
1 From groups to graphs

Setting: G,H,X. G a group, H a subgroup; X a set of generators for H. Often
we assume X is symmetric: 1 ∈ X,X = X−1.

We have an equivalence relation H, the (left) coset equivalence relation; and
a graph X, the Cayley graph. H is generated by X.

Transpose to: G a set; H an equivalence relation. X ⊂ G2 a generating
set. Symmetric: the diagonal on G is contained in X; and X = Xt. So
H = ∪X ◦ · · · ◦X.

In both cases, an associated metric d = dX , generated by: d(x, y) ≤ 1
if (x, y) ∈ X. If we are given a family Xi, let d(x, y) ≤ n iff there exist
x = x1 . . . xn = y with (xk, xk+1) ∈ ∪Xi.

Definition 1.1. A symmetric X ⊂ G2 is a k-approximate equivalence
relation if the valency is of a fixed order of magnitude |X(a)| ≤ k|X(b)|
for all a, b ∈ G, and every 2-ball is a union of k 1-balls.

• Say two metrics d, d′ are k-commensurable at scale α if an α-ball of d′ is
contained in ≤ k balls of d-radius α, and vice versa.

• A metric space is k-doubling at scale α if d, (1/2)d are k-commensurable
at scale α.

• Thus: for a k- approximate equivalence relation X, dX is k-doubling at
scale 1.

• X is an approximate subgroup of G iff X is an approximate equivalence
relation on G.

Theorem 1.2 (strong approximation: groups). Let F = Fp, p nonstandard.
Let G = GLn(F ), and let Xi be a family of definable subsets. Then there exists
a definable H such that:

1. H is a subgroup of G

2. H ⊂< ∪Xi >.

3. Xi/H is finite (bounded.)

Moreover, ’definable’ here can be made explicit as follows: there exists a homo-
morphism of algebraic groups (with bounded data), with finite kernel

h : H̃ → G

such that H = h(H̃(F )).
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Applied to the family of one-dimensional unipotent subgroups Xi of an ar-
bitrary subgroup Γ of G, this shows that Γ contains a definable normal subgroup
H with Γ/H Abelian-by-bounded. Thus the image of a Zariski dense subgroup
of SLn(Fp) has bounded index, and is as above. ( Weisfeiler 1984, Nori 1987,
Gabber, precedents by Eichler 1938, Kneser 1966,...).

Theorem 1.3 (strong approximation: graphs). Let F = Fp, p nonstandard, G
definable over F . Let X ⊂ G2 be definable. Then there exists m,m′ ∈ N and a
0-definable H ≤ G2 such that:

1. H is an equivalence relation on G

2. If (a, b) ∈ H then dX(a, b) ≤ m.

3. X/H has valency (degree) ≤ m′.

Moreover, H is algebraic: (a, b) ∈ H iff φ(h−1(a)) = φ(h−1(b)) for some mor-

phism of varieties h : G̃ → G with finite fibers, and regular functions φ on G̃,
with φ ◦ h−1 well-defined.

Generate as long as dimension increases; then show there are no definable
approximate equivalence relations.

If stated for standard primes: the bounds m,m′ on valency and on diameter
are independent of p; H varies through only finitely many possible definitions
(given G,X); and the complexity of h, G̃, φ is bounded independently of p.

Example 1.4. Fix an algebraic group G0, e.g. G0 = SLk. let F = GF (p), let
Ω1,Ω2 be unipotent orbits in G0(F ), and make Γ = Ω1 × Ω2 into a graph by
letting (a, b) be adjacent to (a, a−1ba) and to (b−1ab, b).

Invariants of the connected components:
the group < a, b > generated by (a, b). The fact that this is a definable invariant
is the strong approximation lemma for groups!

The trace tr(ab).
Further algebraic invariants.
For pairs (a, b) that generate SLk, I do not know if further invariants are

needed; Gamburd and Sarnak have results on related graphs.

2 Stabilizers

Theorem 2.1 (H. ,Sanders 2009). Let X be a k-approximate group. Then there
exists Y with Y ·8 ⊂ X ·4, X contained in boundedly many cosets of Y .
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Theorem 2.2. Let X be a k- approximate equivalence relation on G. Then
there exists S ⊂ G2 such that S◦8 ⊂ X◦4, and for all a ∈ Ω outside an ε-slice
U , |S(a)| ≥ Ok(1)|X(a)|.

Moreover S is 0-definable, uniformly in (Ω, X), in an appropriate logic; in
particular Aut(Ω, X) leaves U, S invariant.

The invariance implies the group-theoretic version.
The 0-definability of S will be essential, in moving from the approximate

symmetry of a graph to automorphisms of an associated locally compact space.
Closely related to Lovász-Szegedy graphons in cases of bounded diameter at

least. However, to know that the definition of W ◦W agrees with the one we
give on elements, we need to know essentially the independence theorem; so it
does not appear to give a new proof of the stabilizer theorem.

3 Approximate symmetry

A distance between finite graphs: (Keisler-Hoover, Gromov (measured metric
spaes), Benjamini-Schramm)

Definition 3.1.

ρ(Ω,Ω′) = sup{ 1

m
: (∃Γ)|Γ| = m, |Pr(Γ,Ω)− Pr(Γ,Ω′)| ≥ 1

m
}

Where Pr(Γ,Ω) = |Hom(Γ,Ω)|/Ωm.

A similar definition applies to pointed graphs.

Definition 3.2. (Ω, X) is ε-homogeneous if ρptd((Ω, a), (Ω, b)) ≤ ε for all a, b ∈
Ω.

Definition 3.3. Ωn → Ω if ρptd(Ωn, an), (Ω, a)→ 0 for all an ∈ Ωn, a ∈ Ω.

Of course, this only makes sense if the Ωn are increasingly ε-homogeneous.
We will really have a stronger notion of convergence: there will be a metric

d on Ωn, d(x, y) = 1 iff (x, y) ∈ X, such that Gromov-Hausdorff convergence
holds with respect to the metrics.

A Riemannian homogeneous space is a Riemannian manifold, with transi-
tive isometry group (Classified by Wolf when the stabilizer acts irreducibly on
tangent space.)

A Riemannian model is a Riemannian homogeneous space, with compact
point stabilizer, and with the approximate equivalence relation: d(x, y) ≤ 1.

Riemannian models have ε-homogeneous approximations for any ε. Let G/K
be a Riemannian homogeneous space; G a Lie group, K compact. Let Λ be a
lattice of large covolume. Let n be large, and choose n points at random on
Λ\G/K.
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Theorem 3.4. Let (Gn, Xn) an approximately homogeneous sequence of ap-
proximate equivalence relations. Then some subsequence approaches a limit
(Γ, X), admitting a homomorphism to a vertex transtive graph B of bounded
degree, such that each fiber is commensurable to a Riemannian model.

4 Partial Bourgain systems

Theorem 4.1. Fix k ∈ N. Then there exists e∗ ∈ N such that the following
holds: Let G be any group, X a finite subset, and assume |XX−1X| ≤ k|X|.

Then there are 2 ≤ e, c ≤ e∗, and N > 22
2ec

subsets XN ⊆ XN−1 ⊆ · · · ⊆
X1 ⊆ X−1XX−1X such that X,X1 are e-commensurable, and for 1 ≤ m,n <
N we have:

1. Xn = X−1n

2. Xn+1Xn+1 ⊆ Xn

3. Xn is contained in the union of c translates of Xn+1.

4. [Xn, Xm] ⊆ Xk whenever k ≤ N and k < n+m.

Theorem 4.2. Fix k ∈ N. Then there exists e∗ ∈ N and ε > 0 such that
the following holds: Let (G,X) be an ε-homogeneous approximate equivalence

relation. Then there are e, c ≤ e∗ and N > 22
2eck

, and a metric dN on X such
that:

X-balls are covered by ≤ e dN -balls of radius 1, while dN -balls of radius 1
are contained in X-balls of radius 4. (and so in k4 X-balls of radius 1); and
for 1 ≤ m,n < N , dN is c- doubling at scale 2−n, i.e. dN -balls of radius 2n are
contained in c balls of radius 2n+1.

Problem 4.3. Complete this with an analogue of (4).

Problem 4.4. Exploit homogeneity on types to obtain a statement without the
approximate homogeneity assumption. (embedding of sections into a Rieman-
nian homogeneous space.)

5 Proof of stablizer lemma

• xSny iff µ{z : |µ(R(x)∩R(z))− µ(R(y)∩R(z))| ≥ 2−n} ≤ 2−n}

• At limit, ∩nSn: for almost all z, µ(R(x)∩R(z)) = µ(R(y)∩R(z)). It is
cobounded.
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• Sn+1 ◦ Sn+1 ⊂ Sn. (Away from measure 0).

• Sn ⊂ R◦4, for large n.

• Sn is definable in terms of R using probability logic. This definability will
be essential, showing that (approximate) symmetries of the graph, are
(approximate) symmetries of the associated refining metric.

• The proof uses stability: µ(R(x)∩R(z)) is a stable real-valued formula.
New proofs of this by Tao.

6 Approximately homogeneus approximate
equivalence relations (proof)

• Ultraproduct. Obtain two equivalence relations: Ẽ = finite distance. Γ =
infinitesimal distance.

• Let Ω be a class of Ẽ; then Ω/Γ is locally compact.

• G := Aut(Ω/Γ) acts transitively on Ω, by isometries of the fine metric.
Keisler,Gromov-Vershik,

• A locally compact structure on G (compact-open topology.) The stabilizer
of a point is compact.

• By Gleason-Yamabe, an open subgroup H, a small normal compact sub-
group N , with H/N a Lie group.

• From Ω to an H-orbit: locally bounded distortion. (R induces a graph of
bounded degree on Ω/H.)

• Factor out N . Obtain a coarser equivalence relation than the original
distance-zero, but still contained in dR ≤ 4.

• Now the Lie group H/N acts transitively on Ω/Γ, compact point stabi-
lizer. Find an invariant Riemannian metric. This metric is doubling up
to distance 1, and the distance 1 relation is commensurable with dR.

• For partial Bourgain systems: return information to finite factors, up to
scale Ψ(c).
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7 Comparison

Theorem 7.1 (Benjamini- Finucane-Tessera 2012). 1. Let (Xn) be an
unbounded sequence of finite, connected, vertex transitive graphs with
bounded degree such that |Xn| = o(diam(Xn)q) for some q > 0. After
rescaling by the diameter, some subsequence converges in the Gromov
Hausdorff distance to a torus of dimension < q, with an invariant metric.

2. If q is close to 1, then the scaling limit of (Xn) is S1, even if Xn is only
roughly transitive
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