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Abstract. We study diophantine properties of a typical point with respect
to measures on Rn. Namely, we identify geometric conditions on a measure
µ on Rn guaranteeing that µ-almost every y ∈ Rn is not very well multi-
plicatively approximable by rationals. Measures satisfying our conditions
are called ‘friendly’. Examples include smooth measures on nondegenerate
manifolds, thus the present paper generalizes the main result of [KM]. An-
other class of examples is given by measures supported on self-similar sets
satisfying the open set condition, as well as their products and pushforwards
by certain smooth maps.

1. Introduction

The metric theory of diophantine approximation is concerned with the fol-
lowing question: if y ∈ Rn is a typical point in the sense of Lebesgue measure,
how well can y be approximated by rational vectors p/q, in terms of the size
of q. Definitive answers to this and similar questions were obtained in work
of A. Khintchine, A.V. Groshev and others in the 1920s and 1930s. A con-
jecture of K. Mahler from the 1930s, which was settled three decades later
by V. Sprindžuk, led to the theory of diophantine approximation on mani-
folds, where instead of studying diophantine properties of almost every point
in Rn, one considers a more delicate question regarding diophantine properties
of almost every point on a proper submanifold of this space.

In order to state more precisely Mahler’s conjecture, as well as the results
of G.A. Margulis and the first-named author [KM] which were the starting
point for this work, we introduce some standard notions from the theory of
diophantine approximation.

A point y ∈ Rn is said to be very well approximable if for some δ > 0 there
are infinitely many solutions p ∈ Zn and q ∈ Z+ to the inequality

(1.1) ‖qy − p‖ < q−( 1
n

+δ) .

A slightly less restrictive notion than very well approximable is the following: a
point y = (y1, . . . , yn) ∈ Rn is said to be very well multiplicatively approximable
if for some δ > 0 there are infinitely many solutions p = (p1, . . . , pn) ∈ Zn and
q ∈ Z+ to

(1.2)
n∏

i=1

|qyi − pi| < q−(1+δ) .

It is an immediate consequence of the pigeonhole principle that there exists
C > 0 such that for any y there are infinitely many solutions to ‖qy − p‖ <
Cq−1/n. It is also well-known that the set of very well approximable points
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has Lebesgue measure zero but full Hausdorff dimension, and the same is true
for the set of very well multiplicatively approximable points.

Mahler conjectured that for almost every x ∈ R, the point

(1.3) (x, x2, . . . , xn)

is not very well approximable. More generally, we shall say that a submanifold
M ⊂ Rn is extremal if almost every point on M (with respect to the smooth
measure class) is not very well approximable. If almost every point on M
is not very well multiplicatively approximable then M is said to be strongly
extremal . In these terms, Mahler’s conjecture states that the algebraic curve
(1.3) is extremal. The line

{(x, x, . . . , x) : x ∈ R}
on the other hand is easily seen to be non-extremal.

In [KM] it was shown that nondegenerate submanifolds of Rn (see §2 for
a definition; an example is any real analytic submanifold not contained in
any proper affine subspace of Rn) are strongly extremal, thereby settling a
conjecture of Sprindžuk [Sp2].

In this paper the primary objects of study are not submanifolds but mea-
sures. We say that a measure µ on Rn is extremal (resp., strongly extremal) if
µ-almost every point is not very well approximable (resp., not very well mul-
tiplicatively approximable). This viewpoint is more general, and includes the
discussion of submanifolds as a special case: by definition, a submanifold M
is extremal (resp., strongly extremal) if and only if the induced Riemannian
measure on M (considered as a measure on Rn) is extremal (resp., strongly
extremal).

In [W1], the third-named author treated the one-dimensional case, and
showed that any measure µ on R satisfying a certain geometric decay con-
dition introduced by W. Veech [V] (for example, the Hausdorff measure on the
standard Cantor ternary set) is extremal (which in the one-dimensional case is
equivalent to being strongly extremal). We refer the reader to [W2] for further
discussion. Since rational points in the higher dimensional case are distributed
much less regularly than in the one-dimensional case, the multi-dimensional
case we address here is harder.

In this paper we identify purely geometric conditions on measures which are
sufficient to guarantee strong extremality. Measures that satisfy our condi-
tions are called friendly measures (a somewhat fuzzy abbreviation of Federer,
nonplanar and decaying); these conditions are defined in §2, and our main
result is

Theorem 1.1. Let µ be a friendly measure on Rn. Then µ is strongly ex-
tremal.

The class of friendly measures includes volume measures on smooth mani-
folds considered in [KM], thus the above theorem generalizes the main result
of that paper.

Various measures supported on fractal subsets of Rn are also friendly, for
instance (these are all special cases of more general results stated in §2):
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(1) Hausdorff measures on self-similar sets satisfying the open set condi-
tion (such as the Cantor set, Koch snowflake or Sierpinski gasket),
provided that the set is not contained in the union of finitely many
proper hyperplanes.

(2) Pushforwards of such measures by nonsingular nondegenerate maps.

The class of friendly measures is also closed with respect to products of mea-
sures, giving rise to further examples.

Overview: We start in §2 by defining and describing the class of friendly
measures. We also review some basic facts about self-similar sets, and give
precise statements of our results.

In §§3–5 we prove Theorem 1.1. Our proof follows the method developed
in [KM]. This involves translating the diophantine properties we are inter-
ested in to properties of trajectories for the action of a semigroup of diagonal
matrices on the noncompact homogeneous space SLn+1(R)/ SLn+1(Z). Such a
translation is classical for the case n = 1 and was used for n ≥ 2 in the work
of W. Schmidt [Sch2], S.G. Dani [Da1], Margulis, the first-named author, and
others. We discuss this correspondence and reduce Theorem 1.1 to a quan-
titative nondivergence result for the aforementioned action (Theorem 4.3) in
§§3–4.

In §5 we prove Theorem 4.3, which is an extension of the results of [KM,
§§4–5]. We remark that the argument involved played an important role in the
study of unipotent flows, and refer the reader to the surveys [KSS, Chapter 3]
and [K1] for further description of this method and historical background. Our
proof is very close to that of [KM], but is presented from a somewhat different
perspective, and incorporates several minor improvements which were useful
in our framework.

We give a non-uniform variant of the friendly condition in §6, and outline
how the proofs in §§3–5 can be modified to establish that measures satisfying
that condition are strongly extremal.

After that we exhibit some friendly measures. In §7 we prove that the push-
forward of a measure from a certain class of measures on Rd (more restrictive
than the class of friendly measures) to Rn via a nonsingular nondegenerate
map is friendly. For the special case of Lebesgue measure, this follows easily
from [KM, Proposition 3.4], but that proof does not apply to more general
measures, and the argument we give is new.

In §8 we discuss Hausdorff measures on self-similar sets satisfying the open
set condition, and show that such measures are friendly, and moreover satisfy
the stronger property needed for the pushforward result.

In §9 we show that the class of friendly measures is closed with respect to
Cartesian products.

We conclude the paper with a discussion of possible extensions and gener-
alizations of the main results and a list of open questions.

Acknowledgements: Part of the work was done during the authors’ collab-
oration at the Newton Institute (Cambridge), ETH (Zurich) and at Brandeis
University; the hospitality of these institutions is gratefully acknowledged. We
also thank Amnon Besser for his help in producing the figures. This research
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2. Friendly measures

We begin by introducing some notation. For a point x in a metric space and
r > 0, B(x, r) stands for the open ball of radius r centered at x. The standard
inner product of x,y ∈ Rn is denoted by 〈x,y〉. For an affine subspace L ⊂ Rn

we denote by dL(x) the (Euclidean) distance from x to L. By L(ε) we denote
the ε-neighborhood of L, that is, the set

(2.1) L(ε) def
= {x ∈ Rn : dL(x) < ε} .

If B ⊂ X and f is a real-valued function on X, let

‖f‖B
def
= sup

x∈B
|f(x)| .

If µ is a measure on X such that µ(B) > 0, we define ‖f‖µ,B to be equal to
‖f‖B ∩ supp µ , which, in case f is continuous and B is open, is the same as the
L∞(µ)-norm of f |B, i.e.

‖f‖µ,B = sup
{
c : µ({z ∈ B : |f(z)| > c}) > 0

}
.

Note that for B ⊂ Rn and an affine hyperplane (that is, a translate of an
(n − 1)-dimensional linear subspace) L ⊂ Rn, the quantity ‖dL‖B measures
the ‘width of B with respect to L’, i.e., the infimum of ε for which B ⊂ L(ε).
Similarly, ‖dL‖µ,B measures the ‘µ-essential width of B with respect to L’,
which, if B is open, coincides with inf{ε : µ(B r L(ε)) = 0}.

In what follows, µ will stand for a locally finite Borel measure on a σ-
compact metric space. Our first definition works in the context of arbitrary
metric spaces X. If D > 0 and U ⊂ X is an open subset, let us say that µ is
D-Federer on U if for all x ∈ suppµ ∩ U one has

(2.2)
µ
(
B(x, 3r)

)

µ
(
B(x, r)

) < D

whenever B(x, 3r) ⊂ U .
Equivalently (with a different value of D) one can replace ‘3’ in (2.2) by

any number bigger than 1. Another equivalent condition is the existence of c,
β > 0 such that for all x ∈ supp µ ∩ U and every 0 < ε ≤ r with B(x, r) ⊂ U
one has

(2.3)
µ
(
B(x, ε)

)

µ
(
B(x, r)

) ≥ c
(ε
r

)β

.

A version of this definition with U = X is also known as the ‘doubling property’
and plays an important role in geometric measure theory; we refer the reader
to [MU] for references and examples. However the class of measures which
are D-Federer on X is too narrow for our purposes, since it is not closed with
respect to restrictions to open subsets of X. Thus we propose the following
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Figure 1. Absolute and relative decay
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localized modification: we will say that a measure µ on X is Federer 1 if for
µ-a.e. x ∈ X there exist a neighborhood U of x and D > 0 such that µ is
D-Federer on U .

For the next definitions we take X = Rn. Say that µ on Rn is nonplanar
if µ(L) = 0 for any affine hyperplane L of Rn. Given C, α > 0 and an open
subset U of Rn, say that µ is (C, α)-decaying on U if for any non-empty open
ball B ⊂ U centered in supp µ, any affine hyperplane L ⊂ Rn, and any ε > 0
one has

(2.4) µ
(
B ∩ L(ε)

)
≤ C

(
ε

‖dL‖µ,B

)α

µ(B) .

Also say that µ is absolutely (C, α)-decaying on U if for any B, L and ε as
above, one has

(2.5) µ
(
B ∩ L(ε)

)
≤ C

(ε
r

)α

µ(B) ,

where r is the radius of B. Equivalently (up to a slight change of C) one can
replace r in (2.5) with ‖dL‖B, since the latter is between r and 2r whenever
the left hand side of (2.5) is positive.

We will say that µ is decaying (resp. absolutely decaying) if for for µ-a.e.
y0 ∈ Rn there exist a neighborhood U of y0 and C, α > 0 such that µ is (C, α)-
decaying (resp. absolutely (C, α)-decaying) on U . Finally, let us say that µ is
friendly if it is Federer, nonplanar and decaying.

One can easily see, comparing (2.4) and (2.5), that any absolutely decaying
measure is decaying, and it is also clear that any absolutely decaying measure

1This term was used in [Sa] to describe a larger class of measures, which we refer to as
non-uniformly Federer , see §6.
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is nonplanar. Thus any absolutely decaying Federer measure is friendly, in
particular, so is Lebesgue measure on Rn. Also, the class of friendly measures
is clearly closed with respect to restriction to open subsets of Rn, and, further,
µ is friendly if and only if µ-almost every point has a neighborhood U such
that µ|U is friendly.

We now turn to establishing that certain families of measures are friendly.
The first such family of nontrivial examples comes from measures on smooth
submanifolds of Rn which are ‘curved enough’ to deviate from any affine hy-
perplane. Such manifolds were called nondegenerate in [KM]. More precisely,
let U be an open subset of Rd, and let f = (f1, . . . , fn) : U → Rn be a C` map,
` ∈ N. Say that f is `-nondegenerate at x ∈ U if the space Rn is spanned by
partial derivatives of f at x of order up to `. If M ⊂ Rn is a d-dimensional
C` submanifold, we will say that M is `-nondegenerate at y ∈ M if any
(equivalently, some) diffeomorphism f between an open subset U of Rd and a
neighborhood of y in M is `-nondegenerate at f−1(y). We will say that f or
M are nondegenerate if they are `-nondegenerate for some `.

Let us denote Lebesgue measure on Rd by λ. One has the following

Theorem 2.1. Let U be an open subset of Rd, and f a map from U to Rn.

(a) Suppose that f is C`, nonsingular and `-nondegenerate at λ-almost
every point of U ; then f∗λ is friendly.

(b) Suppose that µ is an absolutely decaying Federer measure on U , and f

is a C`+1 map which is nonsingular and `-nondegenerate at µ-almost
every point; then f∗µ is friendly.

Note that the main result of [KM] is the strong extremality of f∗λ for f as in
(a) above; in view of Theorem 2.1, it is included in Theorem 1.1 as a special
case.

Note also that Theorem 2.1(b) highlights the difference between decay and
absolute decay: one cannot weaken the hypotheses and replace ‘absolutely
decaying’ with ‘decaying’. Indeed, it is not hard to see that volume measures
on proper C1 submanifolds of Rn are never absolutely decaying, and when
n ≥ 2 one can easily construct an everywhere nondegenerate map from Rn to
Rn which sends a proper submanifold into a proper affine subspace. However,
one can show that any decaying non-atomic (⇔ nonplanar) measure on R is
absolutely decaying.

On the other hand, the class of friendly (and even absolutely decaying Fed-
erer) measures turns out to be big enough to include measures supported on
fractal subsets of Rn. An important family of examples is given by measures
supported on self-similar sets satisfying the so-called open set condition, which
we now define.

One says that h : Rn → Rn is a similarity map if it can be written as

(2.6) h(y) = %Θ(y) + a ,

where % ∈ R+, Θ ∈ O(n,R) and a ∈ Rn. It is said to be contracting if % < 1. It
is known, see [H], that for any finite family h1, . . . ,hm of contracting similarity
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maps there exists a unique set K, called the attractor of the family, such that

(2.7) K =

m⋃

i=1

hi(K).

Say that h1, . . . ,hm as above satisfy the open set condition if there exists an
open subset U ⊂ Rn such that

hi(U) ⊂ U for all i = 1, . . . , m ,

and
i 6= j =⇒ hi(U) ∩ hj(U) = ∅ .

J. Hutchinson [H] proved that if hi = %iΘi + ai, i = 1, . . . , m, satisfy the
open set condition, and if s > 0 is the unique solution of

(2.8)
∑

i

%s
i = 1 ,

which we will call the similarity dimension of the family {hi}, then the s-
dimensional Hausdorff measure Hs of K is positive and finite. Measures ob-
tained via the above construction have been thoroughly studied during recent
decades; perhaps the simplest example is given by the log 2

log 3
-dimensional Haus-

dorff measure on Cantor’s ternary set.
We would like to prove these measures to be friendly. However a natural

obstruction arises if there exists a finite collection of proper affine subspaces
L1, . . . ,Lk which is invariant under the family {hi}. Let us say that a family
of maps is irreducible if this does not happen. The following is true:

Theorem 2.2. Let {h1, . . . ,hm} be an irreducible family of contracting simi-
larity self-maps of Rn satisfying the open set condition, s its similarity dimen-
sion, µ the restriction of Hs to its attractor. Then µ is absolutely decaying
and Federer, and, in particular, friendly.

Combining the two theorems above, one can already construct a variety of
friendly measures. Another source of examples comes from product measures:

Theorem 2.3. For i = 1, . . . , k, let µi be a measure on Rni and let µ =
µ1 × · · · × µk on Rn, n =

∑
ni. Then:

(1) If each µi is absolutely decaying and Federer, then so is µ.
(2) If each µi is friendly, then µ is friendly.

The proofs of all the theorems from this section are contained in §§7–9.

Remark. Note that, unlike strong extremality, the Federer and decay condi-
tions are not measure class invariant, see §6 for more detail. Moreover, these
conditions can be relaxed somewhat without sacrificing the validity of Theorem
1.1. For clarity of exposition we first present the proof that friendly measures
are strongly extremal. We then define non-uniform versions of the conditions
for a measure to be friendly, and prove that measures satisfying these non-
uniform conditions are also strongly extremal. We do not know whether the
latter conditions are measure class invariant, but, in view of a result of H. Sato
[Sa] regarding a non-uniform version of the Federer condition, we suspect that
they are.
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3. Diophantine approximation and flows on homogeneous spaces

In this section we recall the connection between diophantine approximation
and flows on homogeneous spaces, and reduce Theorem 1.1 to a quantitative
nondivergence result.

Let G = SLn+1(R), Γ = SLn+1(Z), and denote by π : G → G/Γ, g 7→ gΓ,
the natural projection map. G acts on G/Γ by left translations via the rule
gπ(h) = π(gh), g, h ∈ G. Equivalently one can describe G/Γ as the space of
unimodular lattices in Rn+1, with π(g) = gZn+1 and the action of G on G/Γ
coming from the linear action of G on Rn+1. We will be interested in the action
of a certain subsemigroup of G on G/Γ. Namely, we let Rn

+ (resp. Zn
+) denote

the (integer) vectors all of whose entries are non-negative, and for t ∈ Rn
+ let

(3.1) gt = diag(et1 , . . . , etn , e−t), t = (t1, . . . , tn), t =
n∑

i=1

ti .

Then {gt} acts on G/Γ by the rule gtπ(g) = π(gtg). Thus the action of gt on
a lattice Λ will contract the last component of every vector of Λ and expand
the remaining components. Here and throughout, ‖·‖ denotes the Euclidean
norm and ‖·‖∞ the maximum norm.

For ε > 0 let

Kε
def
= π

({
g ∈ G : ‖gv‖ ≥ ε ∀v ∈ Zn+1 r {0}

})
,(3.2)

i.e., Kε is the collection of all unimodular lattices in Rn+1 which contain no
nonzero vector smaller than ε. Recall that G/Γ is noncompact and has fi-
nite G-invariant measure. Each Kε, however, is compact, and {Kε}ε>0 is an
exhaustion of G/Γ [R, Chapter 10].

We define the following maps from Rn to G and G/Γ:

(3.3) τ(y)
def
=

(
In y

0 1

)
, τ̄

def
= π◦τ

(here In stands for the n×n identity matrix). The following proposition relates
the orbit of τ̄ (y) under the semigroup (3.1) with the diophantine properties
of y. For an equivalent but slightly different approach, compare with [KM,
Corollary 2.2], [K2, Corollary 5.2].

Proposition 3.1. For y ∈ Rn, the following are equivalent:

(i) y is not very well multiplicatively approximable;
(ii) for any γ > 0 one has

(3.4) gtτ̄ (y) ∈ Ke−γt

whenever t ∈ Rn
+ is large enough;

(iii) for any γ > 0 (3.4) holds for all but finitely many t ∈ Zn
+.

We first prove a lemma which shows that very well multiplicatively approx-
imable points automatically satisfy a seemingly more stringent condition.

Lemma 3.2. Let y ∈ Rn be very well multiplicatively approximable. Then
there exists δ > 0 for which there are infinitely many solutions p ∈ Zn, q ∈ Z+
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to (1.2) in addition satisfying

(3.5) ‖qy − p‖∞ < q−δ/n .

Proof. Choose δ0 > 0 for which there are infinitely many solutions p ∈ Zn,
q ∈ Z+ to the inequality

(3.6)
n∏

i=1

|qyi − pi| < q−(1+δ0) ,

and set δ
def
=

δ0
n+ 2 + δ0

.

Let p, q be a solution to (3.6), and let q1
def
= [q

δ0
n+2 ]. For every k ∈ {1, . . . , q1 + 1}

set

vk
def
= kq y mod 1

(where we take the fractional part in each coordinate). Since {v1, . . . ,vq1+1}
are q1 + 1 points in the unit cube [0, 1)n, there must be two points, say vk, v`

with 1 ≤ k < ` ≤ q1 + 1, such that

(3.7) ‖vk − v`‖∞ ≤ q
− 1

n
1 ≤ q−

δ0
n(n+2) .

We set q̄
def
= (`− k)q and let p̄ ∈ Zn be the integer vector closest to q̄y. Note

that q̄ ≤ q
n+2+δ0

n+2 . Then by (3.7),

‖q̄y − p̄‖∞ ≤ q
− δ0

n(n+2) ≤ q̄
− δ0

n(n+2+δ0) = q̄−
δ
n .

Furthermore,
n∏

i=1

|q̄yi − p̄i| ≤ (`− k)n

n∏

i=1

|qyi − pi|

≤ q
nδ0
n+2 q−(1+δ0)

≤ q̄
−n+2+2δ0

n+2+δ0 = q̄−(1+δ).

(3.8)

Thus q̄, p̄ is a solution to both (1.2) and (3.5). �

Proof of Proposition 3.1. Let us show that (ii) implies (i). Indeed, suppose by
contradiction that for some δ > 0 we have infinitely many solutions to both
inequalities (1.2) and (3.5). Fix arbitrary positive γ < δ

n+δ
, and let p, q be one

of the solutions. Our goal is to find t = t(q) so that the norm of the vector

(3.9) v
def
= gtτ(y)

(
−p

q

)
=




et1(qy1 − p1)
...

etn(qyn − pn)
e−tq


 ∈ gtτ(y) Zn+1 r {0}

is less than e−γt, and so that t → ∞ as q → ∞.
We consider two cases. If at least one coordinate of qy−p, say the last one,

is equal to zero, one can take δ′ < δ with γ = δ′

n+δ′
, and define t by

et1 = · · · = etn−1 = q
δ−δ′

n , etn = q1−n−1
n

δ+δ′ .
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Then et = q1+δ′/n, therefore

‖v‖∞ = max(et1 ‖qy − p‖∞ , e−tq)
(3.5)

≤ q−δ′/n = e−γt .

Otherwise, take 1 < s < 1 + δ, set

Q
def
=

(
n∏

i=1

|qyi − pi|
)−1

and α
def
=

logQ

s log q
,

and then define t by

eti = |qyi − pi|−1/α , i = 1, . . . , n.

Note that α > 1+δ
s

in view of (1.2), or, equivalently, 1 − 1/α > 1+δ−s
1+δ

. Also

et = Q1/α = qs .

Therefore one has

e−tq = q1−s = e−
s−1

s
t

and

eti |qyi − pi| = |qyi − pi|1−1/α
(3.5)

≤ q−
δ
n

(1−1/α) = e−
δ
n

1−1/α
s

t < e−
δ
n

1+δ−s
s(1+δ)

t .

Choosing the optimal s one gets

‖v‖∞ ≤ e−
δ

n+δ
t ≤ e−γt ,

thus finishing the proof of (ii) =⇒ (i).

The proof of the opposite direction is similar; since we will not use it, we
leave the details to the reader. Finally, the equivalence of (ii) and (iii) follows
in a straightforward manner from the continuity of the G-action on G/Γ. �

We now complete our description of the strategy for proving Theorem 1.1.
We will establish the following:

Theorem 3.3. Suppose that µ is a friendly measure on Rn. Then for µ-almost

every y0 ∈ Rn there is a ball B centered at y0 and C̃, α > 0 such that for any
t ∈ Zn

+ and any ε > 0,

µ({y ∈ B : gtτ̄(y) /∈ Kε}) ≤ C̃εα.

This theorem will be deduced from the more general Theorem 4.3 in the
next section. Informally speaking, Theorem 3.3 shows that for fixed t, the
‘orbit’ {gtτ̄(y) : y ∈ B} does not diverge, that is, a very significant proportion
of it (computed in terms of µ and uniform in t) stays inside compact sets Kε.
Theorem 3.3 generalizes [KM, Proposition 2.3], where a similar estimate is
proved for volume measures on nondegenerate submanifolds of Rn.

Proof of Theorem 1.1 assuming Theorem 3.3. The Borel-Cantelli Lemma
states that if µ is a measure on a space X and {Ai} is a countable collection
of measurable subsets of X with

∑
i µ(Ai) < ∞, then µ-almost every x ∈ X

is contained in at most finitely many sets Ai. Assuming Theorem 3.3, we see
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that if µ is friendly, then for µ-almost every y0 ∈ Rn there is a ball B centered
at y0 such that for any γ > 0,

∑

t∈Zn
+

µ
(
{y ∈ B : gtτ̄(y) /∈ Ke−γt}

)
<∞ .

From Proposition 3.1 we can conclude that µ-a.e. y ∈ B is not very well
multiplicatively approximable, and since a countable collection of such balls
covers µ-a.e. point, it follows that µ is strongly extremal. �

4. Quantitative nondivergence

In order to state the main result of this section we need to introduce some
notation and definitions.

Say that a metric space X is Besicovitch if there exists N > 0 such that for
any bounded set A ⊂ X and any collection of balls B such that any x ∈ A is
the center of a ball in B, there is a countable subcollection Ω ⊂ B such that

A ⊂
⋃

B∈Ω

B

and

max
x∈X

#{B ∈ Ω : x ∈ B} ≤ N.

It is well known, see e.g. [Mat], that Rn equipped with the Euclidean metric,
and hence any of its subsets, is Besicovitch.

Given C, α > 0, a metric space X, a subset U of X, a measure µ on X, and
a real-valued function f on X, say that f is (C, α)-good on U with respect to
µ if for any open ball B ⊂ U centered in supp µ and any ε > 0 one has

(4.1) µ
(
{x ∈ B : |f(x)| < ε}

)
≤ C

(
ε

‖f‖µ,B

)α

µ(B) .

The class of (C, α)-good functions with respect to Lebesgue measure on Rn

was introduced in [KM]. We refer the reader to [KM] and [BKM] for various
properties and examples.

Lemma 4.1. Suppose that f1, . . . , fk are (C, α)-good on U with respect to µ.
Then (f 2

1 + · · · + f 2
k )1/2 is (kα/2C, α)-good on U with respect to µ.

Proof. It is immediate from the definition that if f1, . . . , fk are all (C, α)-good
then so is max (|f1|, . . . , |fk|). Using this, we see that

µ
(
{x ∈ B :

(
k∑

i=1

f 2
i (x)

)1/2

< ε}
)
≤ µ

(
{x ∈ B : max

1≤i≤k
|fi(x)| < ε}

)

≤ C

(
ε

‖max1≤i≤k |fi| ‖µ,B

)α

µ(B)

≤ Ckα/2

(
ε

‖ (
∑
f 2

i )
1/2 ‖µ,B

)α

µ(B) .

�
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One can immediately notice the similarity between the definition of (C, α)-
good functions and that of (C, α)-decaying measures. Indeed, one easily veri-
fies:

Lemma 4.2. A measure µ on Rn is (C, α)-decaying on U ⊂ Rn if and only
if all functions of the form dL(x), where L is an affine hyperplane in Rn, are
(C, α)-good on U with respect to µ.

The setup of Theorem 4.3 involves a Besicovitch metric space X and a
family of functions assumed to be (C, α)-good on some ball in X with respect
to some measure µ on X. More precisely, these functions are compositions of
continuous maps from X to G = SLn+1(R) with certain functions on G, which
arise from the action of G on

W def
= the set of nonzero rational subspaces of Rn+1 .

Namely, fix a Euclidean structure on Rn+1, and for g ∈ G and V ∈ W define
`V (g) to be the covolume of gV ∩ gZn+1 in gV . Equivalently, one can extend
the Euclidean norm ‖ · ‖ from Rn+1 to its exterior algebra, and set

`V (g)
def
= ‖g(v1 ∧ · · · ∧ vk)‖ ,

where {v1, . . . ,vk} is a generating set for Zn+1 ∩V ; note that the above quan-
tity does not depend on the choice of {vi}.

Here is the main result required for proving Theorem 1.1.

Theorem 4.3. Given an open subset U of a Besicovitch metric space X,
positive constants C,D, α, and a measure µ which is D-Federer on U , there
exists C ′ > 0 with the following property. Suppose h is a continuous map
U → G, 0 < % ≤ 1, z ∈ U ∩ suppµ, and B = B(z, r) is a ball such that

B̃
def
= B(z, 3nr) is contained in U , and that for each V ∈ W
(a) the function `V ◦h is (C, α)-good on B̃ with respect to µ,

and

(b) ‖`V ◦h‖µ,B ≥ %.

Then for any 0 < ε ≤ %,

µ
({
x ∈ B : π

(
h(x)

)
/∈ Kε

})
≤ C ′

(
ε

%

)α

µ(B) .

Theorem 4.3 is proved in §5 by modifying arguments from [KM, §4–5]. In
the remainder of this section we will use it to derive Theorem 3.3.

Proof of Theorem 3.3 assuming Theorem 4.3. The strategy is to take X = Rn

and h(y) = gtτ(y), with gt and τ as defined in §3, and then relate the decay
property of µ to condition (a) of Theorem 4.3, and the nonplanar property of
µ to condition (b).

Since µ is decaying and Federer, for almost every y0 ∈ Rn one can choose
a ball B = B(y0, r) and C0, D, α > 0 such that µ is (C0, α)-decaying and D-

Federer on the dilated ball B̃ = B(y0, 3
nr). An easy compactness argument
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using the assumption that µ is nonplanar shows the existence of 0 < % < 1
such that

(4.2) ‖dL‖µ,B ≥ % for any affine hyperplane L ⊂ Rn.

Suppose that V is a k-dimensional subspace of Rn+1 spanned by the integer
vectors

v1 =

(
−p1

q1

)
, . . . ,vk =

(
−pk

qk

)
.

By performing Gaussian elimination over the integers, there is no loss of
generality in assuming that

qi = 0, i = 2, . . . , k.

We need to show that `V ◦ h(y) satisfies conditions (a) and (b) of Theorem
4.3.

Denote by V0 the subspace

V0
def
= {(x1, . . . , xn+1) : xn+1 = 0}

of Rn+1. We separate into two cases: suppose first that q1 is also 0, that is,
V ⊂ V0. Since every element of V0 is τ(Rn)-invariant, we have

h(y) [v1 ∧ · · · ∧ vk] = gt [v1 ∧ · · · ∧ vk] ,

so y 7→ `V ◦ h(y) is a constant function, obviously satisfying (a). Also, since
gt expands V0, we can write

`V ◦ h(y) = ‖gt [v1 ∧ · · · ∧ vk]‖ ≥ ‖v1 ∧ · · · ∧ vk‖ ≥ 1 ,

hence (b) is satisfied as well.

Now suppose q1 6= 0. Set

g̃t
def
=



et1 . . . 0
...

. . . 0
0 . . . etn


 and w

def
= gtv2 ∧ · · · ∧ gtvk ,

and let P denote the linear subspace of Rn corresponding to g̃tp2 ∧ · · · ∧ g̃tpk.
Then

h(y) [v1 ∧ · · · ∧ vk] = [gtτ(y)v1 ∧ · · · ∧ gtτ(y)vk]

= [gtτ(y)v1 ∧ gtv2 ∧ · · · ∧ gtvk]

=

(
gt

(
q1y − p1

q1

))
∧ w

=

(
g̃t(q1y − p1)

e−tq1

)
∧ w

=

(
0

e−tq1

)
∧ w +

(
g̃t(q1y − p1)

0

)
∧ w.(4.3)

Since w is orthogonal to

(
0

e−tq1

)
, we have

‖
(

0
e−tq1

)
∧ w‖2 = ‖w‖2 q2

1e
−2t,
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and furthermore the two k-forms in (4.3) are orthogonal.
We are left with evaluating the norm of the second expression in (4.3). Since

all vectors involved are in V0 this is simply the volume of the parallelepiped
spanned by g̃t(q1y − p1), g̃tp2, . . . , g̃tpk, hence

∥∥∥∥
(
g̃t(q1y − p1)

0

)
∧ w

∥∥∥∥
2

= dP (g̃t(q1y − p1))
2 ‖w‖2.

Thus we obtain:

(`V ◦ h(y))2 = ‖h(y) [v1 ∧ · · · ∧ vk]‖2

= ‖w‖2
[
dP
(
g̃t(q1y − p1)

)2
+ q2

1e
−2t
]
.

(4.4)

It follows from Lemma 4.1, in conjunction with Lemma 4.2 and the (C0, α)-

decaying property of µ, that `V ◦h is (C, α)-good on B̃ with respect to µ, with
C = (n+ 1)α/2C0, establishing (a).

As in the previous case, since for i > 1 we know that vi is an integer vector
in V0, and gt expands V0, we have

‖w‖ ≥ 1 .

Thus (4.4) implies that for every y,

`V ◦ h(y) > dP
(
g̃t(q1y − p1)

)
.

Since q1 is a nonzero integer and g̃t expands Rn, there exists a (k − 1)-
dimensional affine subspace P ′ such that `V ◦ h(y) > dP ′(y). By (4.2) this
implies that ‖`V ◦ h(y)‖µ,B > %.

Using Theorem 4.3 with U = B̃, and enlarging C ′ if necessary to account
for the case ε ≥ %, we obtain the conclusion of Theorem 3.3. �

5. Proof of Theorem 4.3

Throughout this section, we retain the hypotheses and notations of Theo-
rem 4.3, and let N denote the constant involved in the definition of the Besi-
covitch condition. With no loss of generality we will replace X with suppµ,
inducing the metric from X; this will allow us to use ‖ · ‖B in place of ‖ · ‖µ,B

throughout the proof.
We need some additional terminology.
By a flag we mean a chain (not necessarily maximal)

F =
(
{0} = V0 & V1 & · · · & Vm & Vm+1 = Rn+1

)
,

where Vi ∈ W for i = 1, . . . , m.
We will call m the length of F . The subspaces Vi, i = 1, . . . , m will be called

the subspaces belonging to F . For V ∈ W we will say that V can be added to
F if, for some 0 ≤ i ≤ m, Vi & V & Vi+1. If this holds we will denote the flag
obtained by adding V to F by F + V .

Let F be as above, and let F ′ be another flag. We will say that F is
subordinate to F ′ if every subspace belonging to F can be added to F ′. Note
that if the length of F ′ is m, then the length of any flag subordinate to F ′ is
at most n−m.
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If F is a flag which is subordinate to F ′, we will say that a point y ∈ X
is marked by (F , ε, %) relative to F ′ (or simply marked by F relative to F ′), if
the following hold:

(M1) for any subspace V belonging to F , `V
(
h(y)

)
≤ %.

(M2) for any subspace V belonging to F , `V
(
h(y)

)
≥ ε.

(M3) the flag F has maximal length, relative to all flags which are subordi-
nate to F ′ and satisfy (M1).

We will say that y is marked relative to F ′ if there is some F subordinate
to F ′ such that y is marked by F relative to F ′.

Let

F0 = ({0} & Rn) .

We say that y is marked by (F , ε, %) (or simply marked by F) if y is marked
by (F , ε, %) relative to F0.

The reason to mark points by flags is the following:

Proposition 5.1. Let the notation be as above, and suppose that 0 < ε < % ≤
1, and that y ∈ X is marked by (F , ε, %). Then π

(
h(y)

)
∈ Kε.

Proof. Let g = h(y) and suppose by contradiction that there is a nonzero
v ∈ Zn+1 such that ‖gv‖ < ε. Choose i so that v /∈ Vi, v ∈ Vi+1, and let
V be the span of Vi and v. Let k = dim V , and let v1, . . . ,vk ∈ Zn+1 be
linearly independent vectors such that Zn+1 ∩ Vi is generated by v1, . . . ,vk−1

and Zn+1 ∩ V is generated by v1, . . . ,vk. Clearly

`V (g) = ‖gv1 ∧ · · · ∧ gvk‖ ≤ ‖gv1 ∧ · · · ∧ gvk−1‖‖gvk‖.
Then one has

`V (g) ≤ `Vi
(g)‖gv‖ < ε.

In particular, `V (g) ≤ %, so by (M3), V = Vi+1. Thus `Vi+1
(g) < ε, in

contradiction to (M2). �

The following lemma constructs flags by induction.

Lemma 5.2. For d = 0, . . . , n there is a constant C ′ = C ′(D,N,C, d) such
that the following holds. Let F be a flag, and let d be the maximal length
of a flag which is subordinate to F . Let A = B(zA, rA) be a ball such that

Ã
def
= B(zA, 3

drA) ⊂ U , and suppose that:

(a′) For each V ∈ W, the function `V ◦h is (C, α)-good on Ã with respect
to µ.

(b′) If V can be added to F then ‖`V ◦h‖A ≥ %.

Let A0 be the set of all y ∈ A which are marked relative to F .
Then for every ε < %,

(5.1) µ(Ar A0) ≤ C ′
(
ε

%

)α

µ(A) .

Proof. For the proof we use the notation Y � Z to mean that there is a
constant C ′ = C ′(D,N,C, d, n) such that Y ≤ C ′Z (C ′ may change throughout
the proof).
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%

`V

B(s, r(s,W ))

`W

s

B(s, rs) = B(s, r(s, V ))

Figure 2. Choosing V0

The proof is by induction on d (equivalently, by a decreasing induction on
the length of F). If d = 0, then (b′) implies that (M1), (M2), (M3) hold
trivially for all x ∈ A, that is A = A0 and (5.1) holds.

Suppose d ≥ 1. For each x ∈ A, let W(x) consist of all V ∈ W which can
be added to F , and for which `V

(
h(x)

)
< %. Let

E = {x ∈ A : W(x) 6= ∅}.
If x /∈ E then W(x) = ∅ and hence x is marked by F0 relative to F ; that is

(5.2) Ar A0 = E r A0.

Now for each x ∈ E and each V ∈ W(x) let

r(x, V )
def
= sup{r : ‖`V ◦h‖B(x,r) < %}.

By (b′), A 6⊂ B
(
x, r(x, V )

)
and hence the supremum in the above definition

is finite. By continuity of `V ◦h, r(x, V ) > 0.
By discreteness, W(x) is finite. Take V0 = V0(x) ∈ W(x) such that

rx
def
= r(x, V0) = max

V ∈W(x)
r(x, V ),

and let

F ′(x) = F + V0.

We have a cover of E by the collection of balls {B(x, rx) : x ∈ E}. Using
the Besicovitch assumption we take a countable subset Ω ⊂ E such that
{B(x, rx) : x ∈ Ω} is a cover of E and max

y∈X
#{x ∈ Ω : y ∈ B(x, rx)} � 1,

therefore

(5.3)
∑

x∈Ω

µ
(
B(x, rx)

)
� µ

( ⋃

x∈Ω

B(x, rx)
)
.

By (b′), B(x, r) does not contain A for r < rx, and hence

(5.4) rx ≤ rA + dist(zA, x) < 2rA.
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B(x, 3r)

B(x, r)
B(s, r′)

s

x

Figure 3. New balls cover old balls and aren’t much larger

Thus there exist rx < r′x < 2rA such that

B(x, r′x) ⊂ B(zA, 3rA) .

In particular, using Federer,

(5.5) µ
( ⋃

x∈Ω

B(x, rx)
)
≤ µ

(
B(zA, 3rA)

)
� µ(A).

It follows from (5.4) that

(5.6) B(x, 3d−1r′x) ⊂ Ã.

By definition of rx, ‖`V0 ◦ h‖B(x,r′x) ≥ %. By assumption (a′) and Federer we
obtain:

µ({y ∈ B(x, rx) : `V0(x)

(
h(y)

)
< ε}) ≤ µ({y ∈ B(x, r′x) : `V0(x)

(
h(y)

)
< ε})

�
(
ε

%

)α

µ
(
B(x, r′x)

)

�
(
ε

%

)α

µ
(
B(x, rx)

)
.

(5.7)

Let

Y =
⋃

x∈Ω

{y ∈ B(x, rx) : `V0(x)(y) < ε}.

It follows from (5.3), (5.5) and (5.7) that:

(5.8) µ(Y ) �
(
ε

%

)α

µ(A).
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Write V = V0(x), and denote by E0(x) the set of points of E which are
marked relative to F ′(x). If y ∈ B(x, rx) r Y , then ε ≤ `V ◦ h(y) ≤ %; thus if
y is marked by F ′′ relative to F ′(x), it is also marked by F ′′ + V relative to
F . Hence

E0(x) ∩ B(x, rx) ⊂ A0 ∪ Y.
Let y ∈ E r (A0 ∪ Y ), then there is some x ∈ Ω such that y ∈ B(x, rx),

and by the above, y /∈ E0(x). That is,

(5.9) E r (A0 ∪ Y ) ⊂
⋃

x∈Ω

(
B(x, rx) r E0(x)

)
.

The maximal length of a flag subordinate to F ′(x) is at most d − 1, and
by the induction hypothesis, the lemma is valid for d − 1 in place of d. We
apply the lemma to B(x, r′x) and F ′(x). Assumption (a′) follows from (5.6)
and assumption (b′) follows from the definitions of rx and r′x. We obtain (using
Federer again):

µ
(
B(x, rx) r E0(x)

)
≤ µ

(
B(x, r′x) r E0(x)

)

�
(
ε

%

)α

µ
(
B(x, r′x)

)

�
(
ε

%

)α

µ
(
B(x, rx)

)
.

(5.10)

Therefore one has:

µ(Ar A0)
(5.2)
= µ(E r A0) ≤ µ(Y ) + µ

(
E r (Y ∪ A0)

)

(5.8) and (5.9)
�

(
ε

%

)α

µ(A) + µ

(
⋃

x∈Ω

(
B(x, rx) r E0(x)

)
)

(5.10)
�

(
ε

%

)α
[
µ(A) +

∑

x∈Ω

µ
(
B(x, rx)

)
]

(5.3) and (5.5)
�

(
ε

%

)α

µ(A) ,

which finishes the proof of the lemma. �

To complete the proof of Theorem 4.3, apply Lemma 5.2 to A = B and to
F = F0. Then apply Proposition 5.1. �

6. non-uniformly friendly measures

In this section we define non-uniform versions of the Federer and decaying
conditions, and prove that every nonplanar, non-uniformly Federer and non-
uniformly decaying measure is strongly extremal.

Let D, C, α, s be positive constants. Say that a measure µ on a metric
space X is (D, s)-Federer at x ∈ X if (2.2) holds whenever 3r < s. Similarly,
say that a measure µ on Rn is (C, α, s)-decaying at y ∈ Rn if (2.4) holds for
any ε > 0, any affine hyperplane L, and any B = B(y, r) with r < s. We



ON FRACTAL MEASURES AND DIOPHANTINE APPROXIMATION 19

will say that µ is Federer (resp., decaying) at a point if it is (D, s)-Federer for
some D, s (resp., (C, α, s)-decaying for some C, α, s) at this point, and that µ
is non-uniformly Federer (resp., non-uniformly decaying) if it is Federer (resp.,
decaying) at µ-almost every point.

The following theorem strengthens Theorem 1.1:

Theorem 6.1. If µ is a measure on Rn which is nonplanar, non-uniformly
Federer and non-uniformly decaying, then µ is strongly extremal.

We remark that the above non-uniform versions seem to be more natural
than their uniform analogues: the non-uniform Federer condition was proved
in [Sa, Example 5] to be measure class invariant, and it is plausible that the
same holds for the non-uniform decaying condition. On the other hand it is
not hard to construct a positive Lebesgue integrable function ϕ on Rn such
that the measure µ defined by dµ/dλ = ϕ is both non-uniformly Federer and
non-uniformly decaying, but is neither Federer nor decaying. The authors
do not know, however, if there exist measures satisfying the assumptions of
Theorem 6.1 and at the same time singular to any friendly measure.

Closely related to decaying measures is the class of (C, α, s)-good functions,
to which we also give a non-uniform version: a function f is (C, α, s)-good at x
with respect to µ if (4.1) holds for any ε > 0 and any B = B(x, r) with r < s.

The proof of Theorem 6.1 requires the following refined version of Theorem
4.3:

Theorem 6.2. Given a Besicovitch metric spaceX, positive constants C, D, α,
and a measure µ on X, there exists C ′ > 0 with the following property. Suppose
that h is a continuous map U → G, %, r0 are positive constants, z ∈ supp µ,
and Ξ is a subset of U such that for every x ∈ Ξ and every V ∈ W:

(1) µ is (D, s)-Federer at x with s > 3nr0;
(2) the function `V ◦h is (C, α, s)-good at x with respect to µ, with s > 3nr0;
(3) ‖`V ◦ h‖µ,B(x,r0) ≥ %.

Then for any 0 < ε ≤ %,

µ
({
x ∈ Ξ ∩ B : π

(
h(x)

)
6∈ Kε

})
≤ C ′

(
ε

%

)α

µ(B̃) ,

where B
def
= B(z, r0) and B̃

def
= B(z, 3nr0).

Proof. Note that in the proof of Lemma 5.2, only balls centered in E were
used. Therefore, repeating the proof but changing the definition of E to

E
def
= {x ∈ Ξ ∩ A : W(x) 6= ∅},

one obtains the following statement:

For d = 0, . . . , n there is a constant C ′ = C ′(D,N,C, d) such that the
following holds. Let F be a flag, and let d be the maximal length of a flag

which is subordinate to F . Let A
def
= B(zA, rA), Ã

def
= B(zA, 3

drA), Ξ ⊂ X, and
suppose that:

(a′) For each x ∈ A ∩ Ξ, µ is (D, s)-Federer at x with s > 3drA.
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(b′) For each V ∈ W and each x ∈ A∩Ξ, the function `V ◦h is (C, α, s)-good
at x with respect to µ, with s > 3drA.

(c′) If V can be added to F then ‖`V ◦h‖A ≥ %.

Let A0 be the set of all y ∈ A which are marked relative to F .
Then for every ε < %,

µ(A ∩ Ξ r A0) ≤ C ′
(
ε

%

)α

µ(Ã) .

From this statement the theorem follows. �

Proof of Theorem 6.1. By Proposition 3.1 we need to show that for any γ > 0,
for µ-a.e. y ∈ Rn,

gtτ̄ (y) 6∈ Ke−γt

has only finitely many solutions t ∈ Zn
+. Let δ > 0 be arbitrary. Then

there exists a subset Ξ ⊂ supp µ and positive constants D, C, α, r′ so that
µ(Rn r Ξ) < δ and µ is (D, r′)-Federer and (C, α, r′)-decaying at every y ∈ Ξ.
Taking 0 < r0 < 3−nr′ we see that conditions (1) and (2) of Theorem 6.2 are
satisfied.

By compactness and nonplanarity we see that there exists % > 0 so that for
every x ∈ supp µ and any affine hyperplane L one has

‖dL‖µ,B(x,r0) > % ,

and, as in the derivation of Theorem 3.3 from Theorem 4.3, this implies that
for any V ∈ W and x ∈ supp µ

‖`V ◦ h‖µ,B(x,r0) > % .

In particular, we see that condition (3) of Theorem 6.2 also holds.
Applying that theorem, we see that

∑

t∈Zn
+

µ ({y ∈ Ξ : gtτ(y) 6∈ Ke−γt}) ≤ C ′
∑

t∈Zn
+

e−γαt <∞ ,

so by Borel-Cantelli and since γ was arbitrary, µ-almost every y ∈ Ξ is not very
well multiplicatively approximable. Since δ was also arbitrary, this establishes
Theorem 6.1. �

7. Pushforwards

In this section, µ is a measure on Rd, U is an open subset of Rd, and
f : U → Rn is a map which pushes µ forward. Let us denote by Sf the
R-linear span of 1, f1, . . . , fn, that is, the space of functions of the form

(7.1) f = c0 + c1f1 + · · ·+ cnfn ,

where ci ∈ R. It will be convenient to introduce the following definition. Given
C, α > 0, a subset U of Rd, a measure µ on U , and a real-valued function f on
U , say that f is absolutely (C, α)-good on U with respect to µ if for any open
ball B ⊂ U centered in supp µ and any ε > 0 one has

(7.2) µ ({x ∈ B : |f(x)| < ε}) ≤ C

(
ε

‖f‖B

)α

µ(B) .
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Clearly being absolutely (C, α)-good implies being (C, α)-good, and the con-
verse is true for measures having full support. Now we can state sufficient
conditions, written in terms of µ, for f∗µ to be friendly.

Lemma 7.1. Let µ be a D-Federer measure on an open subset U of Rd, and
let f : U → Rn and C,K, α > 0 be such that

(i) f is K-bi-Lipschitz, that is, for any x1,x2 ∈ U one has

1

K
dist(x1,x2) ≤ dist

(
f(x1), f(x2)

)
≤ K dist(x1,x2) ;

(ii) any f ∈ Sf is absolutely (C, α)-good on U with respect to µ.

Then f∗µ is friendly.

Proof. To show that f∗µ is Federer, for any y0 = f(x0) with x0 ∈ U take

(7.3) Ũ
def
= B(y0, r0) where r0 ≤

1

2K
dist(x0, ∂U) .

Then for any y ∈ Ũ ∩ supp f∗µ one has y = f(x) for some x ∈ B(x0, Kr0) ∩
supp µ. Now, for B(y, 3r) ⊂ Ũ one can write

f∗µ
(
B(y, 3r)

)
= µ

(
f−1
(
B(y, 3r)

))
≤ µ

(
B(x, 3Kr)

)

(2.3)

≤ (3K2)β

c
µ
(
B(x, r/K)

)
≤ (3K2)β

c
f∗µ
(
B(y, r)

)
.

To prove that f∗µ is decaying, for any y0 = f(x0) with x0 ∈ U take Ũ
as above, and for an affine hyperplane L put dL(y) = |c0 + c1y1 + · · ·+ cnyn|
for some c0, c1, . . . , cn ∈ R. Then for any y′ = f(x′) ∈ Ũ ∩ supp f∗µ and

B = B(y′, r) ⊂ Ũ write

f∗µ
(
B ∩ L(ε)

)
= f∗µ ({y ∈ B : |c0 + c1y1 + · · · + cnyn| < ε})

with f as in (7.1)

≤ µ
(
{x ∈ f−1(B) : |f(x)| < ε}

)
≤ µ ({x ∈ B(x, Kr) : |f(x)| < ε})

(7.2)

≤ C

(
ε

‖f‖B(x,Kr)

)α

µ
(
B(x, Kr)

)

Federer
≤ C

(K2)β

c

(
ε

‖f‖B(x,Kr)

)α

µ
(
B(x, r/K)

)

= C
(K2)β

c

(
ε

‖dL‖f(B(x,Kr))

)α

f∗µ
(
f(B(x, r/K))

)

≤ C
(K2)β

c

(
ε

‖dL‖B,f∗µ

)α

f∗µ(B) .

Finally, observe that (7.2) clearly implies that for any ball B ⊂ U centered at
supp µ and for L, f as above, one has

f∗µ
(
f(B) ∩ L

)
= µ

(
{x ∈ B : f(x) = 0}

)
= 0 . �
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Note that if f is smooth and nonsingular at x0 ∈ U , one can find a neighbor-
hood V of x0 and K > 0 such that f |V is K-bi-Lipschitz. Thus to prove Theo-
rem 2.1, it suffices to show that for any nondegeneracy point x0 ∈ U ∩ supp µ
of f one can find a neighborhood V of x0 and C, α > 0 such that any f ∈ Sf

is absolutely (C, α)-good on V with respect to µ.
The case in which µ = λ is Lebesgue measure (for which the notions of

‘good’ and ‘absolutely good’ coincide) was the subject of [KM], where the
following statement was proved:

Proposition 7.2 ([KM, Proposition 3.4]). Let f = (f1, . . . , fn) be a C` map
from an open subset U of Rd to Rn, and let x0 ∈ U be such that f is `-
nondegenerate at x0. Then there exists a neighborhood V ⊂ U of x0 and
positive C such that any f ∈ Sf is (C, 1/d`)-good on V with respect to λ.

The proof of the above proposition involves induction on d, and it is not
clear to the authors how to adapt it to measures µ other than Lebesgue.
Below we develop an alternative approach which yields a similar result for
any absolutely decaying Federer measure, thus finishing the proof of Theorem
2.1, and, in many cases, improves the conclusion of Proposition 7.2 (see a
discussion below). We obtain:

Proposition 7.3. Let U ⊂ Rd be open and let f : U → Rn be a C`+1 map
which is `-nondegenerate at x0 ∈ U . Let µ be a measure which is D-Federer
and absolutely (C, α)-decaying on U for some D,C, α > 0. Then there exists

a neighborhood V ⊂ U of x0 and positive C̃ such that any f ∈ Sf is absolutely

(C̃, α
2`+1−2

)-good on V with respect to µ.

It is interesting to compare the two propositions above. For d = 1, Propo-
sition 7.2 gives the optimal exponent ζ(`) = `−1, which is much better than
(2`+1 − 2)−1 provided by Proposition 7.3. However, as d grows, the exponent
in Proposition 7.2 tends to zero, whereas in Proposition 7.3 the exponent does
not depend on d. Another difference is that our proof of Proposition 7.3 re-
quires an extra derivative. It seems to be a challenging open problem to find
the optimal constant η = η(`, d) with the following property: let f : U → Rn

be a map which is `-nondegenerate at x0 ∈ U ⊂ Rd, let α > 0, and suppose a
measure µ is D-Federer and absolutely (C, α)-decaying on U for some positive

C,D; then there exist a neighborhood V ⊂ U of x0 and C̃ > 0 such that any
f ∈ Sf is absolutely (C̃, ηα)-good on V with respect to µ.

The rest of the section is devoted to the proof of Proposition 7.3. We need to
introduce some notation. Denote by ∂i the operator of partial differentiation
of functions on Rd with respect to xi, i = 1, . . . , d. For a multiindex β =
(j1, . . . , jd), denote ∂β = ∂j1

1 ◦ · · · ◦ ∂jd

d , and define the order |β| of β by

|β| def
= j1 + · · · + jd. If β and γ are two multiindices, then β + γ denotes the

multiindex determined by ∂β+γ = ∂β ◦ ∂γ = ∂γ ◦ ∂β.

Lemma 7.4. Let f be a Ck function on a ball B of radius r > 0. Then for
any multiindex β with |β| = k,

‖f‖B ≥ rk

2k(k + 1)k
inf
B

|∂βf | .
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Proof. The Lemma follows from the following standard generalization of the
mean value theorem: let f ∈ Ck(Rd) and, for i = 1, . . . , d, define

Dif(x) = f(x1, . . . , xi + 1, . . . , xd) − f(x) .

For β = (j1, . . . , jd), set

Dβ = Dj1
1 ◦ · · · ◦Djd

d .

Thus Dβf(0) is a linear combination of the values f(x1), . . . , f(xm), where
xi ∈ B(0, k + 1), i = 1, . . . , m ≤ 2k, and the sum of the absolute value of
the coefficients in this combination equal to 2k. The generalized mean value
theorem says that there is some point x in the convex hull of x1, . . . ,xm such
that Dβf(0) = ∂βf(x). Thus

inf
B(0,k+1)

|∂βf | ≤ |∂βf(x)| = |Dβf(0)| ≤ 2k ‖f‖B(0,k+1) ;

rescaling, one gets the desired inequality. �

Lemma 7.5. Let positive C, α, c, t, ε be given, and let µ be absolutely (C, α)-
decaying on U ⊂ Rd. Suppose we are given a ball B(y, t) ⊂ U with y ∈ suppµ

and a C2 function f : B(y, t) → R such that

(i) ‖∇f(y)‖ ≥ c;
(ii) ‖∂βf‖B(y,t) ≤ ε

dt2
for any multiindex β of order 2.

Then

µ({x ∈ B(y, t) : |f(x)| < ε}) ≤ C

(
3ε

ct

)α

µ
(
B(y, t)

)
.

Proof. By the multidimensional Taylor expansion, for any x ∈ B(y, t) one has

|f(x) − f(y) − 〈∇f(y),x− y〉| ≤ 1

2
d
ε

dt2
‖x − y‖2 <

ε

2
,

and hence for any x,x0 ∈ B(y, t),

|f(x) − f(x0) − 〈∇f(y),x− x0〉| < ε .

Now suppose there is some x0 ∈ B(y, t) for which |f(x0)| < ε (otherwise there
is nothing to prove). Then for any x ∈ B(y, t) with |f(x)| < ε one has

|〈∇f(y),x− x0〉| < 3ε,

i.e. x is in a strip of width at most 3ε/c. The Lemma now follows immediately
from the decay condition. �

The next statement is an analogue of [KM, Lemma 3.3].

Theorem 7.6. Let B ⊂ Rd be a ball of radius r > 0, and let k ∈ Z+, C, α > 0
and 0 < s ≤ 1, S ≥ 4 be given. Suppose f : B → R is a Ck+1 function such
that for some multiindex β of order k,

(7.4) inf
B

|∂βf | >
s

rk
‖f‖B ,

and such that for any multiindex γ with |γ| ≤ k + 1 one has

(7.5) ‖∂γf‖B ≤ S

r|γ|
‖f‖B .
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Suppose also that µ is absolutely (C, α)-decaying on B, and let B̂ be a ball
concentric with B of radius r/2. Then for any ε < s one has

µ
({

x ∈ B̂ : |f(x)| < ε ‖f‖B

})
≤ CkC

(
S

s

)2kα

εζkαµ(B) ,

where

Ck = 2kNd

(
3
√
d

k∏

i=1

(2i)(i−1)2i−1

)α

,(7.6)

ζk = (2k+1 − 2)−1 ,(7.7)

and Nd is a Besicovitch constant for Rd.

Proof. The proof is by induction on k. For k = 0, the theorem clearly holds
for C0 = 1 and ζ0 = ∞. Assume now that k ≥ 1, write β = β1 + β ′, where
|β1| = 1, and denote ∂β1f by g.

Define

E
def
= {x ∈ B : |f(x)| < ε ‖f‖B} ,

and, for δ > 0 to be determined later, define

Eδ
def
=
{
x ∈ B̂ : |g(x)| < δ ‖g‖B

}
.

First let us estimate the measure of Eδ. Applying Lemma 7.4 to g and β ′

and using (7.4), one has

(2k)k−1

rk−1
‖g‖B ≥ inf

B
|∂β′g| = inf

B
|∂βf | ≥

s

rk
‖f‖B ,

therefore

(7.8)
s

r(2k)k−1
‖f‖B ≤ ‖g‖B = ‖∂β1f‖B

(7.5)

≤ S

r
‖f‖B .

This calculation shows that g satisfies all the conditions of the theorem with
k, β, s and S replaced by k−1, β ′, s/S and (2k)k−1S/s respectively. Applying
the induction hypothesis, one gets
(7.9)

µ(Eδ) ≤ Ck−1C

(
(2k)k−1S2

s2

)2k−1α

δζk−1αµ(B)
(7.6)
=

1

2
CkC

(
S

s

)2kα

δζk−1αµ(B) .

Now define

(7.10) t = r

√
ε

dS

and consider some ball B ′ = B(y, t) with y ∈ (B̂ ∩ supp µ) r Eδ. Note that
B′ ⊂ B since ε < s < 4 ≤ S, and one can check, using (7.5) and

‖∇f(y)‖ ≥ |∂β1f(y)| = |g(y)| ≥ δ ‖g‖B ,
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that this ball satisfies all the assumptions of Lemma 7.5, with ε and c replaced
by ε ‖f‖B and δ ‖g‖B, respectively. Therefore

µ(B′ ∩ E) ≤ C

(
3ε ‖f‖B

δ ‖g‖B t

)α

µ(B′)
(7.8)

≤ C

(
3εr(2k)k−1

δst

)α

µ(B′)

(7.10)
= C

(
(dS/ε)1/2 3ε(2k)k−1

δs

)α

µ(B′) ≤ C

(
3
√
d(2k)k−1S

s

)α
εα/2

δα
µ(B′).

Clearly one can cover (B̂ ∩ supp µ) rEδ by balls as above with multiplicity
≤ Nd. Let F denote such a cover; then

(7.11) µ
(
(B̂rEδ)∩E

)
≤
∑

B′∈F
µ(B′∩E) ≤ CNd

(
3
√
d(2k)k−1S

s

)α
εα/2

δα
µ(B) .

Using (7.11) together with (7.9) and (7.6), one gets that

µ(B̂ ∩ E) ≤ 1

2
CkC

(
S

s

)2kα [
δζk−1α +

εα/2

δα

]
µ(B) .

Choosing the optimal δ = ε
1

2(ζk−1+1) one obtains

µ(B̂ ∩ E) ≤ CkC

(
S

s

)2kα

ε
ζk−1α

2(ζk−1+1)µ(B).

Thus the theorem is proved with ζk = ζk−1

2ζk−1+2
, and solving for ζk yields (7.7).

�

In order to apply Theorem 7.6 to nondegenerate maps, we will need three
additional lemmas. Below we fix d, ` ∈ N, let Pd,` denote the space of all
polynomial maps Rd → R of degree at most `, and let B1 stand for the unit
ball B(0, 1) ⊂ Rd.

Lemma 7.7. There exist s, S > 0 such that for any nonzero P ∈ Pd,` one has

max
β

inf
x∈B1

|∂βP (x)| > s‖P‖B1 ,

and

max
γ

‖∂γP‖B1 < S‖P‖B1.

Proof. For the first statement, let s = 1
2(2

√
d+1)`+1

. Given P ∈ Pd,`, let k be the

largest integer j for which there is a multiindex β = βj of order j and yj ∈ B1

such that

|∂βP (yj)| >
‖P‖B1

2(2
√
d+ 1)j

.

Clearly 0 ≤ k ≤ deg P ≤ `.
We claim that infx∈B1 |∂βP (x)| > s‖P‖B1 for β = βk. Replacing P with a

scalar multiple, we may assume with no loss of generality that ‖P‖B1 = 1. By
definition of k, |∂βP (yk)| > 1

2(2
√

d+1)k . Suppose by contradiction that there is
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y′ ∈ B1 with |∂βP (y′)| ≤ s = 1
2(2

√
d+1)k+1

. Then by the mean value theorem,

there is a point y′′ on the segment between yk and y′ for which
√
d

(2
√
d+ 1)k+1

=
1

2(2
√
d+ 1)k

− 1

2(2
√
d+ 1)k+1

< |∂βP (yk) − ∂βP (y′)| = |〈∇∂βP (y′′),yk − y′〉|
≤ ‖∇∂βP (y′′)‖‖yk − y′‖ ≤ 2

√
d max

|β1|=1
|∂β1+βP (y′′)| .

Hence there is β1, of order 1, such that for β ′ = β1 +β one has |∂β′P (y′′)| >
1

2(2
√

d+1)k+1 , contradicting the definition of k.

The second statement follows from the fact that both P 7→ ‖P‖B1 and
P 7→ maxγ ‖∂γP‖B1 are norms on Pd,`. �

We now define

S1
f

def
= {c0 + c1f1 + · · ·+ cnfn :

n∑

i=0

c2i = 1} ,

and for each C` function g : U → R, where U is an open subset of Rd and
y ∈ U , let P `

g,y be the `-th order Taylor polynomial of g at y.

Lemma 7.8. Suppose U ⊂ Rd is open and f : U → Rn is a C` map. Then:

(i) For any η > 0 there is a neighborhood V ⊂ U of x0 such that for any
ball B(y, r) ⊂ V , any multiindex β of order at most `, and any f ∈ S1

f ,

‖∂βf − ∂βP
`
f,y‖B(y,r) < ηr`−|β| .

(ii) If f is `-nondegenerate at x0, then there is an open set V0 ⊂ U con-
taining x0 and κ > 0 such that for any B(y, r) ⊂ V , and any f ∈ S1

f ,

‖f‖B(y,r) ≥ κr`

and
1

2
≤

‖P `
f,y‖B(y,r)

‖f‖B(y,r)

≤ 3

2
.

Proof. Recall the following error estimate, which is an easy consequence of the
Lagrange form of the error term in Taylor’s formula of order l − 1:

(7.12) ‖g − P `
g,y‖B(y,r) ≤

d`

`!
max

|γ|=`,x∈B(y,r)
‖∂γg(x) − ∂γg(y)‖ r`.

Note that for any multiindex β of order k ≤ ` one has ∂βP
`
f,y = P l−k

∂βf,y. By

the chain rule, the derivative of any f ∈ S1
f is a composition of the derivative of

f and a linear functional of uniformly bounded norm. Therefore the collection

{∂γf : f ∈ S1
f , |γ| = `}

is equicontinuous, and hence, by making V sufficiently small, one can ensure
that for any multiindex γ of order `, any f ∈ S1

f , and any x1,x2 ∈ V one has

|∂γf(x1) − ∂γf(x2)| < η min
0≤k≤`

k!

dk
.

Now one obtains (i) by applying (7.12) to g = ∂βf with l replaced by l − k.
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For (ii), let V ⊂ U be a bounded open subset containing x0 which is small
enough so that f is `-nondegenerate at y for any y ∈ V . Equip Pd,` with
the norm assigning to a polynomial the maximum of the absolute values of its
coefficients. For each y ∈ V , f ∈ S1

f let

Qf,y(x) = P `
f,y(x − y).

By nondegeneracy, Qf,y 6= 0 for any y ∈ V and any f ∈ S1
f , and by compact-

ness, the set {Qf,y : f ∈ S1
f , y ∈ V } ⊂ Pd,` is bounded away from zero. For

each r and y for which B(y, r) ⊂ V , let

Qr,f,y(x)
def
= r−`Qf,y(rx).

By comparing the coefficients of Qf,y and Qr,f,y one sees that

{Qr,f,y : B(y, r) ⊂ V, f ∈ S1
f } ⊂ Pd,`

is also bounded away from zero. Now comparing with the norm P 7→ ‖P‖B(0,1)

one finds that there is κ such that for all r, f,y as above,

(7.13) ‖P `
f,y‖B(y,r) = r`‖Qr,f,y‖B(0,1) ≥ 2κr`.

Also, from the case |β| = 0 in (i) it follows that if V is sufficiently small,

(7.14) ‖f − P `
f,y‖B(y,r) ≤ κr`.

Putting together (7.13) and (7.14) yields (ii). �

From now until the end of the section, we let U , f , x0 and ` be as in
Proposition 7.3. It will be useful to consider restrictions of functions to small
balls and renormalize them as follows: if V is a small enough neighborhood of
x0, B(y, r) ⊂ V and f ∈ S1

f , we let gr,f,y be a function on B1 given by

gr,f,y(x)
def
=
f(y + rx)

‖f‖B(y,r)

,

and define

G(f , V )
def
= {gr,f,y : f ∈ S1

f , B(y, r) ⊂ V } .
To simplify notation, for g ∈ G(f , V ) we will write Pg instead of P `

g,0; note that

for g = gr,f,y one has Pg(x) =
P `

f,y(y+rx)

‖f‖B(y,r)
.

Lemma 7.9. For any η > 0 there exists a neighborhood V ⊂ U of x0 such
that for any g ∈ G(f , V ) one has

max
|β|≤`+1

‖∂βg − ∂βPg‖B1
< η .

Proof. When |β| ≤ ` we apply Lemma 7.8, replacing η with η ′ = ηκ, and
obtain for small enough V :

‖∂βg − ∂βPg‖B1
=

1

‖f‖B(y,r)

∥∥∂βf(y + rx) − ∂βP
`
f,y(y + rx)

∥∥
B1

=
1

‖f‖B(y,r)

∥∥r|β|∂βf − r|β|∂βP
`
f,y

∥∥
B(y,r)

<
r|β|

κr`
η′r`−|β| = η.
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When |β| = `+ 1 we argue as in the proof of Lemma 7.8 to find a uniform
upper bound K on ‖∂βf‖V for all f ∈ S1

f , and then write

‖∂βg − ∂βPg,0‖B1 = ‖∂βg‖B1 =
‖∂βf(y + rx)‖B1

‖f‖B(y,r)

≤ r`+1

κr`
‖∂βf‖V ≤ rK

κ
< η

whenever diam(V ) < ηκ/K. �

We are now ready for the

Proof of Proposition 7.3. By Theorem 7.6, it is enough to find positive s, S
and a neighborhood V ⊂ U of x0 such that for any B = B(y, r) ⊂ V and
any f ∈ Sf there is a multiindex β with k = |β| ≤ ` such that (7.4) holds,
and such that for all multiindices γ with |γ| ≤ |β| + 1, (7.5) holds. Since the
validity of (7.4) and (7.5) is unaffected by replacing f with a scalar multiple,
we may assume that f ∈ S1

f . Thus it suffices to find s, S and V such that for
any g ∈ G(f , V ) there is a multiindex β of order ≤ ` such that

(7.15) inf
x∈B1

|∂βg(x)| > s ,

and for each multiindex γ of order at most `+ 1,

(7.16) ‖∂γg‖B1 < S .

Note that Lemma 7.8(ii) allows one to choose V such that for any g ∈ G(f , V )
one has

1

2
≤ ‖Pg‖B1 ≤

3

2
;

therefore one can use Lemma 7.7 to find s and S such that for any g ∈ G(f , V )
(7.15) and (7.16) are satisfied with Pg in place of g. Now to finish the proof it
remains to take η = s/2 and apply Lemma 7.9. �

8. The open set condition

In this section we will discuss measures supported on attractors of finite
systems of contracting similarities. The open set condition, defined in §2, was
shown by Hutchinson to be very useful. The following summarizes some of the
results of [H]:

Theorem 8.1. Let {hi = %iΘi +ai : i = 1, . . . , m}, be a family of contracting
similarity self-maps of Rn satisfying the open set condition, s its similarity
dimension, µ the restriction of Hs to its attractor K. Then:

(i) 0 < µ(K) <∞;
(ii) for any measurable A ⊂ Rn,

(8.1) µ(A) =
∑

i

%s
iµ
(
h−1

i (A)
)
;

(iii) there exist constants 0 < λ1 ≤ λ2 <∞ such that for every y ∈ K

(8.2) λ1 ≤ inf
0<r<diam(K)

µ
(
B(y, r)

)

rs
≤ sup

r>0

µ
(
B(y, r)

)

rs
≤ λ2 .
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Remark. In [H], assertion (iii) involves lim sup, lim inf in place of sup, inf
respectively, but the proof given there, see [H, 5.3(1)(b)], in fact yields (8.2).

Let Σ denote the set of all finite words in the alphabet {1, . . . , m}. Define
for any word w = i1 · · · i` ∈ Σ

hw = hi` ◦ · · · ◦ hi1

and define aw ∈ Rn, %w ∈ (0, 1), Θw ∈ O(n,R) by the equation

hw : y 7→ aw + %wΘw(y)

Set
%min = min

1≤i≤m
%i .

We say that a finite subset P of Σ is a complete prefix set if the corresponding
cylindrical sets form a partition of {1, . . . , m}N; equivalently, for every w ∈
{1, . . . , m}N there is a unique w′ ∈ P that coincides with some initial segment
of w. It is clear that for any 0 < r < 1, we can find a complete prefix set P so
that for any w ∈ P we have

(8.3) %minr ≤ %w ≤ r.

Proof of Theorem 2.2. Assume using Theorem 8.1(i) that µ(K) = 1. It
follows from Theorem 8.1(iii) that µ is D-Federer on Rn, with D = 3sλ2/λ1.
Irreducibility of {h1, . . . ,hm} will now be used to show that µ(L) = 0 for all
proper affine subspaces L. Let k be the smallest number for which

M
def
= sup

dimL=k
µ(L) > 0.

Then for any two distinct k-dimensional affine subspaces L1, L2, we have
µ(L1∩L2) = 0, and hence for any sequence L1,L2, . . . of distinct k-dimensional
affine subspaces, µ(

⋃
j Lj) =

∑
j µ(Lj). This implies that

#{L : dim L = k, µ(L) ≥M/2} <∞,

hence there exists L0 satisfying

µ(L0) = M.

Applying (8.1) and (2.8) we obtain that µ(L0) is a weighted average of the
numbers µ

(
h−1

i (L0)
)
≤ M for i = 1, . . . , m, and hence µ

(
h−1

i (L0)
)

= M for
all i. By induction

w ∈ Σ =⇒ µ
(
h−1

w (L0)
)

= M.

Therefore
B = {h−1

w (L0) : w ∈ Σ}
is finite. For each i, hi(B) ⊂ B and by finiteness of B, hi(B) = B. This implies
that B is invariant under hi, i = 1, . . . , m, so by the irreducibility hypothesis,
k = n.

We now define
t(ε) = sup

L
µ(L(ε)),

where the supremum is taken over all affine hyperplanes L.
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Lemmas 8.2 and 8.3 below, together with the Federer condition, imply the

existence of C̃ and α such that µ is absolutely (C̃, α)-decaying on any ball of
radius 1, and hence will complete the proof.

Lemma 8.2. There are positive constants C, α such that for any ε > 0,

t(ε) ≤ Cεα

Lemma 8.3. There are constants M, c such that for any y ∈ K, 0 < r <
1, ε > 0, and any affine hyperplane L, we have

µ
(
L(rε) ∩ B(y, r)

)
≤Mt

(
ε

%min

)
µ
(
B(y, cr)

)
.

The following technical result, which will be crucial for proving the lemmas,
shows why the open set condition is so useful. This idea for putting the open
set condition to use is due to Hutchinson.

Lemma 8.4. There exist a constant M1 and a ball B1 containing K so that
for any r > 0 and any complete prefix set P satisfying (8.3), the collection

FP = {hw(B1) : w ∈ P}
is an open cover of K, and no point in Rn is in more than M1 elements of FP .

Proof. Let U ⊂ Rn be an open set as in the open set condition, y ∈ U and
B0 = B(y, r0) ⊂ U . Take B1 = B(y, r1) with r1 > r0 large enough so that
K ⊂ B1.

It follows easily from (2.7) that for any complete prefix set P ,

K =
⋃

w∈P

hw(K).

Since K ⊂ B1, FP is an open cover of K.
Suppose now that for some P0 ⊂ P and some y ∈ Rn we have

(8.4) y ∈
⋂

w∈P0

hw(B1).

By (8.3), for any w ∈ P , the radius of the ball hw(B1) is at most rr1 and the
radius of hw(B0) is at least %minrr0. It is also clear from the open set condition
that for any complete prefix set, {hw(B0) : w ∈ P} are disjoint.

In other words, if (8.4) holds, the ball of radius 2rr1 around y contains #P0

disjoint balls of radius %minrr0. By considering the volumes of these balls,

M1
def
=

(
2r1
%minr0

)n

≥ #P0.

�

Proof of Lemma 8.2. Using an easy compactness argument, from the fact that
µ is nonplanar we obtain that t(ε) → 0 as ε→ 0.

We will show below that for M1 as in Lemma 8.4,

(8.5) ∃ c > 1 such that ∀ ε > 0, t(ε2) ≤M1t(cε)
2 .
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Assuming this we obtain by induction for ` = 1, 2, . . . ,

(8.6) t(ε2`

) ≤M2`−1
1 t(c

2`
−1

2`−1 ε)2`

.

Choose δ so that t(c2δ) < 1
2M1

, let α = log 2
2| log δ| , and assume with no loss of

generality that M1 > 1 > δ. Suppose first that ε ≤ δ, choose ` so that
δ2`+1

< ε ≤ δ2`
and apply (8.6) with δ instead of ε. Then

t(ε) ≤ 2−
log ε

2 log δ = εα .

Now choosing C > 1 big enough so that Cδα > 1 we obtain the conclusion
of the lemma for all ε > 0.

It remains to prove (8.5). Recall that for any measurable A ⊂ Rn, the
measure Hs satisfies Hs

(
h(A)

)
= %sHs(A) for h as in (2.6), and hence

w ∈ Σ =⇒ µ
(
hw(A ∩K)

)
= %s

wµ(A).

Let P be a complete prefix set for r = ε as in Lemma 8.4, so

w ∈ P =⇒ ε%min ≤ %w ≤ ε.

Also, take B1 to be a ball of radius r1 and M1 as in that lemma. Let

P ′ def
= {w ∈ P : hw(K) ∩ L(ε2) 6= ∅}.

Since P is a complete prefix set,

K ∩ L(ε2) =
⋃

w∈P ′

[hw(K) ∩ L(ε2)].

It is also clear that ⋃

w∈P ′

hw(K) ⊂ L(c′ε)

for c′
def
= r1 +1. Since no point is in more than M1 of the hw(K), we have that

t(c′ε) ≥ µ(L(c′ε)) ≥ µ
( ⋃

w∈P ′

hw(K)
)

≥ 1

M1

∑

w∈P ′

µ
(
hw(K)

)
=

1

M1

∑

w∈P ′

%s
w .

(8.7)

Hence

µ(L(ε2)) ≤
∑

w∈P ′

µ(hw(K) ∩ L(ε2)) =
∑

w∈P ′

%s
wµ
(
h−1

w (L(ε2))
)

≤ t

(
ε

%min

) ∑

w∈P ′

%s
w

(8.7)

≤ M1t

(
ε

%min

)
t(c′ε) .

Taking the supremum over L we obtain (8.5), with c
def
= max(c′, 1

%min
). �
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Proof of Lemma 8.3. We employ a strategy similar to the one used to prove
(8.5). Let B(y, r) be arbitrary with r < 1. Let P be a complete prefix set as
in Lemma 8.4, so (8.3) holds for every w ∈ P , and let

P ′ def
= {w ∈ P : hw(K) ∩B(y, r) 6= ∅}.

As before,

K ∩ B(y, r) ⊂
⋃

w∈P ′

hw(K)

and arguing as in the proof of (8.7) one has

(8.8)
∑

w∈P ′

%s
w ≤M1µ

(
B(y, c′r)

)
.

Thus for any affine hyperplane L,

µ
(
L(rε) ∩ B(y, r)

)
≤
∑

w∈P ′

µ
(
hw(K) ∩ L(rε)

)
=
∑

w∈P ′

%s
wµ
(
h−1

w (L(rε))
)

(8.8)

≤ t

(
ε

%min

)
M1µ

(
B(y, c′r)

)
.

�

9. Products of friendly measures

In this section we prove Theorem 2.3, that is, show that the classes of friendly
(resp., absolutely decaying and Federer) measures are stable under Cartesian
products.

Lemma 9.1. For i = 1, 2, let µi be Di-Federer measures on open Ui ⊂ Rni,
and consider µ = µ1 × µ2 on U = U1 × U2 ⊂ Rn, n = n1 + n2. Then:

(i) If each µi is absolutely (Ci, αi)-decaying on Ui, then µ is absolutely
(C, α)-decaying on U for some C > 0 and α = min(α1, α2).

(ii) If each µi is (Ci, αi)-decaying on Ui, then µ is (C, α′)-decaying on U
for some C > 0 and α′ = α1α2

α1+α2
.

Proof. For y ∈ Rn we write y = (y1,y2) with yi ∈ Rni. Let B = B(y, r)
be a ball contained in U , where y ∈ supp µ, let L be an affine hyperplane,
and let ε > 0. For both parts of the Lemma, our goal is to find an upper
estimate for µ(B ∩ L(ε)). First let us describe the argument informally. Call
a set of the form Rn1 × {x2} a ‘slice’. By exchanging the factors if necessary,

the intersection of L(ε) with each slice is a set of the form L(cε)
x2 × {x2} where

Lx2 is an appropriate affine hyperplane in Rn1 (depending on the slice) and c
is at most

√
2. Thus, if µ1 is absolutely decaying, the measure of each such

intersection is small, and (i) follows. If one assumes only that µ1 is decaying,
then the measures of such intersections will be small provided the slice contains
points in the support of µ1 which are far away from L1. That this holds for
most slices follows from the assumption that µ2 is decaying and the fact that
suppµ = supp µ1 × supp µ2.
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Figure 4. dL and dx2

u2

u = (u1,u2)

x = (x1,x2)

u1

s(x)

L

dx2
(x1)

We now proceed to the details. Assume that B ∩ L(ε) 6= ∅, otherwise there
is nothing to prove. Replacing µ with a translate if necessary, let us assume
that 0 ∈ L. Then we can write

(9.1) L = {x ∈ Rn : 〈x,u〉 = 0},
where u = (u1,u2) is a unit vector. Assume with no loss of generality that
‖u2‖ ≤ ‖u1‖, so that

(9.2) ‖u2‖ ≤ 1√
2
≤ ‖u1‖.

For x = (x1,x2), we define s(x) to be the point in the intersection of L with
the slice Rn1 × {x2} closest to x. This point is given by the formula

(9.3) s(x)
def
= (s1(x2),x2), where s1(x2)

def
= −〈x2,u2〉

‖u1‖2
u1 ∈ Rn1 ,

i.e. it is the intersection of L with the line passing through x in the direction
of u1.

For fixed x2, let us also denote by Lx2 the affine hyperplane of Rn1 passing
through s1(x2) and orthogonal to u1, or, equivalently, the affine hyperplane in
Rn1 obtained by intersecting L with the slice Rn1 +x2. Also let dx2 : Rn1 → R+

stand for the distance from Lx2 in Rn1 . See Figure 4.
Clearly one has

dx2(x1) =
1

‖u1‖
dL(x) = |〈x1 − s1(x2), ū1〉| , where ū1

def
=

u1

‖u1‖
.
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Since s(x) ∈ L, one has

B ∩ L(ε) = {x ∈ B : |〈x − s(x),u〉| < ε}
= {(x1,x2) ∈ B : |〈x1 − s1(x2),u1〉| < ε}

⊂ X
def
= {(x1,x2) ∈ B1 × B2 : dx2(x1) <

√
2ε},

(9.4)

where Bi = B(yi, r) ⊂ Ui is the corresponding ball in Rni.
Applying the absolute decay property to µ1, we obtain that for any x2,

(9.5)
µ1

(
{x1 ∈ B1 : dx2(x1) <

√
2ε
}
)

µ1(B1)
≤ C1

(√
2ε

r

)α1

≤ C3

(ε
r

)α

,

where C3 = 2α/2C1.
We can now estimate µ(X) by disintegrating into slices parallel to Rn1 to

obtain:

µ(X) ≤ C3

(ε
r

)α

µ1(B1)µ2(B2) = C3

(ε
r

)α

µ(B1 ×B2).

Since B1 × B2 ⊂ B(y,
√

2r), we can use Federer to find a constant C such
that

µ(B ∩ L(ε)) ≤ µ(X) ≤ C
(ε
r

)α

µ(B),

whence (2.5).

To prove (ii), note that by (9.1) we have dL(x) = |〈x,u〉|. Let x′ = (x′
1,x

′
2) ∈

B ∩ supp µ such that

(9.6) |〈x′,u〉| = dL(x′) > ‖dL‖µ,B/2 ;

since x′
1 ∈ supp µ1 ∩ B1, by the decaying property for µ1 we have

(9.7)
µ1

(
{x1 ∈ B1 : |dx2(x1)| <

√
2ε
}
)

µ1(B1)
≤ C1

(
ε

‖dx2‖µ1,B1

)α1

≤ C1

(
ε

|dx2(x
′
1)|

)α1

.

On the other hand, let us consider the function D : Rn2 → R defined by

D(x2)
def
= dx2(x

′
1) =

1

‖u1‖
dL(x′

1,x2) .

By (9.6) and since x′
2 ∈ supp µ2 ∩B2, one has

‖D‖µ2,B2 ≥ D(x′
2) =

1

‖u1‖
dL(x′) ≥ dL(x′) > ‖dL‖µ,B/2 .

Thus, by the decaying property of µ2, for every η > 0,

(9.8)
µ2 ({x2 ∈ B2 : D(x2) < η})

µ(B2)
≤ C4

(
η

‖dL‖µ,B

)α2

,

where C4
def
= 2α2C2. Set

η
def
= ε

α1
α1+α2 (‖dL‖µ,B)

α2
α1+α2 .

We have

X ⊂ {(x1,x2) ∈ X : dx2(x
′
1) ≥ η} ∪ {(x1,x2) ∈ B1 × B2 : D(x2) < η} .
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Putting together (9.7) and (9.8) we obtain:

µ
(
B ∩ L(ε)

)
≤ µ(X) ≤

[
C3

(
ε

η

)α1

+ C4

(
η

‖dL‖µ,B

)α2
]
µ1(B1)µ2(B2)

≤ C ′′
(

ε

‖dL‖µ,B

)α′

µ(B1 × B2)

≤ C ′
(

ε

‖dL‖µ,B

)α′

µ(B),

proving (ii). �

Proof of Theorem 2.3. By induction, it suffices to consider the case k = 2, and
it is easy to verify that the product of two nonplanar (resp. Federer) measures
is also nonplanar (resp. Federer). The rest follows from Lemma 9.1. �

10. Concluding remarks and open questions

There are many intriguing questions about diophantine properties of mea-
sures; concerning some of them we have partial results or ideas how to proceed,
about others we know very little.

10.1. Khintchine’s theorem. For a decreasing function ψ : Z+ → R, say
that y ∈ Rn is ψ-approximable if there are infinitely many p ∈ Zn, q ∈ Z+

satisfying
‖qy − p‖ < ψ(q) .

A classical theorem of Khintchine (see [Kh1] or [C, Chapter VII]) character-
izes those ψ for which Lebesgue-a.e. y ∈ Rn is ψ-approximable, the condition
being that

∞∑

q=1

ψ(q)n = ∞ .

If this criterion fails, then Lebesgue a.e. y ∈ Rn is not ψ-approximable. For
example, by taking ψ(q) = q−( 1

n
+δ) one gets that Lebesgue-a.e. y ∈ Rn is not

very well approximable.

Question 10.1. Let ψ : Z+ → R be a decreasing function, and let µ be a
friendly measure on Rn.

(1) Is it always true that either the set of ψ-approximable points or its
complement has measure 0?

(2) Is there an explicit necessary and sufficient criterion so that µ-a.e.
point is ψ-approximable?

For example, this condition might be phrased in terms of a series involving
ψ and µ.

Note that even for volume measures on proper nondegenerate submanifolds
this problem is still open (see [BD, Chapter 2] for history and references),
although there exist definite results [BKM, BBKM] for a dual (linear form)
setting. Some partial results for fractal measures are contained in [W1], [W2].
For example, it is proved there that µ-a.e. y ∈ R is not ψ-approximable when
µ is the Cantor measure on R and

∑
q ψ(q)αqα−1 < ∞, α = log 2

log 3
. However
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it is not known whether µ-a.e. y is ψ-approximable in case the above series
diverges.

10.2. Badly approximable vectors. Our next question is the analogue of
results of V. Jarnik and W. Schmidt. Say that y ∈ Rn is badly approximable
if there exists ε > 0 such that for every p ∈ Zn, q ∈ Z+ one has

‖qy − p‖ ≥ ε

q1/n
.

It was proved by Schmidt [Sch1] (and earlier by Jarnik [Ja] for n = 1) that
badly approximable vectors form a set of full Hausdorff dimension in Rn. One
can ask whether a similar statement is true for the support of a friendly mea-
sure. Even the following more modest question is completely open:

Question 10.2. Is there at least one badly approximable vector in the support
of every friendly measure?

Note that even for volume measures on nondegenerate manifolds it seems
that nothing is known about Question 10.2.

In a forthcoming paper [KW] the first and third named authors show:

Theorem 10.3. Let K be the attractor of a finite irreducible family of con-
tracting similarity self-maps of Rn satisfying the open set condition. Then the
Hausdorff dimension of the intersection of K with the set of badly approximable
vectors is the same as the Hausdorff dimension of K.

10.3. Singular vectors. Recall that y ∈ Rn is called singular if for every
ε > 0 there exists Q0 such that

∀Q ≥ Q0 ∃p ∈ Zn and q ∈ Z+ with q ≤ Q and ‖qy − p‖ ≤ ε

Q1/n
.

It is easy to see that Lebesgue-a.e. y ∈ Rn is not singular, and that y ∈ R is
singular if and only if y ∈ Q; however for n > 1 one can construct plenty of
nontrivial singular vectors, see [Kh2] or [C, Chapter V].

Note that it was observed by Dani [Da1] that y is singular if and only if a
certain one-parameter trajectory of τ̄ (y) ∈ G/Γ is divergent. This makes it
possible to deduce the following result from Theorem 4.3 (details to appear in
[KW]):

Theorem 10.4. If µ is a friendly measure on Rn, then µ-a.e. y is not singular.

10.4. Other natural measures and strong extremality. We suspect that
many more natural examples of nonplanar measures are strongly extremal. In
this spirit, we propose the following two concrete conjectures:

Conjecture 10.5. Suppose {hi : Rn → Rn, i = 1, . . . , m} is an irreducible
system of real analytic contractions (that is, there is % < 1 such that for
every i and every x,y ∈ Rn, ‖hi(x) − hi(y)‖ ≤ %‖x − y‖), and suppose that
p1, . . . , pm are positive with

∑
pi = 1. Let µ be a measure on Rn satisfying

µ =
∑

i

pi(hi)∗µ.

Then µ is strongly extremal.
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The following special case is already interesting:

Conjecture 10.6. Suppose {hi : Rn → Rn, i = 1, . . . , m} is an irreducible
system of conformal contractions satisfying the open set condition, let K be
their attractor, let s be the Hausdorff dimension of K, and let µ be the restric-
tion of Hs to K. Then µ is strongly extremal.

10.5. Not-so-friendly measures. A measure µ is friendly if it is Federer,
nonplanar, and decaying. It is interesting to ask to what extent these condi-
tions can be relaxed without sacrificing strong extremality of µ. One direction
is to take the non-uniform version of the above conditions as in §6.

By considering Lebesgue measures on proper rational affine subspaces of
Rn it is clear that in general the nonplanarity condition cannot be dropped.
On the other hand, given an affine subspace L of Rn, the paper [K2] exhibits
necessary and sufficient conditions, involving coefficients of affine functions
parametrizing L, for the (strong) extremality of L. In fact, it is proved there
that L is (strongly) extremal if and only if it contains at least one not very
well (multiplicatively) approximable point. It is also proved in that paper that
(strong) extremality of L implies the same for any smooth submanifold of L
which is nondegenerate in L.

It seems plausible that decaying and Federer measures supported on proper
affine subspaces of Rn exhibit similar behavior. Namely, we believe that it
is possible to show the following: suppose L is an extremal (resp., strongly
extremal) affine subspace of Rn, and µ is a Federer and decaying measure on
L with the property that µ(L′) = 0 for any proper affine subspace L′ of L; then
µ is also extremal (resp., strongly extremal).

We do not know whether the Federer assumption can be lifted in general.
If µ is assumed to be absolutely decaying and nonplanar, we believe that
it is possible to deduce that µ is strongly extremal without any additional
assumptions, by proving a variant of Theorem 4.3. In the statement of this
modified theorem, the assumption that µ is Federer is replaced by an additional
assumption on the function h, namely that there exists C such that for every
V ∈ W, µ-a.e. x ∈ X and every r > 0,

‖`V ◦ h‖µ,B(x,3r)

‖`V ◦ h‖µ,B(x,r)

≤ C .
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