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Definition

Fix d ≥ 1.

Let Md denote the space of all probability measures on
Ed = {0} ∪ {±ei}di=1

Let Ω =
(
Md

)Zd

.

An environment is a point ω = {ω(x , e)}x∈Zd , e∈Ed ∈ Ω.

Let P be a translation invariant (ergodic) probability measure on
Ω.
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Definition

For ω ∈ Ω and z ∈ Zd define:

Pz
ω is the distribution of a Markov process {Xn} with

X0 = z

and

Pz
ω(Xn+1 = x + e|Xn = x) = ωx(e)

for all e ∈ Ed .
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Notation

Pz
ω is called the quenched law

P = P ⊗ Pz
ω

Is the joint distribution of the environment and the walk.

Pz(·) =

∫
Ω

Pz
ω(·)dP(ω)

is the annealed law.

If z = 0 we omit the superscript.
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Assumptions

We make the following assumptions:

1. The environment is i.i.d, namely P = QZd
for some Q.

2. The walk is “uniformly elliptic”, i.e. there exists κ > 0 such
that Q-almost surely for every e,

ω(e) > κ.
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Example : Arrow model

Fix 0 < ε < 1.

Let η : Zd → Ed be i.i.d. uniform.

We take

ωz(e) =

{
ε if e = η(z)

1−ε
2d−1 otherwise

.



Introduction Main result Proof Conclusion

Arrow model
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Definition

We say that the system is ballistic if there exists v 6= 0 in Rd such
that

P

(
lim
n→0

Xn

n
= v

)
= 1.

There is no known effective characterization of ballisticity.
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Question

For a 6= v and large n, what is the probability that

Xn ≈ na?

This is a large deviation type of question.
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Nestling

The local drift at z is defined to be

E z
ω(X1)− z .

We say that the system is nestling if 0 is in the convex hull of the
support of the local drift,

and that it is non-nestling otherwise.
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Nestling
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Non-nestling
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Varadhan’s Theorem for the non-nestling case

There exists a convex function F : Rd → R+, such that F (v) = 0
and F > 0 outside v , such that

P(Xn ≈ an) ≈ enF (a).

i.e. for every a 6= v , the decay is exponential.



Introduction Main result Proof Conclusion

Varadhan’s Theorem for the nestling case

Let A be the line connecting the origin to v .

A
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Varadhan’s Theorem for the nestling case

Let A be the line connecting the origin to v .

Then, F−1(0) = A.

In other words,
the probability of slowdown of the walk decays slower than
exponentially.

Question: What is the rate of the decay of the probability of
slowdown?
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Lower bound

For every a ∈ A there exists C such that

P(Xn ≈ an) > e−C(log n)d
.
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Lower bound - proof

Assume that the ”trap” is of radius α log n, with α being a large
constant.

With high probability, the trap holds the walker for (at least) a
linear amount of time.

The probability of existence of such a trap is exponential in its
volume, (log n)d .

So, the probability of a linear slowdown is at least
exp(−C (log n)d).
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Is this the way slowdown occurs?
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Sznitman’s condition (T )

The following condition, named condition (T ), is conjectured to be
equivalent to ballisticity.

Notation: For ` ∈ Sd−1 and L ∈ R+, we define

T
(`)
L := min{n : 〈Xn, `〉 > L.

Condition: There exist a non-empty open set of directions,
G ∈ Sd−1, such that for every ` ∈ G there exists γ > 0 such that
for all large L

P
(
T

(`)
L > T

(−`)
L

)
< e−γL.
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Known upper bound

Assume Condition (T ), and d ≥ 2.

For every a ∈ A and α = 2d
d+1 , if n is large enough, then

P(Xn ≈ an) < e−(log n)α .

Sztitman 2001.
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Main result

Assume Condition (T ), and d ≥ 4.

For every a ∈ A and every ε > 0, if n is large enough, then

P(Xn ≈ an) < e−(log n)d−ε
.
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Regeneration times

!

Figure: Regeneration

t is said to be a regeneration time if:

1. 〈Xs , `〉 < 〈Xt , `〉for all s < t.

2. 〈Xs , `〉 > 〈Xt , `〉for all s > t.
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Regeneration times

Facts (Sznitman + Zerner 2000):

1. Almost surely, there are infinitely many regeneration times.
we call them τ1 < τ2 < ...

2. The ensemble {
(τn+1 − τn), (Xτn+1 − Xτn)

}∞
n=1

is an i.i.d. ensemble.
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Proposition

For all ε > 0 and u large enough,

P(τ1 > u) ≤ e−(log u)d−ε
.
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Proof of main result assuming proposition

Let

ρ = E(τ2 − τ1)

and

α = E (〈Xτ2 − Xτ1 , e1〉) .

Let

η =
α

ρ
,

let b = a/v and let m =
[
n · 1+b

2 ·
1
ρ

]
.
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Proof of main result assuming proposition

Then,

P(Xn ≈ an) ≤ P(τm > n) + P(〈Xτm , e1〉 < bα).

By condition (T ),

P(〈Xτm , e1〉 < bα)

decays exponentially,

and thus we need to control

P(τm > n).
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Proof of main result assuming proposition

By the proposition, for every k ,

P(τk − τk−1 > n1/8) ≤ 1

2n
e−(log n)d−ε

,

and by Azuma’s inequlity

P(τm > n | ∀k≤mτk − τk−1 ≤ n1/8) ≤ e−n1/2
.
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Therefore, all we need to do is to prove the proposition,

namely, that for all ε > 0 and u large enough,

P(τ1 > u) ≤ e−(log u)d−ε
.
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Reduction

Let L = (log u)d .

Using condition (T ),

P(τ1 > u) ≤ P(TL > u) + e−O
(

(log u)d
)

Thus all we need is to estimate P(TL > u).

This enables us to estimate the amount of time to a stopping time.
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Reduction

Let BL be the box of side-length 2L and width L2 around the origin.

L

L

2
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Reduction

Now,

P(TL > u) ≤ P(TBL
> u) + e−O

(
(log u)d

)
and

P(TBL
> u) ≤ P(∃x∈BL

such that x is visited
u

|BL|
times before TBL

).

So all we need is to bound

P(∃x∈BL
such that x is visited

u

|BL|
times before TBL

).
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Reduction

For every x and every event G ⊆ Ω on the environments,

P(x is visited
u

|BL|
times before TBL

)

≤ P(G c) + sup
ω∈G

Pω(x is visited
u

|BL|
times before TBL

).

and by the Markov property,

Pω(x is visited
u

|BL|
times before TBL

)

≤ Px
ω(x is visited

u

|BL|
times before TBL

)

=
(
Px
ω( return to x before TBL

)
) u
|BL| .
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Reduction

Therefore, we need to find an event G ⊆ Ω such that

1. P(G ) > 1− e−(log u)d−ε
.

2. For every ω ∈ G ,

1− Px
ω( return to x before TBL

) >>
1

u
.
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The event G

For n > 0, let An ⊆ Ω be the following event:

1. Pω(T−n < Tn) < e−cn.

2. The quenched distribution of XTn is very closed to the
annealed in the following sense: There exists a coupling
between the two distributions, such that with probability λ
their distance is less than nε, and λ = λ(n) is very small.

Lemma: 1− P(An) decays faster than any polynomial.
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The event G

For every n, partition the lattice into parallelograms in the
direction of the speed, of length n2 and width a little more than n.

We can now define the event G .
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The event G

We say that a parallelogram of length n2 is good if the event An

holds for the walk starting from its center.

Note that these events are almost independent for disjoint blocks.

Now, let n1 = Lε, n2 = L2ε, . . ..

The event G is the event that in every such scale, the number of
bad parallelograms in BL is no more than (log u)d−ε.

It is easy to see that P(G ) > 1− e− log(u)d−ε
. Therefore all we

need to show is that for every ω ∈ G ,

1− Px
ω( return to x before TBL

) >>
1

u
.
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The quenched escape probability

We need to show that for ω ∈ G ,

1− Px
ω( return to x before TBL

) >>
1

u
.

To see this we define an event A, and show that

1. Px
ω(A) >> 1

u , and

2. On the event A, the walker leaves BL before returning to x .
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The quenched escape probability

We first define an event B as follows:

The event B is the event that for every parallelogram that the
walker visits, it exits through the front, and that whenever it goes
through a bad parallelogram, at the exit it “corrects” its position
to be similar to the annealed. The correction is done using ε-coins.

Conditioned on the event B, the walker does not return to x , and
its path looks like Brownian Motion.
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The quenched escape probability

We now define the event A as follows:

Let w be a random variable, uniform in the set [−1, 1]d−1 and
independent of the walk.

The event A is the following event:

A = B∩
{
∀k ,XTJk

− XTJk−1
− e1(Jk − Jk−1)− w(Jk − Jk−1)nk < nk

}
where J1 = n1(log u)d−ε and Jk = Jk−1 + nk(log u)d−ε.
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The quenched escape probability

Conditioned on the event A, with high probability the walks visit
no more than (log u)1−ε bad blocks.

Therefore, under this event it needs no more than (log u)1−ε

ε-coins.

P(A|B) > uε−1.

Combined, we get that

Pω(A) >>
1

u
.
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