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Abstract

We analyze the contact process on random graphs generated according to the preferen-
tial attachment scheme as a model for the spread of viruses in the Internet. We show that
any virus with a positive rate of spread from a node to its neighbors has a non-vanishing
chance of becoming epidemic. Quantitatively, we discover an interesting dichotomy: for a
virus with effective spread rate λ, if the infection starts at a typical vertex, then it develops
into an epidemic with probability λΘ( log(1/λ)

log log(1/λ) ), but on average the epidemic probability
is λΘ(1).

1 Introduction

There is compelling evidence that many self-engineered networks, notably the Internet, have
scale-free structures in the sense that the degree distributions of these networks have power-law
tails [11]. Motivated by these observations, there has been a great deal of study, both non-
rigorous and rigorous, of the detailed structural properties of so-called preferential attachment
models and other models with power-law degree distributions; see [1] and [4] and references
therein for some of the non-rigorous and rigorous work, respectively. However, thus far, there
has been much less work on the impact of these structures on processes occurring on these
networks.
In this paper, we give a rigorous analysis of processes which model the spread of viral infections
on scale-free structures, and show how these processes differ markedly from epidemics on more
conventional structures. Since there are also observations which indicate that the network of
human sexual contacts follows a power-law degree distribution [14], this work is relevant both
in the context of the spread of computer viruses on the Internet, and the spread of sexually
transmitted diseases (STD).
The standard model used in the study of viral infections is called the contact process or the
susceptible-infected-susceptible (SIS) model. In this model, every vertex is either infected or
healthy (but susceptible). An infected vertex becomes healthy with rate 1 independently of the
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status of its neighbors. A healthy vertex becomes infected at a rate equal to the propagation
ratio of the disease, λ, times the number of its infected neighbors.
In our context, this model is describing the spread of viruses in a network in the presence
of a particular class of antivirus software. Computers with the software installed are not
permanently immune from the virus, but they are regularly scanned for the presence of the
virus, and the software removes the virus if the computer is found to be infected. A computer
can be infected by the same virus more than once, and each time it remains infected until
the next scan by the antivirus software. Alternatively, the contact process also approximately
describes the spread of epidemics in the presence of regularly updated antivirus software which
confers permanent immunity, but where viruses mutate. In this case, the antivirus software
prevents any given computer from being reinfected with the same virus, but does not prevent
it from being reinfected with all mutated variants.
The contact process has been studied extensively in the probability community [13], but it is
usually studied on bounded-degree or homogenous graphs. The most important general result
in that context is the existence of epidemic thresholds. For infinite graphs it has been shown
that there exist two epidemic thresholds λ1 ≤ λ2. If λ > λ2, then with positive probability the
can spread and survive at any point of the graph. If λ1 < λ < λ2, the infection survives with
positive probability, but every vertex heals eventually almost surely. If λ < λ1, the infection
dies out almost surely. As it turns out, λ1 = λ2 for Zd, whereas λ1 < λ2 for regular trees (see
[13] and [20, 19]).
It is easy to see that, in a finite graph, the infection will eventually die out with probability
1. However, there is still a natural definition of epidemics in the finite case, as can be seen by
considering finite subsets of well-studied infinite graphs, such as Zd. It turns out that, for the
cube [−n, n]d, there is a λc such that if λ > λc then with probability bounded away from zero
the infection survival time is exponential in nd, while if λ < λc the infection dies out before
time log(n) with probability 1− o(n). Moreover, this λc is equal to the epidemic threshold for
Zd. (See [13] for proofs of these statements.) Therefore, it is natural to say that the infection
becomes an epidemic if the time that it takes for the infection to die out is super-polynomial
in the number of vertices of the graph.
Using the epidemiologic models such as the SIS model for analyzing the spread of viruses
has been suggested more than a decade ago by Kephart and White [12]. Pastor-Satorras and
Vespignani [17, 16] were the first group to study the contact process on scale-free graphs in the
Barabási-Albert model [2]. Using simulation and (non-rigorous) mean-field equations, they
argued that the epidemic threshold λc in scale-free networks is 0. They also studied the actual
data and found supporting evidences for their observation. Other recent work on the spread
of computer viruses on the Internet includes [15, 21, 8].
In this paper, we present what is, to the best of our knowledge, the first rigorous analysis of
the contact process on scale-free graphs in preferential attachment models.
The contribution of this paper is two-fold. First, we introduce a new representation of the
preferential attachment model which we call the Pólya urn representation. Our representation,
which we believe to be of independent interest, is a generalization of Bollobás and Riordan’s
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random pairing representation [3]. It gives a new proof of the main result of [3] and enables
us to analyze a natural generalization of their representation in which the vertices can also
choose their neighbors uniformly at random with some probability; see also [18, 10, 6, 7]
for other models with combinations of uniform and preferential attachment. We believe this
representation will also be useful in rigorous analyses of many other structural and dynamical
properties of preferential attachment graphs.
Second, we use our new representation to analyze the contact process on the preferential
attachment model. We show that, as predicted by Pastor-Satorras and Vespignani [17, 16],
the epidemic threshold is zero. The importance of this observation is that it shows that even
viruses with very small propagation rate have a positive chance of becoming epidemic. We also
provide much more detailed estimates yielding matching upper and lower bounds, as functions
of λ, on the probability for an epidemic to occur – both for an epidemic beginning at a typical
starting vertex and on average. Interestingly, it turns out that these two probabilities are
quite different. In particular, the epidemic probability for an infection beginning at a typical
vertex is a rather complicated function of λ, which would therefore have been quite difficult
to ascertain by empirical means:

λ
Θ

(
log(λ−1)

log log(λ−1)

)

, (1)

whereas the average epidemic probability is simply λΘ(1).

1.1 Strategy of the proof

We end the introduction by giving an intuitive description of the proof of (1), without delving
into the rather tortuous technical details. The proof breaks into two relatively independent
parts, the first dealing with the contact process and the second dealing with the structure of
the graph.
The behavior of the contact process depends strongly on the degrees in the graph. In par-
ticular, we show that if all degrees in a graph G are significantly smaller than λ−1, then the
disease will die out very quickly. If, on the other hand, the virus has reached a vertex of degree
significantly larger than λ−2, then the disease is very likely to survive for very long time in
the neighborhood of this vertex.
Therefore, we want to get an understanding of the degrees in a neighborhood of a vertex.
We show, using our Pólya urn representation of the scale-free graph and Bollobás–Riordan’s
expanding environment method [3] that for a typical vertex v, the the largest degree of a
vertex in a ball of radius k around v is, with high probability, (k!)Θ(1).
In view of this, the closest vertex of degree λ−Θ(1) is at distance Θ(log(λ−1)/ log log(λ−1)),
and the question of survival of the disease boils down to whether the infection manages to
arrive at a vertex of degree λ−Θ(1). Therefore the survival probability is the probability that
the infection manages to arrive at distance Θ(log(λ−1)/ log log(λ−1)), and this probability is
given in equation (1).
The analysis above is useful in understanding the behavior if we start at a typical starting
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point. However, if we start at a point of degree higher than λ−2, then the process has a very
good chance of surviving for a long time. The power-law degree distribution of the Barabási-
Albert graphs tells us that λΘ(1) of the vertices have this degree, and therefore the average
survival probability is λΘ(1).

1.2 Structure of the paper

In Section 2, we precisely define the model and state our results. In Section 3, we present
our Pólya urn representation of the scale-free graph, and give a number of technical lemmas
that enable easy analysis of the model. In Section 4, we use the construction of Section 3 to
give estimates on the maximum degree in a neighborhood of a randomly chosen vertex. The
main tool we use is the method of rapidly expanding neighborhoods, first introduced in [3]. In
Section 5 we prove a few simple facts on the contact process, and in the last section we give
some details the proof of Theorem 2.1. Most of the more technical estimates are relegated to
the Appendix.

2 Definition of the Model and Statements of Results

The scale-free graph we define generalizes the model suggested by Barabási and Albert [2]
and made rigorous in [3]. Fix an integer m ≥ 2 and a real number 0 ≤ α < 1. Let {vi} be a
sequence of vertices, and let Gi be the graph at time i. Then, G1 contains the vertex v1 and
no edges, and G2 contains v1 and v2 and m edges connecting them. Given Gn−1, we create
Gn the following way:
We add the vertex vn to the graph, and choose m vertices w1, ..., wm, possibly with repetitions,
from Gn−1. Then we draw edges between vn and each of w1, ..., wm. Repetitions in the
sequence w1, ..., wm result in multiple edges in the graph Gn.
The vertices w1, ..., wm are chosen inductively as follows: With probability α, w1 is chosen
uniformly, and with probability 1− α, w1 is chosen according to the preferential attachment
rule, i.e., for every i = 1, . . . , n− 1, we take w1 = vi with probability (degn−1(vi))/Z where Z
is the normalizing constant

Z =
n−1∑

i=1

(degn−1(vi)) = 2m(n− 2).

Then we proceed inductively, applying the same rule, but when determining wk, instead of
the degree degn−1(vi), we use

deg′n−1(vi) = degn−1(vi) + #{1 ≤ j ≤ k − 1|wj = vi}.

It should be noted that the α = 0 case of our model differs slightly from the model of and
Bollobás and Riordan [3] in that they allow (self-)loops, while we do not. Both [3] and the
model defined above allow multiple edges. One might argue that the most natural — though
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mathematically harder — case is that without multiple edges, i.e., when the the wi are all
conditioned to be different (for n > m) and are all determined according to the rule described
for w1. It turns out that we can provide Pólya urn representations of any of these three
variants for general α. Here we will consider only the variant defined above, without loops
but with multiple edges. In the full version of this paper, we will also give the more natural
variant without multiple edges, and show that it does not change the final results.
Our main results are the following:

Theorem 2.1. For every λ > 0, there exists N such that for a typical sample of the scale-free
graph of size n > N , if we choose a uniform vertex v, then with probability 1 − O(λ2), v is
such that an infection starting at v will survive with probability bounded from below by

λ
C1

log (1/λ)
log log (1/λ) (2)

and from above by

λ
C2

log (1/λ)
log log (1/λ) (3)

where C1 and C2 are constants not depending on λ or n.

The O(λ2n) vertices left out in Theorem 2.1 turn out to have a dramatic effect on the average
survival probability, as demonstrated in the next theorem:

Theorem 2.2. For every λ > 0, there exists N such that for a typical sample of the scale-free
graph of size n > N , if we choose a uniform vertex v and start the infection at v, then the
infection will survive with probability bounded from below by

λC3 (4)

and from above by
λC4 (5)

where C3 and C4 are constants not depending on λ or n.

It is interesting to mention that the survival probability of the contact process is much higher
than the density of the percolation cluster which was shown in [5] to be between exp(−Θ(λ−2))
and exp(−Θ(λ−1)).

3 Pólya Urn Representation of the Barabási-Albert Graph

In early twentieth century, Pólya proposed and analyzed the following model known as the
Pólya urn model [9]. We have a number of urns, each holding a number of balls, and at each
step, a new ball is added to one of the urns. The probability that the ball is added to urn i is
proportional to Ni+u where Ni is the number of balls in the i-th urn and u is a predetermined
parameter of the model.
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Pólya showed that this model is equivalent to another process as follows. For every i, choose
a parameter (which we call ”strength” or ”attractiveness”) pi, and at each step, independently
of our decision in previous steps, put the new ball in urn i with probability pi. Pólya specified
the distribution (as a function of u and the initial number of balls in each urn) for which this
mimics the urn model. A particularly nice example is the case of two urns, each starting with
one ball and u = 0. Then p1 is a uniform [0, 1] variable, and p2 = 1− p1. He showed that for
general values of u and {Ni(0)}, the values of {pi} are determined by the β-distribution with
appropriate parameters.
It is not hard to see that there is a close connection between the the preferential attachment
model of Barabási and Albert and the Pólya urn model in the following sense: every new
connection that a vertex gains can be represented by a new ball added in the urn corresponding
to that vertex. We use this idea to give an equivalent description of the scale-free graph which
is easy to analyze. We will see throughout the paper the properties of this description that
make it useful for understanding the graph.

3.1 Formal description

We describe an equivalent representation of the n-vertex Barabási-Albert graph with m con-
nections and probability α of uniform connection. Let u be s.t. α = u/(1 + u). We take
ψ1 = 1, and for every 2 ≤ k ≤ n, we take ψk to be distributed according to

β(m + mu, (2k − 3)m + (k − 2)mu)

(We say that X ∼ β(a, b) if the density of X is xa−1(1−x)b−1

Z with Z being the appropriate
normalization. See [22] for the properties of the β distribution). For 1 ≤ k ≤ n, we take

ϕk = ψk

n∏

j=k+1

(1− ψj).

It is easy to see that
∑n

k=1 ϕk = 1. Let

lk =
k∑

j=1

ϕk.

For every a ∈ [0, 1], we define κ(a) = min{k : lk ≥ a}. Let {Ui,k}1≤i≤m,1≤k≤n be independent
random variables, uniform on [0, 1]. For k > j, we draw an edge between k and j if for some
1 ≤ i ≤ m we have

j = κ(Ui,klk−1). (6)

We allow multiple edges — the number of edges connecting k to j is the number of values of i
such that (6) is satisfied. The next lemma follows immediately from the theory of Pólya urns.

Lemma 3.1. The random graph described above has the same distribution as the n-vertex
Barabási-Albert graph with m connections and probability α of uniform connection.
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Lemma 3.1 gives us a representation of the Barabási-Albert graph with much more indepen-
dence that the original description, thus enabling us to do rigorous calculations.
In order to use Lemma 3.1 effectively, we need to have a few estimates on the values of lk, ϕk

and κ(a). These estimates are deferred to Section 7 in the Appendix.

4 Maximum Degree in a Neighborhood of a Vertex

In this section we state the main two propositions controlling the structure of the graph.
These propositions say that, with high probability, all of the vertices in the ball Ht of radius
t around a uniform vertex have degree smaller than (t!)100, but there exists some vertex in Ht

of degree (t!)Θ(1).
The proofs of these propositions use the Pólya urn representation and the methods of expand-
ing neighborhoods. The details are presented in Sections 8 and 9 in the Appendix.

Proposition 4.1. Let a be chosen uniformly in [0, 1], and let k = κ(a). For every ε there
exists T such that with probability larger than 1 − ε, for every t > T , every vertex in Ht has
degree smaller than (t!)100.

Proposition 4.2. Let a be chosen uniformly in [0, 1], and let k = κ(a). There exists C > 0,
depending only on χ = m+mu

2m+mu , such that for every ε there exists T such that with probability
larger than 1− ε, for every t > T , there exist a vertex in Ht with degree larger than (t!)C .

5 The Contact Process

The contact process is often studied as a model for the spread of infections. It has been
the subject of intensive research, both rigorous work within the mathematics community
[13, 20, 19], and numerical and simulation analysis in the networking, social sciences and
physics literature. An excellent reference for the mathematical background is Liggett [13].
In this model, every computer or individual is represented by a vertex in a graph. A vertex is
either healthy or infected. An infected vertex becomes healthy after an exponential time with
mean 1, independently of the status of its neighbors. A healthy vertex becomes infected at a
rate that is proportional to the number of its infected neighbors. More formally:

Definition 5.1. The contact process with infection parameter λ on a graph G(V, E) is a
continuous time Markov process ηt which can be identified at any time t by a subset A = {v ∈
V : ηt(v) = 1} of vertices. The vertices in A are regarded as infected and the rest of the
vertices are thought of as being healthy. The transition rates for ηt are given by

A → A \ {v}, for v ∈ A at rate 1 and
A → A ∪ {v}, for v /∈ A at rate λ|{u ∈ A : {u, v} ∈ E}|.

We assume that at t = 0 one of the vertices of the graph is infected. This vertex is usually
called the root or origin. In an infinite graph, the disease might survive in the graph for an
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infinite time. However, it is easy to see that in a finite graph the disease will eventually die
out, i.e., A becomes empty and remains empty afterwards.
In finite graphs, we study the time that it takes for the graph to become healthy. In particular,
we say a disease becomes an epidemic if and only if the time that it takes to die out is
exponential in the number of vertices.
We will show that in a scale-free graph of size n, there is a λn such that with high probability,
any disease with infection rate λ > λn has a constant probability of becoming epidemic, and
λn → 0 as n tends to infinity. This is in contrast to bounded-degree graphs in which with
high probability the disease dies out exponentially fast if λ < 1/(2d).

Lemma 5.1. Let G be a graph with maximum degree d. Let S be the set of vertices ever to
be infected in G, then P(|S| > k) < (2dλ)k for every k.

Proof. We may assume without loss of generality that λd < 1. Define X to be the random
variable indicating |A| at any time. The probability that two events (either a healthy node
becoming infected or vice versa) happen at the same time is zero. Therefore, the transition
rates for X are given by

X → X − 1, at rate X and
X → X + 1, at rate λ|c(A, Ā)|,

where c(A, Ā) = {{u, v} ∈ E : u ∈ A, v ∈ Ā}.
Clearly, |c(A, Ā)| ≤ Xd. Therefore, at any time, the next event increments X with probability
at most

λXd

X + λXd
=

λd

1 + λd
<

1
2
λd

by the assumption λd < 1, and decrements X with probability at least

1
1 + λd

> 1− 1
2
λd.

In order to reach X = k + 1, we will need at least k increments among the first 2k events, the
probability of which is bounded above by 22k(λd/2)k = (2dλ)k, as desired.

As a corollary of the proof, we get the following result:

Corollary 5.2. Let G be a graph. Let v ∈ G and let l be a positive integer. Assume that in
the ball of radius l around v, all of the degrees are bounded by d. Start a contact process with
parameter λ < d−1/2 at {v}. For T > 0, let S(T ) be the event that AT 6= ∅, and let B(l) be
the event that the infection never leaves the ball of radius l around v. Then, for every T ,

P(S(T )|B(l)) < (2λd)T .

In the next lemma, we will study the survival time of the contact process in a star. This
lemma is crucial for the proof of our main theorem. We will show that with high probability,
the disease survives in a star for an exponential time in the number of vertices.
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The idea of the proof is as follows: When the center of the star becomes infected, it starts
infecting the leaves at a very high rate. The number of leaves infected before the center
becomes healthy again is high enough to ensure that the disease will survive in the graph until
the center becomes infected again. The proof of this lemma is in Section 10 in the Appendix.

Lemma 5.3. Let G be a star graph, with center x and leaves y1, . . . , yk. Let At be the set of
vertices infected at time t. There exists C such that if A0 = {x} then P(Aexp(Ckλ2) 6= ∅) =
1− o(k).

6 Proof of Theorem 2.1

In this section we prove Theorem 2.1. The theorem breaks into two propositions, each of which
is a simple corollary of the results of previous sections. Let Gn be the (random) Barabási-
Albert graph, and let vn be a uniformly chosen vertex in Gn.
The proof of Theorem 2.2 is very similar to that of Proposition 6.1 below.

Proposition 6.1. For every n there exists λn, with λn → 0 as n tends to ∞, such that for
every λGn,vn > λ > λn, if we start an infection with parameter λ at vn, it will survive with
probability bounded from below by

λ
C1

log(1/λ)
log log(1/λ) ,

where C1 is a universal constant, and

P(λGn,vn < x)1/10 log(1/x) (7)

i.e., λGn,vn stochastically dominates a variable that does not depend on n.

Conversely, we have:

Proposition 6.2. For every n there exists λn, with λn → 0 as n tends to ∞, such that for
every λGn,vn > λ > λn, if we start an infection with parameter λ at vn, it will survive with
probability bounded from above by

λ
C2

log(1/λ)
log log(1/λ)

where C2 is a universal constant and λGn,vn is as in (7).

Note that the difference between the two propositions is that Proposition 6.1 bounds the
survival probability from below, whereas Proposition 6.2 bounds the survival probability from
above.

Proof of Proposition 6.1. Fix λ. Let

k0 = 10C−1 log(1/λ)
log log(1/λ)
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where C is as in Proposition 4.2. By Lemma 9.3 and Proposition 4.2, with probability as in
(7), Gn and vn are so that the k-neighborhood of vn contains a vertex u(1) of degree larger
than

(k0!)C >

(
1
λ

)10

such that
lu(1) < 2−0.5 log(k0!) < λD

for some D = D(m,u) > 0. Now, let u(2) be a parent of u(1), let u(3) be a parent of u(2), and
continue up to u(log(n)/100). Then, lu(j) = Ujlu(j−1) where {Uj} are i.i.d. variables, uniform on
[0, 1]. With probability larger than 1/2,

lu(j) <

(
9
10

)j

lu(1)

for all j = 2, . . . , log(n)/100. Therefore, using Lemmas 7.2 and 7.3, with probability larger
than 1/4, for every j = 2, . . . , log(n)/100, the degree of u(j) is larger than

1.05j(χ−1−1)

(
1
λ

)5

.

Thus far, we have the following: There exists a vertex u(1) of distance k0 from vn, and a
sequence of vertices u(j), j = 2, . . . log(n)/100 such that:

1. For every j, the degree of u(j) is bounded from below by 1.05j(χ−1−1)
(

1
λ

)5, i.e., the
degrees of u(j) grow exponentially with j.

2. The vertex u(j) is a neighbor of u(j−1).

Let v(1) = vn, v(2), v(3), . . . , v(k0) = u(1) be a path starting at vn and reaching u(1). With
probability (

λ

1 + λ

)k0

≥ λ
C1

log(1/λ)
log log(1/λ)

the infection reaches u(1). By iterative applications of Lemma 5.3, conditioned on the event
that the infection reaches u(1), with probability bounded away from zero, the infection will
reach u(log(n)/100), and by another application of Lemma 5.3, the infection will survive up to
time at least

exp
(
Cλ2 · 1.05log(n)/100

)
= exp(nν)

for some ν = ν(m,α, λ).

Proof of Proposition 6.2. Proposition 6.2 follows immediately from Lemma 9.1 and Proposi-
tion 4.1, and Lemma 5.1 and Corollary 5.2.

Acknowledgment: We thank Oliver Riordan for useful discussions.
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Appendix

7 Estimates for the Pólya Urn Representation

In this section we complete the work started in Section 3 by providing estimates for the
quantities defined in that section. Let

χ =
m + mu

2m + mu
.

Then the following hold:

Lemma 7.1. lk converges uniformly in probability to
(

k
n

)χ
, i.e., for every ε there exist N

such that if n > N , then with probability larger than 1 − ε, for every 1 ≤ k ≤ n, we have
|lk − (k/n)χ| < ε.

From Lemma 7.1 we get that:

Lemma 7.2. For every ε there exist N such that if n > N then with probability larger than
1− ε, for every a ∈ [0, 1], we have |κ(a)− a1/χn| < εn.

For ϕk, which is the (random) strength of the k-th vertex, the estimate is as follows:

Lemma 7.3. Let {ϕ′′k}∞k=1 be i.i.d. variables distributed Γ(m + mu). and let ϕ′k = ϕ′′/(2m +
mu). For every ε there exist N and K such that for every n > N there exists a coupling
between

{
kχ−1

nχ
ϕ′k

}n

k=K
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and {ϕk}n
k=K so that with probability larger than 1− ε,

(1− ε)ϕk ≤ kχ−1

nχ
ϕ′k ≤ (1 + ε)ϕk

for every K ≤ k ≤ n.

Recall that the Γ-distribution with parameter a is the distribution with density xa−1 exp(−x)
Z ,

with Z being the proper normalization. In particular, if a is an integer, then the Γ-distribution
with parameter a is the distribution of the sum of a independent exponentials with parameter
1.

8 Expanding Neighborhood Calculation

We want to estimate the maximum degree of a vertex in a neighborhood of radius k around
a random vertex v. This has already been done by Bollobás and Riordan [3] for the (looped)
version of model without uniform connections. In this section we show that the ideas of
Bollobás and Riordan, when applied to the Pólya urn description of the graph instead of the
random pairing description, give good estimates for the maximum degree of a vertex in a
neighborhood of radius k around a random vertex v in the more general setting (i.e., α > 0).
We start from a uniformly chosen vertex v. Let Θj be the set of vertices at distance exactly
j from v. We take

Hj = ∪t
i=1Θi.

Assume
n > et2 . (8)

Let
Gt(i) = #{k ∈ Θt : 2−i < lk ≤ 2−i+1}.

8.1 Evolution of Gt(·)
Fix n large, let a ∈ [0, 1] and let k = κ(a). Let i be so that a ∈ [2−i, 2−i+1]. We want
to understand the distribution of the neighbors of k. k has two types of neighbors: the m
connections that k made when it joined the graph, and the connections that newer vertices
made to k when they arrived.
For the first type, let {Ui}m

i=1 be m independent U([0, 1])-s. The m connections are {κ(a′Ui) :
i = 1, . . . , m} where a′ = lκ(a) = a + O(n−χ). Therefore, for each j > i, the number of
neighbors of k in [2−j , 2−j+1] is bounded from below and from above by constants times
Bin(m, 2i−j−1).
For the second type, fix j < i. The number of connections from [2−j , 2−j+1] is

∑

h|lh∈[2−j ,2−j+1]

Xh

13



where Xh ∼ Bin(m,wk/lh). Therefore, the number of neighbors of k in [2−j , 2−j+1] is bounded
from below and from above by constants times

Poi

(
2−j wk

E(wκ(2−j))

)
. (9)

From (9) and Lemmas 7.1, 7.2, and 7.3, we get that there exist constants 0 < C1, C2 < ∞
such that for every t and j,

Gt+1(j) ¹ Poi


C1


∑

i≤j

2i−jGt(i) +
∑

i≥j

2β(i−j)Gt(i)





 (10)

and

Gt+1(j) º Poi


C2


∑

i<j

2i−jGt(i) +
∑

i>j

2β(i−j)Gt(i)





 (11)

where ¹ and º denote stochastic domination and β = χ−1 − 1 satisfies 0 < β ≤ 1. From (10)
and (11) we get (12) and (13) below, which are slightly weaker but are much more convenient
to use:

Gt+1(j) ¹ Poi

(
Cu

[ ∞∑

i=1

2i−jGt(i)

])
(12)

and

Gt+1(j) º Poi

(
Cl

[ ∞∑

i=1

2β(i−j)Gt(i)

])
(13)

with 0 < Cu, Cl < ∞.

9 Proofs of the Upper and Lower Bounds

In this subsection we will show that with high probability, all of the vertices in Ht have degree
smaller than (t!)100, but there exists a vertex of degree higher than (t!)100. First we show the
upper bound. This will be done using induction. For every t > 1, let Bt = [20 log(t!)] < 20t2.
The induction step is the following lemma:

Lemma 9.1. Let E
(`)
t be the event that G`+t(j) < 10 · 2−j(t!)4 for every j. Then

P(E(`)
t+1|E(`)

t ) ≥ 1− 1
t2
−

∞∑

j=Bt

2−j(t!)4 = 1− o
(
t−2

)
. (14)

14



Proof. Since G`+t(j) is integer, if we condition on E
(`)
t , then Gt(j) = 0 for every j > Bt.

Therefore, using (12), G`+t+1(j) is stochastically dominated by a Poisson variable with pa-
rameter

2−jBt(t!)4 < 2−j ((t + 1)!)4

t2

for every j. Therefore, by Markov’s inequality, the probability that there exists j ≤ Bt such
that G`+t+1(j) > 10 · 2−j((t + 1)!)4 is bounded by

Bt

t4
<

1
t2

. (15)

For j > Bt, the probability that G`+t+1(j) > 10 · 2−j((t + 1)!)4 is the probability that
G`+t+1(j) ≥ 1, and by Markov’s inequality this is bounded by

2−j(t!)4. (16)

Equation(14) follows from (15) and (16).

We can now prove the upper bound:

Proposition 9.2. Let a be chosen uniformly in [0, 1], and let k = κ(a). For every ε there
exists T such that with probability larger than 1 − ε, for every t > T , every vertex in Ht has
degree smaller than (t!)100.

Proof. Let l be such that a > 2−l with probability 1 − ε/4, and let ` < −l. Also, let ` be so
large in absolute value that

∞∑

t=−`


 1

t2
+

∞∑

j=Bt

2−j(t!)4


 < ε/2. (17)

Notice that in (17) we are summing on the expression from (14). Let T > 1 − `, such that
(t!)10 > ((t + `)!)4 for all t > T . By the choice of `, the probability of E

(`)
1−` is larger than

1− ε/4. Therefore, by Lemma 9.1, with probability larger than 1− ε/2, for every t > T , the
event E

(`)
t occurs.

Now, condition on the occurrence of
⋂∞

t=T E
(`)
t . Then for every t > T , the number of elements

in Ht is no more than (t!)10, and

min{lk : k ∈ Ht} > 2−Bt >
1

(t!)20
.

Therefore, using Lemmas 7.2 and 7.3,

P

(
There exists k ∈ Ht such that wk >

t2 · (t!)20(χ−1)

n

)
<

1
t!

.

The degree of k is dominated by m plus a Poisson process with rate nwk/lk. Since lk > (t!)−20,
we get that the probability that there exists a vertex of degree larger than (t!)100 is bounded
by (t!)−50. This gives the required result.
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Now, we show that with high probability, there exists a vertex v in Ht of degree (t!)µ where
µ = µ(χ) > 0. The proof is not much different from that of the upper bound. Let C1 be so
that

2−βC1 log(t!) > (t!)−0.25 (18)

for every t. Let Ft = C1 log(t!). The induction step follows from the following lemma:

Lemma 9.3. Let D
(`)
t be the event that G`+t(j) > 10 · 2−βj(t!)1/2 for every j < Ft. Then

P(D(`)
t+1|D(`)

t ) ≥ 1− e−t. (19)

Proof. Condition on the event D
(`)
t . G`+t+1(j) dominates a Poisson variable with parameter

2−βj
∞∑

i=1

2βi ≥ 2−βj = 10Ft(t!)1/2

≥ 2−βj10(t + 1)(t!)1/2 ≥ 2−βj1000 = ((t + 1)!)1/2

≥ 1000((t + 1)!)1/4

for j < Ft+1. Therefore, for j < Ft+1,

P
(
G`+t+1(j) < 10 · 2−βj(t!)1/2

)
< exp

(
−((t + 1)!)1/4

16

)
,

and summing up we get the desired result.

The following proposition is the main result in the subsection:

Proposition 9.4. Let a be chosen uniformly in [0, 1], and let k = κ(a). There exists C > 0,
depending only on χ, such that for every ε there exists T such that with probability larger than
1− ε, for every t > T , there exist a vertex in Ht with degree larger than (t!)C .

Proof. First we need to choose `. Let ki be a sequence of ancestors of k. Then, lki has the
distribution of the product of i + 1 independent variables distributed U([0, 1]). In particular,
with probability exponentially close to 1, lki < 2−i (this is because of the inequality of the
means). Let T be such that

∑∞
t=T < ε/4, and let ` be such that with probability larger than

1 − ε/4, lki is so small that with probability larger than 1 − ε/4, for every j < FT , the set
U = {k′ : k′ connects to ki} is of size larger than 10 · 2−βj(T !)1/2.
Then, by Lemma 9.3 we get that with probability larger than 1− 3ε/4, for every t > T , there
exists v ∈ Ht+` with lv < 2−0.5 log(t!). By Lemmas 7.2 and 7.3, with probability larger than
1− εe−t, the degree of this vertex is larger than

(t!)0.5 log 2·(χ−1−1)

and the proof of the proposition is complete.
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10 Proof of Lemma 5.3

Proof of Lemma 5.3. First, we will show that the number of infected leaves decreased during
a period in which the central vertex is healthy can be bounded by a Gamma variable with
parameter λ

1+λ . Then, we will show that the number of infected vertices when the center is
infected can be simulated by a simple biased random walk on a line.
For the first part, suppose we are at the state in which the vertex in the center of the star is
healthy. Define I to be the random variable of the number of infected leaves. I is decreasing
by 1 at rate I. The center is becoming infected at rate λI. Therefore, at any moment, the
probability that in the next event the center becomes infected is λ

1+λ and the probability that
I decreases by one is 1

1+λ . Clearly, this shows that the number of infected vertices cured in a
period in which the center is healthy is a random variable with the distribution Geom( λ

1+λ).
Now, in the period in which the center is infected, the number of infected leaves X has the
following transition rates:

X → X − 1, at rate X and
X → X + 1, at rate λ|k −X|.

One can easily verify that X dominates the following process

Y → Y − 1, at rate 1
4λk if Y = 1

4λk

Y → Y + 1, at rate 3
4λk if Y < 1

4λk
Y → Y − 1, at rate 1

4 = λk

where the initial value of Y is the number of infected leaves in the beginning of each period.
Merging this with the number of leaves that become healthy during the time in which the
center is healthy, the following process will give a simple lower bound on the number of leaves
infected in the contact process:

Y → Y − 1 at rate 1
4λk

Y → Y −Geom( λ
1+λ) at rate 1

}
if Y = 1

4λk

Y → Y + 1 at rate 3
4λk

Y → Y − 1 at rate 1
4λk

Y → Y −Geom( λ
1+λ) at rate 1



 if Y < 1

4λk

(20)

Therefore, the problem reduces to calculating the survival time of the system described in
(20). This system is a factor λk + 1 speedup of the following discrete time system:
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Y → Y − 1 with probability 1
4(1− (λk)−1)

Y → Y −Geom( λ
1+λ) with probability (λk)−1

}
if Y = 1

4λk

Y → Y + 1 with probability 3
4(1− (λ = k)−1)

Y → Y − 1 with probability 1
4(1− (λ = k)−1)

Y → Y −Geom( λ
1+λ) with probability (λk)−1



 if Y < 1

4λk

(21)

and therefore it is enough to show that the survival time of (21) is, with high probability,
exponential. The expected value of a step is

1− (λk)−1

2
− (λk)−1 1 + λ

λ
>

1
4
− 2

kλ2
> 0

for k > 16λ−2 and the tail is exponentially decaying, and therefore, using large deviation
estimates, the survival time is, w.h.p. exponential in λ2k.
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