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Introduction Main result

Definition

Fix d > 1.

Let M denote the space of all probability measures on
Ea={0} U{xe},

d
Let @ = (M9)™".
An environment is a point w = {w(x, €)}yczd cce, € 2

Let P be a translation invariant (ergodic) probability measure on
Q.
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Definition

For w € Q and z € Z9 define:

PZ is the distribution of a Markov process {X,} with

Xo=2z
and
PZ(Xnt1 = x + €| Xp = x) = wx(e)

for all e € &4.



Introduction Main result

Notation

PZ is called the quenched law

P=PPF?

Is the joint distribution of the environment and the walk.

P?() = /Q P2 (-)dP(w)
is the annealed law.

If z=0 we omit the superscript.
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Assumptions

We make the following assumptions:

1. The environment is i.i.d, namely P = QZd for some Q.

2. The walk is “uniformly elliptic”, i.e. there exists x > 0 such
that Q-almost surely for every e,

w(e) > k.
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Example : Arrow model

Fix 0 <e<1.
Let n: Z9 — &4 be i.i.d. uniform.

We take
€ if e=n(z
we(e) = { e ()

59—1 otherwise
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Arrow model
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Definition

We say that the system is ballistic if there exists v # 0 in RY such
that X
P(Iim":v> =1.
n—0 n

There is no known effective characterization of ballisticity.
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Question

For a # v and large n, what is the probability that

X, ~ na?

This is a large deviation type of question.
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Nestling

The local drift at z is defined to be

Ej(Xl) — Z.

We say that the system is nestling if 0 is in the convex hull of the
support of the local drift,

and that it is non-nestling otherwise.



Nest“ng
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Non-nestling
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Varadhan's Theorem for the non-nestling case

There exists a convex function F : RY — R*, such that F(v) = 0
and F > 0 outside v, such that

P(X, ~ an) ~ e"F(3),

i.e. for every a # v, the decay is exponential.



Varadhan's Theorem for the nestling case

Let A be the line connecting the origin to v.
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Varadhan's Theorem for the nestling case

Let A be the line connecting the origin to v.

Then, F~1(0) = A

In other words,
the probability of slowdown of the walk decays slower than
exponentially.

Question: What is the rate of the decay of the probability of
slowdown?
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Lower bound

For every a € A there exists C such that

P(X, ~ an) > e~ (¢ n?.
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Lower bound - proof

[ R I e

Assume that the "trap” is of radius «log n, with o being a large
constant.

With high probability, the trap holds the walker for (at least) a
linear amount of time.

The probability of existence of such a trap is exponential in its
volume, (log n)9.

So, the probability of a linear slowdown is at least
exp(—C(log n)9).
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Sznitman'’s condition (T)

The following condition, named condition (T), is conjectured to be
equivalent to ballisticity.

Notation: For ¢ € S971 and L € R, we define

TL(Z) :=min{n : (X, ¢) > L.

Condition: There exist a non-empty open set of directions,
G € S971, such that for every £ € G there exists v > 0 such that
for all large L

P(TY > TUD) < et
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Known upper bound

Assume Condition (T), and d > 2.

2d

For every a € Aand a = P

if nis large enough, then

Sztitman 2001.
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Main result

Assume Condition (T), and d > 4.

For every a € A and every € > 0, if n is large enough, then

P(X, ~ an) < e~ (¢ e



Regeneration times

Figure: Regeneration

t is said to be a regeneration time if:
1. (Xs, ) < (X¢, £)for all s < t.
2. (X, 0) > (X, £)for all s > t.



Regeneration times

Facts (Sznitman + Zerner 2000):

1. Almost surely, there are infinitely many regeneration times.
we call them 7 < m < ...

2. The ensemble

{(TnJrl - 7—n)’ (XTn+1 - X‘I‘n)}oo

n=1

is an i.i.d. ensemble.



Proposition

For all € > 0 and u large enough,

P(ry > u) < e (o8 u)e=e,



Proof of main result assuming proposition

Let
p= E(T2 - Tl)
and
a = E(<X7'2 - X7'17 el>) .
Let

’]7:

I

DR

let b=a/v and let m= [n-%.

D=
—



Proof of main result assuming proposition

Then,

P(X, =~ an) < P(7m > n) + P((X;,,, e1) < ba).
By condition (T),

P((X.,,e1) < ba)
decays exponentially,

and thus we need to control

P(7m > n).



Proof of main result assuming proposition

By the proposition, for every k,

P(Tk — Tk—1 > nl/S) < i6'_(|Ogn)die,
2n
and by Azuma's inequlity

P(Tm > n|Ye<mThk — Thk—1 < n1/8) < e
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Therefore, all we need to do is to prove the proposition,

namely, that for all ¢ > 0 and v large enough,

P(ry > u) < e (lg u)’e,



Reduction

Let L = (log u)“.
Using condition (T),
P(r > u) < P(T. > u) + e—O((Iogu)d)

Thus all we need is to estimate P(T; > u).

This enables us to estimate the amount of time to a stopping time.



Reduction

Let B; be the box of side-length 2L and width L? around the origin.

el
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Reduction

Now,
P(T, > u) < P(Tg, > u) + e (g )?)

and

P(Tpg, > u) < P(3xep, such that x is visited times before Tpg,).

IBL!

So all we need is to bound

P(3xep, such that x is visited —— times before Tg,).

|BL
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Reduction

For every x and every event G C Q on the environments,

P(x is visited \BL times before Tg,)
L

< P(G°) + sup P,(x is visited 2 times before Ts,)-
weG ’BL

and by the Markov property,
P, (x is visited m times before Tg,)
L

< PX(x is visited times before Tg,)

|B¢] L\
= (Po’j( return to x before TBL)) BT




Reduction

Therefore, we need to find an event G C Q such that

)d—e

1. P(G) >1— e (logu

2. For every w € G,

1
1 — PJ( return to x before Tpg,) >> —.
u
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The event G

For n > 0, let A, C Q be the following event:
1. Po(Ton < Tp) < e ",

2. The quenched distribution of X7, is very closed to the
annealed in the following sense: There exists a coupling
between the two distributions, such that with probability A
their distance is less than n, and A = \(n) is very small.

Lemma: 1 — P(A,) decays faster than any polynomial.



Introduction Main result

The event G

For every n, partition the lattice into parallelograms in the
direction of the speed, of length n? and width a little more than n.

N2

We can now define the event G.
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The event G

We say that a parallelogram of length n? is good if the event A,
holds for the walk starting from its center.

Note that these events are almost independent for disjoint blocks.
Now, let n; = L€, np = L€, .. ..

The event G is the event that in every such scale, the number of
bad parallelograms in B, is no more than (log u)?¢.

It is easy to see that P(G) > 1 — e~ '°&(1)*™° Therefore all we
need to show is that for every w € G,

1
1 — P}( return to x before Tg, ) >> —
u



The quenched escape probability

We need to show that for w € G,

1
1 — P}( return to x before Tg,) >> —.
u

To see this we define an event A, and show that
1. PX(A) >> 1 and

2. On the event A, the walker leaves B, before returning to x.
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The quenched escape probability

We first define an event B as follows:

The event B is the event that for every parallelogram that the
walker visits, it exits through the front, and that whenever it goes
through a bad parallelogram, at the exit it “corrects” its position
to be similar to the annealed. The correction is done using e-coins.

Conditioned on the event B, the walker does not return to x, and
its path looks like Brownian Motion.



The quenched escape probability

We now define the event A as follows:

Let w be a random variable, uniform in the set [-1,1]9~! and
independent of the walk.

The event A is the following event:

A= Bﬂ{vk,XTJk — XTJk,l — e1(Jk — Jk—l) — W(Jk — Jk_l)nk < nk}

where J; = ni(log u)?=¢ and Jx = Jx_1 + ni(log u)4—¢.



The quenched escape probability

Conditioned on the event A, with high probability the walks visit
no more than (log u)!~¢ bad blocks.

Therefore, under this event it needs no more than (log u)*~¢
€e-coins.

P(A|B) > ut.
Combined, we get that

Pw(A —.
w( )>>u
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