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Abstract. We study the decision theory of a maximally risk-averse investor — one whose objec-
tive, in the face of stochastic uncertainties, is to minimize the probability of ever going broke. With
a view to developing the mathematical basics of such a theory, we start with a very simple model
and obtain the following results: a characterization of best play by investors; an explanation of
why poor and rich players may have different best strategies; an explanation of why expectation-
maximization is not necessarily the best strategy even for rich players. For computation of optimal
play, we show how to apply the Value Iteration method, and prove a bound on its convergence
rate. In a multi-player variant of the model we show existence of Nash equilibria under suitable
conditions.

1. Introduction

A key concern in computer science and operations research is decision-making under uncertainty.
We define a very simple game that helps us study the issue of solvency, or indefinite survival, in
the presence of stochastic uncertainties. We provide several motivating reasons for studying this
issue in Section 1.1 below.

We start by defining the model. A state of the game is an integer, which we call the wealth of
the player. An action (representing, say, an investment choice) is a finitely supported probability
distribution on the integers; this distribution specifies the probabilities with which various payoffs
are received, if this action is chosen. Let w be the wealth of the player at time t. Let A be a set
of actions. Suppose that after choosing a particular action from A, the random variable sampled
from that action is a. Then at time t + 1 the wealth of the player is w + a. The game terminates
if the player goes broke (wealth becomes ≤ 0). A strategy π for the set A of actions is a function
π : Z+ → A specifying the action that is chosen at each possible value of wealth. Corresponding
to strategy π, define

pπ(w) = Pr[ever going broke, starting from wealth w],

for each w ∈ Z+. The object of interest is a strategy that minimizes pπ(w) for each value of
w ∈ Z+. In this notation there are two implicit assumptions regarding an optimal strategy: that
the action depends only on current wealth (not past history), and that the action is deterministic.
Both assumptions can be made without loss of generality.

This model, which is a certain kind of infinite-state Markov Decision Process (MDP), is a natural
and elementary one to consider both from the point of view of probability theory, and that of
mathematical finance. As far as we have been able to determine it has not previously been studied.

Before going into detail we pause for a simple illustration. Suppose two actions are available,
called A and B; let qA

i denote the probability of winning i dollars with action A:

Action A: qA
−1 = 0.5, qA

15 = 0.5 Action B: qB
−10 = 0.5, qB

150 = 0.5

Expected profit is ten times greater in action B, but it is easy to see that an investor with, say $10,
has probability of survival less than 1/2 if he plays B, and close to 1 if he chooses and sticks to A.
The problem, of course, is to determine proper strategy in less obvious situations.
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1.1. Motivation. There are several reasons to focus on maximization of the likelihood of indefinite
survival. The first concerns investment strategies of individual, “middle class” investors. Economic
decision theory concerns itself largely (though not solely) with maximization of utility as expressed
by expected profit (or log profit). This framework may be appropriate to the decision theory of a
shareholder-owned firm, whose bankruptcy creates an unpleasant but bounded effect on a balanced
portfolio. But it is ill suited to the decision theory of an individual investor, whose goal is not
maximization of wealth for its own sake (“he who dies with the most toys wins”), but financial
security. For such a typical investor, bankruptcy, and its consequences for self and family, are
dearly to be avoided.

The second reason concerns investment (loan) strategies of banks, which are unlike other corpo-
rations in that they are supposed to provide their depositors with a strong assurance of preservation
of capital. The incompatibility between doing so and acting competitively in the loan marketplace
has led to banking crises which have been addressed in part through government intervention in-
cluding, in the US, both federal deposit insurance and mandatory holding requirements. These
restrict the extent to which banks can pursue purely profit-maximizing strategies (although we do
not suggest that banks conversely act to maximize probability of indefinite solvency).

The third reason to study optimization for long-term survival is that the set of genes present in
biological species alive today is characterized by having succeeded in this respect. The connection
to our work is in the conceptual framework, not in its mathematical manifestation; our model is
not a good one for studying the survival of genes because they are present in many organisms, and
because they change over time.

We return to the clash between optimizing for profit or survival. Naturally, a good way to avoid
bankruptcy is to make a lot of money! But investment decisions entail a trade-off between risk and
reward. The most secure investments typically provide returns below (or only marginally above)
the inflation rate. So even a decision-maker whose sole purpose is to avoid bankruptcy cannot
escape risk entirely, and must weigh the alternatives. The purpose of this paper is to develop some
of the basic ingredients of an appropriate decision theory. In defining our model, simplicity is a key
criterion. As a result, the model does not capture complications that always accompany realistic
situations. On the other hand, this simplicity leads to clean mathematics and a basis from which
more elaborate models can be considered.

1.2. Results. The specific questions we address include:
1. In a set A of actions, is there a rich man’s strategy — an investment that is always the best

choice once one’s wealth is above some threshold? Put another way, does the optimal strategy have
a “pure tail”?

Besides its obvious role in the decision theory of our model, this question gets at a real phenom-
enon which we feel should be reflected in any good model of risk-averse investing: that the poor
do disproportionately worse than the rich because they can not afford to make certain investments
that are by-and-large profitable, yet risky.

2. If there is a “rich man’s strategy,” what characterizes it, and is there a bound on the threshold
where it takes over? If there isn’t one, then what does the tail of the optimal strategy look like?

3. Can the optimal strategy be computed “efficiently”?
In Sections 3 and 4 we provide answers to these questions. We show that under certain technical

conditions there does exist a rich man’s strategy, and we provide a bound on where the pure tail
begins. We also show that in general there is no such strategy — an interesting phenomenon, since
it says that optimal play in a small-stakes game can depend, say, on the low-order bit of your bank
balance. The MDP literature suggests three possible algorithms for computing the optimal strategy
in the pure tail case (where this strategy has a finite description). For one of these algorithms,
Value Iteration, we prove “linear convergence” (i.e., exponentially decreasing relative error) to the
failure function of the optimal strategy. Such convergence results are scarce in the MDP literature.
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In the last section we consider a multi-player generalization of our problem, and for a certain
interesting class of cases, show existence of a Nash equilibrium in these “probability-optimizing”
(rather than “expectation-optimizing”) games.

1.3. Related work. As noted, the simple model defined above has apparently not been studied
before. Several bodies of literature are however related to our work. The first is the MDP lit-
erature [6], a broad formalization of the study of decision-making under stochastic uncertainty.
Secondly, a large literature on the “multi-arm bandit” problem concerns maximizing profit from
a collection of actions, where optimal play is characterized by the well-known Gittins index [2, 7].
Our problem does not seem to fit into this model. Finally, in mathematical finance, risk (volatility)
vs. reward is often measured with the Sharpe or Sterling ratios, see e.g. [4]; optimal investing by
these criteria is less risk-averse than by ours.

1.4. Notation and terminology. An action is represented by a probability mass function on a
finite set of integers. For an action A, let qA

j be the probability that the payoff is j. For an action A,
define lA := −min{j < 0 : qA

j > 0} and rA := max{j > 0 : qA
j > 0}. The action is said to have

positive drift if
∑rA

j=−lA
jqA

j > 0. The action is said to be irreducible if gcd
(
{j : qA

j > 0}
)

= 1. In
this extended abstract all actions will be assumed to be irreducible and positive drift, though some
of our statements hold more generally.

A strategy (sometimes also referred to as policy or decision rule) is a function π : Z+ → A, where
A is a set of actions. For a strategy π, we define the following Markov chain. Xt+1 = Xt +Yt where
Yt is defined as follows: If Xt ≤ 0 then Yt = 0, whereas if Xt > 0 then Yt is sampled according to
π(Xt), but otherwise independently of X0, . . . , Xt.

The failure probability at a positive integer w (i.e, the probability of ever going broke) corre-
sponding to π is defined as pπ(w) := Pr[∃m>0 : Xm ≤ 0 | X1 = w].

A strategy is said to be pure if π(w) = π(1) for all w ≥ 1. It is said to have a pure tail if there
is a w′ ≥ 1 such that π(w) = π(w′) for all w ≥ w′.

2. Pure strategies

Consider a pure strategy πA consisting only of the action A with l ≡ lA and r ≡ rA. Then, the
failure probability p(w) ≡ pπA

(w) satisfies the linear recurrence

(2.1) p(w) =
r∑

j=−l

qA
j p(w + j), w ≥ 1,

where qj ≡ qA
j and with p(w) = 1 for all w ≤ 0. The characteristic rational function of A is defined

as

(2.2) q(z) ≡ qA(z) := −1 +
r∑

j=−l

qjz
j

Lemma 2.1. If q′(1) > 0 then q has exactly l roots in the open unit disk. Furthermore q has a
unique positive root in the open unit disk.

The proof, which relies on some elementary complex analysis, is in Appendix A. The positive
root of q in the open unit disk will be called the Perron root, for reasons explained in Appendix B.

Remark 2.2. Since q(1) = 0, if q′(1) < 0 then there exits z > 1 such q(z) < 0. Also q(z) > 0 for
large enough z. It follows then that q has a positive zero outside the closed unit disk and the proof
of Lemma 2.1 reveals that this zero is unique.
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Corollary 2.3. If a pure strategy πA has positive drift then its failure probabilities are

(2.3) p(w) ≡ pπA
(w) =

d∑
j=1

λw
j

mj−1∑
k=0

cj,kw
k,

where λ1, . . . , λd are the distinct zeros of q in the interior of the unit disk in decreasing order of
norm, with multiplicities m1, . . . ,md such that m1 + · · ·+ md = l, and (cj,k) are constants.

Proof. Let λ be a zero of the characteristic rational function (2.2) with multiplicity m. Such a zero
contributes a linear combination of (wjλw)m−1

j=0 to p(w). Furthermore since we know a priori (see
Fact 3.1) that p(w) → 0 as w →∞, there cannot be any contribution from zeros with modulus at
least 1. Since the pure strategy has positive drift, we have (qA)′(1) > 0, so by Lemma 2.1, qA has
exactly l zeros in the unit circle and the result follows. �

Remark 2.4. Observe that the recurrence (2.1) defines a linear transformation mapping the initial
conditions p(w)w≤0 monotonically to p(w)w≥1. In particular, if λ is a zero of q, then (λw)w≤0 is
mapped to (λw)w≥1.

3. Optimal strategies

Let A = {A1, . . . ,Ak} be a finite set of actions with positive drifts. We consider strategies π :
A → Z+. We start with a simple fact.

Fact 3.1. For every strategy π, pπ(w) → 0 as w →∞.

Proof. For j = 1, . . . , k, let {Y (j)
n }∞n=1 be i.i.d. samples of Aj , and assume that for different val-

ues of j, the sequences {Y (j)
n } are independent. The displacement at any time n is of the form∑k

j=1

∑nj

i=1 Y
(j)
i , where the {nj} sum to n and are (arbitrarily dependent) random variables. Fix

ε. Due to the positive drifts, for all N large enough,

Pr

[
∀n,j

n∑
i=1

Y
(j)
i > −N/k

]
> 1− ε.

But this shows that for all N large enough, pπ(w) < ε. �

For w ≥ 1, an action A and a sequence p, we define

(3.1) EA
w (p) :=

rA∑
j=−lA

qA
j p(w + j).

For this to make sense, we need to have values for p(w) for k ≤ 0. Unless otherwise mentioned, we
take p(w) to be 1 for all w ≤ 0. Similarly for a strategy π we define

(3.2) Eπ
w(p) := Eπ(w)

w (p)

Clearly if p is the failure probability sequence of π, then

(3.3) p(w) = Eπ
w(p)

for every w ≥ 1. Equation (3.3) determines p in the following sense:

Lemma 3.2. Fix a strategy π and initial conditions b(w), w ≤ 0. There exists a unique solution
to (3.3) satisfying p(w) = b(w) for all w ≤ 0 and limw→∞ p(w) = 0.

The proofs of this and Lemma 3.4 follow a conventional outline and are supplied in Appendix C.
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Definition 3.3. We say that p is harmonic with respect to π if (3.3) holds for every w ≥ 1. We
say that p is subharmonic with respect to π if

(3.4) p(w) ≤ Eπ
w(p)

for every w ≥ 1, and we say that p is superharmonic with respect to π if

(3.5) p(w) ≥ Eπ
w(p)

for every w ≥ 1.

The usefulness of Definition 3.3 is expressed in the following lemma:

Lemma 3.4. Let π be a strategy and p the unique solution to (3.3) with given initial conditions b(w),
w ≤ 0. Let v be a sequence that satisfies the following conditions:

(1) v(w) = b(w) for all w ≤ 0.
(2) limw→∞ v(w) = 0.
(3) v is subharmonic with respect to π.

Then v(w) ≤ p(w) for every w. If instead v is superharmonic, then v(w) ≥ p(w) for every w.

3.1. Structure of optimal strategies. We can define a natural partial order between strategies:
π1 � π2 if for every w, pπ1(w) ≤ pπ2(w). We say that π∗ is optimal if π∗ � π for every strategy π.
We say that σ is locally optimal if σ � π for every π satisfying |{w : σ(w) 6= π(w)}| ≤ 1.

Proposition 3.5. For every finite collection A of actions, there exists an optimal strategy. Fur-
thermore, σ is optimal if and only if it is locally optimal.

The proof relies on the notion of subharmonicity mentioned above. It is supplied in Appendix D.
For an action A, let λ

(1)
A > 0, λ

(2)
A , . . . , λ

(lA)
A be the roots of its characteristic rational function

[recall (2.2)] in the open unit disk arranged in decreasing order of modulus.
We now present a characterization of optimal strategies. The next theorem exhibits the existence

of a “rich man’s strategy,” as indicated in the introductory section.

Theorem 3.6. Let A be a finite set of actions and let A ∈ A be an irreducible machine so that
λ

(1)
A < λ

(1)
B for every B 6= A in A. Let π∗ be optimal for A. Then there exists M such that

π∗(w) = A for every w > M .

The existence of a “rich man’s strategy” may seem natural, and if so, the imposition of technical
hypotheses in Theorem 3.6 may seem disappointing. But this is not the case: strikingly, such
conditions are necessary, as demonstrated in:

Theorem 3.7. Let A = {A,B} with lA = lB = 2, λ
(1)
A = λ

(1)
B , and λ

(2)
A 6= λ

(2)
B . If π∗ is optimal for

A, then for every W there exist w′, w′′ > W such that π∗(w′) = A and π∗(w′′) = B.

Remark 3.8. Theorem 3.7 can be generalized to the case where lg or lf is greater than 2 under the
assumption that the characteristic rational function of A has a root in the interior of the unit disk
that is not shared by B and vice versa. The proof is omitted from this extended abstract.

Proof of Theorem 3.6: For convenience of notation, let λ := λ
(1)
A . Let π be a (fixed) strategy

such that for every M there exists w > M with π(w) 6= A. We will show that π is not optimal.
Let πA be the pure-A strategy. Let a(−w) = λ−w and p(−w) = 1 for w ≤ 0. Let aπ be the unique
solution of a(w) = Eπ

w(a) with a(w) → 0, and let aπA
be the unique solution of a(w) = EπA

w (a)
with a(w) → 0. Let pπ and pπA

be the failure probabilities for π and πA.
It is sufficient to show that there exists w so that pπA

(w) < pπ(w). Let l be the absolute value
of the minimal number on the support of any of the actions in A, i.e., l := maxB∈A lB. Then by
monotonicity (recall Remark 2.4), for every w,

aπ(w) ≥ pπ(w) ≥ λlaπ(w)
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and
aπA

(w) ≥ pπA
(w) ≥ λlaπA

Therefore it will suffice if we prove that there exist w so that

(3.6) aπA
(w) < λlaπ(w).

In fact, we prove

(3.7) lim
w→∞

aπ(w)
aπA(w)

= ∞.

To see (3.7), first note that (see Remark 2.4)

(3.8) aπA
(w) = λw.

Observe that aπA
is subharmonic with respect to π. (Proof omitted from the extended abstract.)

Also note that if π(w) 6= A, then we have strict subharmonicity at w. This fact will be used
repeatedly in the rest of the proof.

Now, (3.7) will follow from Lemma 3.4 by constructing a sequence v so that

(1) limw→∞
v(w)

aπA (w)
= ∞,

(2) v(w) = aπA
(w), w ≤ 0,

(3) v(w) → 0 as w → 0, and
(4) v is subharmonic with respect to π.

We work iteratively: we define sequences v(1), v(2), . . . and take v(w) = limk→∞ v(k)(w).
We take v(1) = aπA

and N1 = 1. For some positive integer χ and a constant ρ > 0, for every
k ≥ 2, there exist a positive integer Nk such that v(k) and Nk satisfy

(1) v(k) is subharmonic with respect to π.
(2) Nk > Nk−1, and
(3) v(k)(j) = v(k−1)(j) for every j < Nk−1.
(4) v(k)(j) = (1 + ρ)v(k−1)(j) for every j > Nk−1 + χ.

If we find ρ, χ, {Nk} and {~p(k)} satisfying (1)–(4) immediately above, we have proved the theorem.
Given v(k) we construct v(k+1). We construct sequences b(1), . . . , b(s) with b(1) = v(k) and b(s) =

v(k+1), with s to be described below. Let n1, n2, . . . , nh be integers so that qA
ni

> 0 for every i and
n1 + n2 + · · ·+ nh = 1. (These exist because of the assumption that A is irreducible.) Set

χ := max
1≤j≤h

∣∣∣∣∣
j∑

i=1

ni

∣∣∣∣∣
Let Nk be the smallest integer larger than Nk−1 + χ + l so that π(Nk) 6= A. Take b(1) = v(k), and

b(2)(Nk) = Eπ
Nk

(v(k)) > v(k)(Nk) ; b(2)(j) = b(1)(j) for j 6= Nk.

The increase above is due to strict subharmonicity of v(k) with respect to π where π(w) 6= A.
Then, for every i = 1, . . . , h, we take α = Nk − (n1 + · · ·+ ni) and

b(2+i)(α) = Eπ
α(b(2+i−1)) > b(2+i−1)(α) ; b(2+i)(j) = b(2+i−1)(j) for j 6= α,

i.e., replace bα with its π(α)-average. (The argument that increase at each i occurs is omitted.)
Continuing for every u < l and i = 1, . . . , h we take

b(2+uh+i)(α + u) = Eπ
α+u(b(2+uh+i−1)) > b(2+uh+i−1)(α + u)

b(2+uh+i)(j) = b(2+uh+i−1)(j) for j 6= α + u.
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Let ρ be the minimal possible value among all k of

min

(
b(s−1)(Nk)
v(k)(Nk)

,
b(s−1)(Nk + 1)
v(k)(Nk + 1)

, . . . ,
b(s−1)(Nk + l)
v(k)(Nk + l)

)
− 1

for s− 1 = 2 + lh, and we take

v(k+1)(j) = b(s)(j) =
{

v(s−1)(j) if j ≤ Nk + l

max
{
b(s−1)(j), (1 + ρ)v(k)(j)

}
if j > Nk + l

.

It is straightforward to check that (1)–(4) are satisfied. �

Proof of Theorem 3.7: For notational convenience, define λ := λ
(1)
A = λ

(1)
B , λA := λ

(2)
A , and

λB := λ
(2)
B . Clearly λA and λB are real and negative. Without loss of generality, suppose that π∗

has a pure-A tail. In light of Proposition 3.5, it is enough to show that π∗ isn’t locally optimal.
As usual, let pπ∗ denote the failure probabilities corresponding to π∗. Since π∗ has a pure-A tail,

there exists w0 such that for all w > w0, we have π(w) = A and consequently,

pπ∗(w) = c1λ
w−w0 + c2λ

w−w0
A

with c1, c2 6= 0. Choose w1 = w0 + 3. Then

EB
w1

(pπ∗)− pπ∗(w1) =
rB∑

j=−2

qB
j [c1λ

w1−w0+j + c2λ
w1−w0+j
A ]− c1λ

w1−w0 − c2λ
w1−w0
A = c2λ

w1−w0
A qB(λA)

because λ is a root of qA. Equivalently, for w2 = w1 + 1,

EB
w2

(pπ∗)− pπ∗(w2) = c2λ
w2−w0
A qB(λA) = λA[EB

w1
(pπ∗)− pπ∗(w1)]

Recall that λA < 0, and therefore EB
w1

(pπ∗)−pπ∗(w1) and EB
w2

(pπ∗)−pπ∗(w2) are of opposite signs.
Therefore, if we take π(1) to be π∗ with the choice at w1 changed to B and π(2) to be π∗ with the
choice at w2 changed to B, then the sequence pπ∗ is strictly subharmonic w.r.t. exactly one of π(1)

and π(2). Therefore, π∗ is not locally optimal. �

4. Algorithms for determining optimal strategies

We now turn our attention to the problem of determining the optimal strategy. To that end it
will be useful to cast our problem in terms of Markov decision processes (MDPs). For background
on MDPs, we refer the reader to the excellent book by Puterman [6].

Throughout, A is a finite set of actions with l := max{lB : B ∈ A} and r := max{rB : B ∈ A}.

4.1. MDP formulations. For our purposes, a Markov decision process is a collection of ob-
jects {S, As, p(· | s, a), r(s, a)}. Here S is a set of possible states the system can occupy. For
each s ∈ S, the set of possible actions is denoted by As. The function p(· | s, a), called the transi-
tion probability function is a distribution on the set of states S and the reward function r(s, a) is
a real-valued function.

Under the assumptions of Theorem 3.6, we can modify our problem into an equivalent finite
Markov decision problem, which makes determining an optimal strategy tractable. Let M be such
that for some optimal strategy π∗, π∗(w) = A for every w > M . Here A is the action with the
smallest Perron root. In Appendix E we show how to explicitly bound M , with a method that
extends the arguments of Theorem 3.6. To find an optimal strategy we need only consider strategies
that have a pure-A tail starting at M . Let S = {−l + 1, . . . ,M + r,∞}. (The state ∞ represents
the possibility of never returning to {−l + 1, . . . ,M + r}.) The actions for s ∈ {1, . . . ,M} are the
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original actions of the system. For s ∈ {M + 1, . . . ,M + r}, the only action available is the action
A’ with the following transition probability function:

p(j | s,A’) = αA
s−j ; j = s− 1, . . . , s− lA; p(∞ | s,A’) = 1−

lA∑
j=1

αA
j =: αA

∞.

Here the values {αA
j } are the coefficients of the linear functional giving pw as a function of

pw−1, . . . , pw−l in the pure A strategy; see Appendix B for further details. The action set for
the state ∞ as well as for any state in {−l +1, . . . , 0}, consists only of the trivial action that leaves
the state unchanged. The reward function is given by (4.1):

(4.1) r(s, a) := −
∑
j∈S

1{s > 0 and j < 0}p(j | s, a), s ∈ S; a ∈ As.

Clearly the expected total reward is the negative of the failure probability.
Next, we present an algorithm that can be used to determine optimal decision rules.

4.2. Value iteration. An iterative procedure known as value iteration produces a sequence that
converges to the optimal expected total reward for each s ∈ S. The critical thing of course will be
the runtime analysis.

(1) Set v0(s) = 0 for each s ∈ S.
(2) For each s ∈ S, compute vn+1(s) using

vn+1(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)vn(j)


and increment n.

The sequences converge monotonically to the optimal expected total reward v∗ [6]. We show next
that the order of convergence is linear.

To that end, let d∗ denote an optimal decision rule and consider the sequence defined iteratively
by u0(s) = 0 for each s ∈ S and

(4.2) un+1(s) = r(s, d∗(s)) +
∑
j∈S

p(j | s, d∗(s))un(j).

This is just the sequence produced by value iteration when the only action available at a state is
the optimal action. Clearly un(s) → v∗(s) and a simple induction argument yields vn(s) ≥ un(s)
for each s ∈ S and n ≥ 0.

Writing (4.2) in matrix notation we have

un+1 = Pun + α,

where un, α ∈ RM+r and P ≡ Pij is the M + r ×M + r matrix with Pij := p(j | i, d∗(i)).

Lemma 4.1. Let P ≡ P (d∗) denote the transition matrix for an optimal decision rule d∗. Then,
ρ(P ), the spectral radius of P is strictly less than 1.

Proof. If |||P |||∞ < 1, then the claim is true. Suppose |||P |||∞ = 1 so that ρ(P ) ≤ 1. Suppose
ρ(P ) = 1. Since P is nonnegative an eigenvalue of maximum modulus must be 1. Let Px = x,
x = [xi] 6= 0 and suppose p is an index such that |xp| = ‖x‖∞ 6= 0. Now 1 lies on the boundary of
G(P ), the Geršgorin region for the rows of P so that [3, Lemma 6.2.3(a)]

1− Ppp = |1− Ppp| =
M+r∑
j=1
j 6=p

Ppj ,
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i.e.,
∑M+r

j=1 Ppj = 1 so that p ∈ {1, . . . ,M}. Since P is the transition matrix for an optimal strategy
there must be positive probability of reaching a state in {M + 1, . . . ,M + r} starting from the
state p. In other words, there exist a sequence of distinct integers k1 = p, k2, . . . , km = q with
q ∈ {M + 1, . . . ,M + r} such that all of the matrix entries Pk1k2 , . . . , Pkm−1km are nonzero. But
then [3, Lemma 6.2.3(b)], |xki

| = |xp| for each i = 1, . . . ,m. In particular |xq| = |xp|, so that
again [3, Lemma 6.2.3(a)],

1 = |1− Pqq| =
M+r∑
j=1
j 6=q

Pqj =
l∑

j=1

αj < 1,

which is a contradiction. �

Remark 4.2. Using the fact that all actions have positive drift, we can estimate the spectral radius
as follows. Let D be the diagonal matrix with entries (λ + ε, (λ + ε)2, . . . , (λ + ε)M+r), where λ is
the largest Perron root among all roots of the characteristic rational functions of the actions and
ε > 0 is arbitrarily small. We show that |||D−1PD|||∞ ≤ δ < 1. Indeed for i ∈ {1, . . . ,M}, the ith
row sum of D−1PD is given by

(4.3)
M+r∑
j=1

Pij(λ + ε)j−i ≤ qi(λ + ε) + 1 := δi,

where qi(·) is the characteristic function of the action employed at state i. If λi is the unique
positive root of qi inside the unit disk, then qi(λi) = qi(1) = 0 and qi has no zero crossing in (λi, 1).
Since i has positive drift we have (qi)′(1) > 0 so that qi(z) < 0 for z ∈ (λi, 1). Hence the row-sum
in (4.3) is bounded by δi < 1.

On the other hand for i ∈ {M + 1, . . . ,M + r}, the ith row-sum of D−1PD is given by
l∑

j=1

αA
j (λ + ε)−j := δi < 1,

the last strict inequality following from the fact that if λA < λ + ε is the Perron root of the pure-A
tail [recall (B.1)], then

l∑
j=1

αA
j λ−j

A = 1

Taking δ := max1≤i≤M+r δi gives us ρ(P ) = ρ(D−1PD) ≤ |||D−1PD|||∞ ≤ δ < 1.

The preceding lemma and remark lead directly to the following result.

Theorem 4.3. Let v∗ denote the optimal total expected value and vn the nth iterate of value
iteration. Then vn ≥ un, where for some vector norm ‖·‖ and n ≥ 1,

‖v∗ − un‖ ≤ c‖v∗ − un−1‖

and c < 1 satisfies

c ≤ max{1 + max
action B

qB(λ + ε),
l∑

j=1

αj(λ + ε)−j},

where λ is the largest of the Perron roots of the actions and ε > 0 is arbitrarily small.

4.3. Other algorithms. In the MDP formulation, two other algorithms can be applied to com-
puting the failure probabilities of the optimal strategy: policy iteration and linear programming.
Their adaptation to our problem is discussed in Appendix F.
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5. Multi-player solvency games

Most of this paper is concerned with single-player solvency games, which model the decision
theory of an individual in the “bath” of a large market. In some cases, however, players may be
locked in a smaller game, in which their payoffs depend in a traceable way on the actions of other
players. We therefore introduce the following multi-player variant of our model. (The particular
definition involves somewhat arbitrary choices.) There are k players; player j has available a set
of rj actions. L is a positive integer. To every possible list of actions (i1, . . . , ik) chosen by the
players, (i1, . . . , ik) ∈

∏k
j=1{1, . . . , rj}, there corresponds a probability distribution T(i1,...,ik) on the

set [−L, . . . , L]k. The interpretation is that T(i1,...,ik)(a1, . . . , ak) is the probability that the list of
winnings is $a1, ..., $ak. The list of current wealths w1, . . . , wk is known to all players before each
round. Each player’s objective is to minimize the probability he ever goes broke.

Unlike the single-player case, it is generally to players’ advantage here to employ randomized
strategies. We can no longer speak of optimal strategies for players in isolation, and the most basic
question is whether there exist Nash equilibria. This is far from simple because the topology of the
space of strategies is large. First, we show that if there exists a Nash equilibrium, there exists a
memoryless Nash equilibrium (where players decisions are independent of history conditioned on
the current list of wealths). This still leaves a large topology, the product of spaces of randomized
actions for each player over all wealth vectors.

Nevertheless, we can prove the existence of Nash equilibria in two cases of special interest.
(1) Positive-drift games: A positive-drift game is one in which for every j ∈ {1, . . . , k} and every

list of actions (i1, . . . , ik), the marginal distribution of the return to player j, namely∑
a1,...,ak

ajT(i1,...,ik)(a1, . . . , ak),

is positive. (This is a generalization of the positive-drift assumption in the single-player case.)
In this case the “best-response” mappings (of players’ strategies in response to the strategies of

the other players) can be shown to be upper-hemi-continuous. The essential point is that the failure
probability of a player at a given wealth vector is continuous with respect to the above-mentioned
product topology. Existence of a Nash equilibrium then follows from the Kakutani fixed point
theorem.

(2) Zero-sum games: For every i1, . . . , ik,
∑

a1,...,ak
T(i1,...,ik)(a1, . . . , ak) = 0. This case is easy

because the topology is actually a finite product (which depends on the sum of the initial wealths).
A question of great interest is whether a Nash equilibrium exists for any multi-player solvency

game. We do know that for general non-positive-drift games, upper-hemi-continuity of the best-
response mappings fails.

6. Discussion

It is clear that our results are at best a sketch of basic elements of a larger theory. To begin
with an equally well-motivated (and more general) model is one in which players are prohibited
from taking actions that have nonzero probability of driving them to a negative balance. (The
player loses if no actions are available.) Our basic results carry over to this model. Another natural
variant allows for the payoffs to be arbitrary real numbers. We have not explored this case.

It is natural to ask what happens if each available action can be scaled, at the player’s discretion,
by a positive constant. Allowing scaling by large constants is an interesting variant to study.
Allowing scaling by arbitrarily small constants trivializes the model: for any positive-drift action
the probabilities of failure can be made to tend to 0. More importantly, it fails to match the
motivating real-world scenarios. A bank deciding whether to issue a particular $200, 000 mortgage
cannot change the associated risks by renaming it as 200, 000 separate $1 mortgages.



SOLVENCY GAMES 11

References

[1] C. Derman. Finite state Markovian decision processes. Mathematics in Science and Engineering, Vol. 67. Academic
Press, New York, 1970.

[2] J. C. Gittins and D. M. Jones. A dynamic allocation index for the design of experiments. In J. Gani, K. Sarkadi,
and I. Vince, editors, Progress in Statistics, number 9 in Colloq. Math. Soc. János Bolyai. North-Holland, 1974.

[3] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1990. Corrected reprint
of the 1985 original.

[4] M. Magdon-Ismail, A. F. Atiya, A. Pratap, and Y. S. Abu-Mostafa. On the maximum drawdown of a brownian
motion. J. Appl. Probab., 41(1):147–161, 2004.

[5] A. I. Markushevich. Theory of functions of a complex variable. Translated and edited by Richard A. Silverman.
Chelsea Publishing Company, New York, N.Y., 1977.

[6] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley Series in Probability
and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York, 1994.

[7] J. N. Tsitsiklis. A short proof of the Gittins index theorem. Ann. Appl. Prob., 4(1):194–199, 1994.

Appendix A. The characteristic function of a pure strategy

Proof of Lemma 2.1: It suffices to consider instead the roots of the polynomial

A(z) := zlq(z) :=
l+r∑
j=0
j 6=l

qj−lz
j − [1− q0]zl.

Note that A′(1) = q′(1) > 0 and A(1) = 0 so that A(1−) < 0. Furthermore A(0) = q−l > 0 so by
continuity, A has a root in (0, 1), call it ζ. For ε > 0 define Aε(z) := fε(z) + h(z), where

fε(z) := −(1 + ε)(1− q0)zl, h(z) :=
l+r∑
j=0
j 6=l

qj − lzj .

Consider the circle |z| = ζ. There,

|fε(z)| = (1 + ε)(1− q0)ζ l > (1− q0)ζ l and |h(z)| ≤
l+r∑
j=0
j 6=l

qj−lζ
j .

Since ζ is a zero of p, we have |fε(z)| > |h(z)| for all z with |z| = ζ. Hence by Rouché’s theorem (see,
e.g., [5]), fε and Aε have the same number of zeros inside |z| = ζ. But fε has exactly l zeros inside
|z| = ζ, and hence so does Aε. Similarly Aε has exactly l zeros |z| = 1, so that there are no zeros
of Aε in ζ < |z| < 1. Now letting ε ↓ 0 yields that A has exactly l zeros in the closed disk |z| ≤ ζ
and none in the annulus ζ < |z| < 1 so that the first claim of the lemma follows.

For the second claim note that if ζ1 and ζ2 are distinct positive zeros of p, an argument similar
to the one above yields that there are no zeros of p in the interval (ζ1, ζ2). The claim then follows
by letting ζ1 = ζ and ζ2 = 1. �

Appendix B. Alternative analysis of pure strategies

It is useful to have also the following alternate point of view on a pure strategy πA. For each
j = 1, . . . , l, let αj ≡ αA

j denote the probability that the corresponding Markov chain ever enters
a state to the left of w, and that the first such state is w − j. These probabilities do not depend
on w (since πA is pure). Then the failure probabilities for πA are given by

(B.1) p(w) =
l∑

j=1

αjp(w − j), n ≥ 1,
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with p(w) = 1, for w ≤ 0. The companion matrix associated with the action A is the l × l matrix

M ≡ MA :=


1

1
. . .

1
αl αl−1 · · · α1

 ,

all other entries in the matrix being 0. Since the characteristic polynomial of M is the characteristic
polynomial of the recurrence (B.1), the l eigenvalues of the companion matrix M are precisely the
l roots λ1, . . . , λl of (2.2) in the open unit disk.

Suppose that we further assume that A is irreducible. Then we have αj > 0 for j = 1, . . . , l.
Thus the directed graph of M is strongly connected which implies [3, Theorem 6.2.24] that M is
irreducible. It follows from the nonnegativity of M [3, Theorem 8.4.4(d)] that λ1 is an algebraically
simple eigenvalue and furthermore since α1 > 0, we have that λ1 is the unique eigenvalue of
maximum modulus [3, Corollary 8.4.8]. The failure probabilities of the strategy πA are then Θ(λw

1 ).
The eigenvalue λ1 is often called the Perron root.

Appendix C. Lemmas 3.2 and 3.4

Proof of Lemma 3.2: Existence follows from Fact 3.1 and the fact that the probabilities sat-
isfy (3.3). To see uniqueness, assume that p and q both satisfy the conditions. Then, h = p − q
also satisfies (3.3), h(w) = 0 for all w ≤ 0 and

lim
w→∞

h(w) = 0.

Assume that there exists w′ such that h(w′) 6= 0. Without loss of generality, h(w′) > 0. Since
h(w) → 0, there exists w0 so that h(w) < h(w′) for all w > w0. Therefore, maxw h(w) = max{h(w) :
w ≤ w0} and the maximum exists since it is taken over a finite set. Let H be this maximum, and
let w̃ = max{w : h(w) = H}. By (3.3), h(w̃) is the average of numbers, all of which are no larger
than H and some of which are strictly smaller than H. Therefore h(w̃) < H, in contradiction to
its definition. Therefore, h(w) ≡ 0. �

Proof of Lemma 3.4: The proof is similar to that of Lemma 3.2: Let h = v − p. Then h
is subharmonic, h(w) → 0 as w → ∞, and h(w) = 0 for w ≤ 0. Therefore, by the argument
of Lemma 3.2, sup{h(w) : w ≥ 1} = 0, so that v(w) ≤ p(w). A similar proof applies for the
superharmonic case by considering inf{h(w) : w ≥ 1}. �

Appendix D. A locally optimal strategy is optimal (and exists)

Proof of Proposition 3.5: We will start with the “furthermore” part: Let σ be locally optimal,
and let π be another strategy. Let s be the failure probability sequence for σ, and let p be the
failure probability sequence for π. By local optimality of σ, for every w,

Eπ
w(s) ≥ s(w).

Therefore, s is subharmonic with respect to π, and by Lemma 3.4, p(w) ≥ s(w) for every w, i.e.,
σ � π and σ is optimal.

In order to prove the proposition, all we need is to find a locally optimal strategy. By compactness
of the space of strategies (the product space of actions over all wealths), and continuity of

(D.1)
∞∑

w=1

pπ(w).

in this topology (using the positive-drifts assumption), there exits a strategy σ minimizes expres-
sion D.1. We claim that σ is locally optimal. Indeed, let π be so that |{w : σ(w) 6= π(w)}| = 1,



SOLVENCY GAMES 13

and let w be the unique index such that σ(w) 6= π(w). Since σ and π disagree at exactly one point,
pσ is either subharmonic or superharmonic with respect to π. It has to be subharmonic since pσ

minimizes (D.1), and therefore σ � π and σ is locally optimal. �

Appendix E. Bound on M (beginning of the pure tail)

Theorem 3.6 shows that all optimal strategies have a pure-A tail, i.e, there exists M such that
for any optimal strategy π∗, we have π∗(w) = A for all w > M . Clearly M ≤ M1M2 where M1 is
an upper bound on the number of non-A actions in an optimal strategy and M2 is an upper bound
on the distance between two consecutive non-A actions in an optimal strategy. We omit the details
of the following claims. Let λ1 > 0, λ2, . . . , λlA be the roots of the characteristic rational function
of A listed in decreasing order of magnitude.

(1) Examination of the proof of Theorem 3.6 reveals the following bound on M1. Let v1, v2, . . . , vh

be elements of the support of A whose sum is 1. Define

χ := max

∣∣∣∣∣
j∑

i=1

vi

∣∣∣∣∣
ρ :=

(
j∏

i=1

qA
vi

)l

× min
B 6=A

qB(λ1)

Then,

M1 ≤ (χ + l)
log(1/λ)l

log(1 + ρ)
.

(2) Define

ε :=
1
2
λl+r

1 min
B 6=A

qB(λ1),

K := (λ1λ2 · · · · λl)−1λl2

1 .

Take

n1 =
log(2K/ε)

log λ1 − log λ2
and n2 =

log(2n1)/ε)
log(1/λ1)

.

Then M2 ≤ n1 + n2.

Appendix F. Policy iteration and linear programming

F.1. Policy iteration. The policy iteration algorithm for the finite formulations is the following.
(1) Set n = 0 and select an arbitrary decision rule d0.
(2) [Policy evaluation] Compute the expected total reward {vn(s)}s∈S for the rule dn+1 by

solving the linear system of equations:

v(s) = r(s, dn(s)) +
∑
j∈S

p(j | s, dn(s))v(j), s ∈ S.

(3) [Policy improvement] For each s ∈ S, choose dn+1(s) such that

dn+1(s) ∈ arg max
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)vn(j)

 ,

choosing dn+1(s) = dn(s) whenever possible.
(4) If dn+1(s) = dn(s) for all s ∈ S, then stop, setting d∗ to dn. Otherwise increment n.

Since local optimality implies optimality (Proposition 3.5), clearly policy iteration produces an
optimal strategy in a finite number of iterations.
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F.2. Linear programming. For the finite positive bounded formulation the following linear pro-
gram determines the optimal expected total reward [6, §7.2.7]. Here (βj)j∈S denote positive scalars
that sum to 1.

minimize
∑
j∈S

βjv(j)

subject to

v(s)−
∑
j∈S

p(j | s, a)v(j) ≥ r(s, a); a ∈ As, s ∈ S,

v(s) ≥ 0; s ∈ S.

To determine an optimal decision rule one considers the dual:

maximize
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

subject to ∑
a∈Aj

x(j, a)−
∑
s∈S

∑
a∈As

p(j | s, a)x(s, a) ≤ βj ; j ∈ S,

x(s, a) ≥ 0; a ∈ As, s ∈ S.

Given an optimal basic feasible solution x∗ to the dual an optimal decision rule can be determined
as

d∗(s) =

{
a if x∗(s, a) > 0 and s ∈ S∗

arbitrary otherwise.

Here S∗ := {s ∈ S∗ :
∑

a∈As
x∗(s, a) > 0}. That d∗ is well-defined follows from Theorem 7.2.18

of [6].
In general a negative MDP need not afford a solution by linear programming [6, §7.3.6]. However

our formulation can be seen to be an instance of a first-passage problem [1]. (Briefly, one seeks to
maximize the reward until a state in {−l+1, . . . , 0} is reached.) We aggregate the states −l+1, . . . , 0
into another state 0. The transition probabilities and reward function are updated to reflect this
aggregation. The following linear program will then compute the optimal expected total cost.

minimize
∑

j∈S\{0}

βjv(j)

subject to

v(s) ≥ r(s, a) +
∑

j∈S\{0}

p(j | s, a)v(j); a ∈ As, s ∈ S \ {0},

where (βj)j∈S\{0} are positive scalars that sum to 1. An optimal decision rule can be determined
again from the optimal basic feasible solution of the dual

maximize
∑

s∈S\{0}

∑
a∈As

r(s, a)x(s, a)

subject to ∑
a∈Aj

x(j, a)−
∑

s∈S\{0}

∑
a∈As

p(j | s, a)x(s, a) = βj ; j ∈ S \ {0}

x(s, a) ≥ 0; a ∈ As, s ∈ S \ {0}.
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