) and contains both A and U ′. It is easy
to check for SL(2, Kσ), and so also for H, that some a′ ∈ A with |χ(a′)|σ 6= 1 can
be written as a′ = u1u

′
1u2u

′
2 with u′1, u

′
2 ∈ U ′ = H− and u1, u2 ∈ H+. Conjugating

this with some power of a′ we may assume that u1, u2 ∈ L◦. However, this shows
that a′ ∈ L◦ since U ′ ⊂ L◦ by definition. Since A is a group extension of the
compact group {a ∈ A : |χ(a)| = 1} by the integers and L◦ ∩ A is open in A, it
follows that L◦ ∩A has finite index in A.

Moreover, L◦ contains the stable horospherical subgroup L−, since L◦ ∩ L− is
open and since a′ can be used to expand this to the whole of L−. Let P be the
parabolic subgroup of L containing L−. Then P/L− is again an extension of a
compact group by the integers, and as with A we get that L◦ ∩ P has finite index
in P . Now let K be a good maximal compact open subgroup of L so that we have
the Iwasawa decomposition L = PK. Then we have

L = PK ⊂ L◦p1K ∪ · · · ∪ L◦pnK

for some p1, . . . , pn ∈ P . Here L◦pik is open in piK, and so by compactness we
deduce that L◦ has finite index in L.

Finally, we claim that L◦ is containing all one dimensional unipotent subgroups
of L which implies also normality. For this, consider any one dimensional unipotent
subgroup U ′′. Since L◦ is open, L◦ ∩ U ′′ is an open neighborhood of the identity
in U ′′. Moreover, U ′′ is contained in an algebraic subgroup of L isomorphic to
SL(2, Kσ) or PGL(2, Kσ). By finite index, there is some a′′ ∈ L◦ which expands
U ′′ which implies that U ′′ ⊂ L◦. �

8.2. A1-ergodic and invariant homogeneous measures on X = Γ\G1 × G2.
Assuming that G1 has Kσ-rank one, we will discuss here the structure of A1-ergodic
and invariant homogeneous measures. The following is a combination of Lemma 8.2
and of the classification of probability measures invariant under unipotent sub-
groups in the S-algebraic setting, see [Ra5] and [MT1].

Lemma 8.3. Let G1 be a Kσ-rank one semisimple algebraic group defined over Kσ

with split torus A1 < G1, let G2 be any S-algebraic group defined over local fields
of characteristic zero, and let Γ < G1 × G2 be a discrete subgroup. Let ν be an
A1-ergodic and invariant probability measures on X = Γ\G1 × G2. Suppose ν is
invariant under some nontrivial element of G−

1 and some nontrivial element of G+
1 .

Then ν is a convex combination of homogeneous measures as in Theorem 1.5. If in
addition Kσ equals either R or Qp for some prime p, then this is a finite average.

Proof. We may assume Kσ equals either Q∞ = R or Qp for some prime p, for
otherwise we may apply restriction of scalar to the group G1. Let s be ∞ or p
according to the case we are in. Note that in this restriction of scalar the Kσ-split
rank one torus A1 becomes higher rank with Qs-rank one. Therefore, if we want to
keep working with measures invariant and ergodic under the maximal split torus,
we have to do an ergodic decomposition.

So suppose now Kσ = Qs. Since µ is invariant under A1 and some nontrivial
element of G−

1 it follows easily that µ is also invariant under some A1-normalized
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unipotent algebraic subgroup of G−
1 and similarly of G+

1 . We let U be the maximal
such subgroup of G−

1 and similarly for U+ ⊂ G+
1 .

Let L be the algebraic subgroup generated by U and U+, and let L◦ < L be
the actual subgroup generated by U and U+ as in Lemma 8.2. By this lemma
L contains A1 and L◦ ∩ A has finite index in A. Therefore, the A-ergodic L◦-
invariant probability measure ν can be decomposed into finitely many L◦-ergodic
and invariant measures νi. Since L◦ is generated by unipotents, we may apply
the classification of measures invariant under such groups as in [Ra5] and [MT1].
Therefore, νi is homogeneous, i.e. there exists a closed subgroup H < G1×G2 such
that ν is the unique H-invariant probability measure on a closed H-orbit. �

8.3. Proof of Theorem 1.5 — first part. In this subsection we study the leaf-
wise measure for G− = G−

1 . As a step towards the classification of the measure µ as
in Theorem 1.5 we establish the invariance of the leafwise measures µG−

x under left
translations by a nontrivial subgroup of G− depending on x. At this point the main
obstacle for applying Theorem 1.4 is that we have to decompose the measure µ in
order to have (U-1) satisfied for one and the same subgroup U < G−. Condition
(U-2) will follow from Lemma 8.1 for any nontrivial U .

Let φ : X → Y = PM∗
∞(G−) denote the factor map x 7→ [µG−

x ] as in Section 3,
and let Y be the Borel σ-algebra on Y . Set ν = φ∗µ and let EY ⊂ Y be a countably
generated sub σ-algebra which is equivalent modulo ν to the σ-algebra of a-invariant
subsets of Y . Finally, we let

Eφ = φ−1(EY ).

In these notations, ν =
∫

Y
νEY

y dν(y) gives the ergodic decomposition of ν (in
particular, for a.e. y, the measure νEY

y is ergodic under the action of a), and we
have correspondingly a decomposition µ =

∫
X

µ
Eφ
x dµ(x); furthermore, the basic

properties of decomposition of measures imply that

φ∗µ
Eφ
x = νEY

φ(x) for µ-a.e. x ∈ X.

For notational convenience, set µx = µ
Eφ
x .

We need to understand the relation between the leafwise measures along G−-
orbits of µ and that of the probability measures µx. Concretely, we have for µ-a.e.
x, for µx-a.e. y that

(8.1) µG−

y = (µx)G−

y

by Lemma 3.8.
By construction and the way the leafwise measures are defined (specifically, by

the normalization in (LM-3)) µG−

x is determined by [µG−

x ] and therefore the map
x 7→ µG−

x is φ−1(Y)-measurable. (8.1) shows that (µx)G−

y = µG−

y for µx-a.e. y.
Since (µx)G−

y is only defined up to a set of µx measure zero we may choose it so
that µ-a.s. (µx)V

y = µV
y for all y. Therefore, for a.e. x, the assumption (Φ) of

Theorem 1.4 is satisfied by φ and µx.
We let Py be the subgroup in Lemma 6.2 applied with U = G−. Since Py is

normalized by a, it is clearly constant on the ergodic components for a. In fact, it
depends (measurably) only on the ergodic component of Φ(y) and so it is constant
a.e. (and equal to Px) with respect to µx for a.e. x.
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We wish to apply Theorem 1.4 for µx and U = Px for µ-a.e. x. Then (U-1)
is satisfied by definition of Px and (U-2) follows from Lemma 8.1 whenever Px

or equivalently µG−

x is nontrival. By Proposition 3.9 and our assumption (1) in
Theorem 1.5 this holds µ-a.e.

It follows that µx and φ satisfy the conditions of Theorem 1.4 for a.e. x, and
hence for a.e. x we can decompose µx into two measures µx

1 and µx
2 such that

(LE-1x) φ is locally CG(Ux) ∩G0-aligned modulo µx
1 , and

(LE-2x) µx
2 is CG(Ux) ∩G−-recurrent relative to φ.

We prove next that actually more is true.

Lemma 8.4. In the above notation, we have for a.e. x that either µx = µx
1 or µx

satisfies (LE-2x). Moreover, in the latter case the measure µx is invariant under a
nontrivial unipotent element of G−.

Proof. Let for simplicity of notation ν = µx be a measure for which φ∗ν is a-
ergodic and ν allows a decomposition into parts ν1 and ν2 for which (LE-1) resp.
(LE-2) holds. Moreover, we may also assume that [νG−

y ] = φ(y). Recall that by
construction of µx and the discussion immediately after (8.1) we know this happens
a.e.

Suppose now that ν 6= ν1, i.e. ν2 is appearing nontrivially in the decomposition.
By (LE-2) and (LM-2) this shows that there is a set X2 of positive ν measure such
that for y ∈ X2 there exists some uy ∈ G− with νG−

y and νG−

y uy are proportional.
By Lemma 3.10 this shows that νG−

y = νG−

y uy for a.e. y ∈ X2. By [EK2, Prop. 6.2]
this shows, again for a.e. y ∈ X2, that there is an a-normalized subgroup Hy

containing uy (or any other elements with the same property) which preserves νG−

y

under the right action. Since this is an a-invariant property of φ∗ν only, we conclude
by ergodicity that this property holds a.e. with the same H. Moreover, we may
assume that H is for a.e. y the maximal subgroup preserving νG−

y on the right. We
claim this implies that ν is H-invariant.

Assume (LM-2) for y and u.y and that νG−

y and νG−

u.y are invariant on the right
under H for some u ∈ G− and y ∈ X, which happens for a.e. y and νG−

y -a.e. u.
Then by (LM-2) we have that νG−

y is invariant under the right action of u−1Hu.
By maximality of H this shows that for a.e. y the subgroup H is normalized by
any u ∈ supp(νG−

y ) ⊂ G−. This can be used to show that νG−

y is actually invariant
under left multiplication by elements of H too, c.f. [EK2, Lemma 8.11]. The claim
follows now from the proof of Lemma 3.1, i.e. [Lin2, Prop. 4.3]. In that lemma it
was assumed that the leafwise measure for a subgroup U is the left Haar measure
of U and obtained invariance under the full group U , if instead one knows only
left invariance of the leafwise measures for G− under one and the same subgroup
H < G− one obtains invariance under H. �

We will show in the next section that µx satisfies (LE-2x) a.e. This implies
Theorem 1.5. More precisely, in this case we get that µx is invariant under a
nontrivial element of G− by Lemma 8.4. This implies that the ergodic components
of µx are invariant under a nontrivial element of G−. Since the ergodic components
of µ can be obtained from the ergodic components of µx for a.e. x, it follows that a.e.
ergodic component is invariant under a nontrivial element of G−. By symmetry the
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same holds for G+. Therefore, a.e. ergodic component of µ satisfies the assumptions
of Lemma 8.3 and the theorem follows.

8.4. Proof of Theorem 1.5 — (LE-2x) holds for µx a.e. To complete the
proof of Theorem 1.5 we need to show that a.e. (LE-1x) does not hold for µx. For
this we will need the product lemma, which is one of the main ingredients of the
high entropy method of [EK1]; but we need the more general [Lin2, Prop 6.4] or
[EK2, Thm 7.5]. Since conjugation by a contracts G− while acting trivially on G2

it implies that there is a set X ′ ⊂ X of full measure w.r.t. µ on which

µG−×G2
x = µG−

x × µG2
x ,

hence using the property (LM-2) of the construction of leafwise measures there is
a set of full measure (which we also denote by X ′) on which

(8.2) µG−

x = µG−

y for every x, y ∈ X ′ with y ∈ G2.x;

since φ(x) = [µG−

x ] this implies that φ is constant on the intersection of X ′ with
G2-orbits in X. Therefore, elements of Eφ consist (modulo µ) of unions of complete
G2-orbits, and so the leafwise measures for G2-orbits of µ and of µx are equal
in the sense that for µ-a.e. x and µx-a.e. y we have µG2

y = (µx)G2
y . In view of

Lemma 3.1.(1), and since we have assumed that µ is G2-recurrent, this equality
implies thar for a.e. x the measure µx is G2-recurrent.

To analyze the set where (LE-1x) holds and its connection to the assumption
(2) in Theorem 1.5 we need another lemma regarding algebraic groups. Recall that
M1 = {h ∈ G0

1 : χ(h) = 1}.

Lemma 8.5. For any nontrivial a-normalized U ≤ G−, the group M1∩CG(U) has
finite index in G0

1 ∩ CG(U).

Proof. Let u1, . . . ,u` be a basis for the Lie algebra of U consisting of eigenvalues
for the action of A1. Then CG1(U) = CG1(u1) ∩ . . . ∩ CG1(u`).

Let L = G0
1 ∩NG(Kσu1) ∩ . . . ∩NG(Kσu`). This is a reductive group (G0

1 and
so also L have no unipotents, hence no unipotent radical) containing A1. For every
g ∈ L, ui is an eigenvector of Ad g, and the corresponding eigenvalue gives a Kσ-
character χi on L. The group M1 was defined as the kernel of a Kσ-character χ on
CG1(A1). Since L has Kσ-rank one, the characters χ|L and χi for i = 1, . . . , ` are
rationally related, hence the intersection M1 ∩ CG(U) of the kernels of all of these
characters and the intersection G0

1 ∩CG1(U) of the kernels of χi for i = 1, . . . , ` are
commensurable. �

Claim: For µ-a.e. x, (LE-1x) does not hold for µx.

Proof of this claim. Indeed, suppose in contradiction that there is some set Y with
µ(Y ) > 0 on which (LE-1x) holds for µx. By assumption (2) of Theorem 1.5 we
have that for a.e. x the group

StabM1×G2(x) := {h ∈ M1 ×G2 : h.x = x}
is finite. Another assumption is that µ is G2-recurrent, which as discussed implies
that for µ-a.e. x, the measure µx is G2-recurrent. Therefore, if indeed µ(Y ) > 0,
there will be some x for which:

(1) µx is G2-recurrent;
(2) φ is locally CG(Ux) ∩G0-aligned modulo µx;
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(3) there is a set X ′ ⊂ X of full µx-measure so that φ(y′) = φ(y) for any
y′, y ∈ X ′ on the same orbit of G2;

(4) for µx-a.e. y, say again for all y ∈ X ′, we have that |StabM1×G2(y)| < ∞.
Note that (3) is a consequence of the product lemma; cf. (8.2).

These four properties, however, are not compatible. Indeed, let X1 ⊂ X ′, δ > 0
and O ⊂ CG(Ux) ∩ G0 be as in (1.1) of Definition 1.1 applied to the measure µx

and the group CG(Ux) ∩G0 with µx(X1) > 1/2. By recurrence of µx there will be
some y ∈ X1 and an unbounded sequence hi ∈ G2 such that for every i

hi.y ∈ X1 ∩Bδ(y).

By (3) we have also that φ(hi.y) = φ(y) for every i. Applying (1.1), we conclude
that hi.y ∈ O.y. Since O ⊂ CG(Ux) ∩ G0 has compact closure, since hi ∈ G2 ⊂
CG(Ux) ∩G0, and since hi →∞ we have

(8.3)
∣∣StabCG(Ux)∩G0(y)

∣∣ = ∞.

Observe that CG(Ux)∩G0 =
(
CG1(Ux) ∩G0

1

)
×G2, so by Lemma 8.5 we have that

M1 × G2 contains a finite index subgroup of CG(Ux) ∩ G0. The infinitude of the
stabilizer group in (8.3) thus implies that |StabM1×G2(y)| = ∞ — in contradiction
to (4). Thus our claim has been proved. �

As discussed in the last subsection, the above was the remaining step of the proof
of Theorem 1.5.

8.5. Short discussion about assumption (2) in Theorem 1.5. We end this
paper by noting that assumption (2) is absolute necessary in order to give a mean-
ingful description of invariant measures.

To see this, note first that SL(2, R)×SO(3) embeds into G1 = SO(4, 1) and that
the latter has real rank one. If we let G2 = SO(2, 1) we see that G = G1 × G2

contains the subgroup SL(2, R)× SO(3)× SO(2, 1). We define Γ to be the discrete
subgroup which is contained in the latter and equals SL(2, Z) × Γ′ where Γ′ is an
irreducible lattice in SO(3)× SO(2, 1).

If now µ equals any product of an A1-ergodic and invariant probability measure
on SL(2, Z)\SL(2, R) and e.g. the Haar measure on Γ′\SO(3) × SO(2, 1), then µ
is only a linear combination of A1-invariant homogeneous measure if the original
measure on SL(2, Z)\SL(2, R) was homogeneous. However, as is well known there
is an abundance of non-homogeneous probability measure that are invariant and
ergodic with respect to the geodesic flow for the modular surface, even with positive
entropy. Here we have G2-recurrence but in a way in which the assumption in
Theorem 1.5 (2) is not satisfied.
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