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Bond-percolation in Zd

Fix some parameter 0 < p < 1, and for every edge e in Zd ,
independently of all other edges, declare that e is ”open” with
probability p and ”closed” with probability 1− p. We are
interested in the (random) graph spanned by the vertices of Zd

and the open edges.
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Simple random walk on the infinite cluster

For p > pc(d), with positive probability the origin is contained in
the unique infinite cluster.

We condition on the event that the origin is in the infinite
cluster and consider a simple random walk on the infinite cluster,
starting at the origin.
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Basic question

Let d ≥ 2 and let N be a large number. What is the probability
that the walker will hit {N} × Zd−1 before it hits {−N} × Zd−1?
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Basic question

Because of symmetry, if we average over all configurations (i.e. the
annealed case), the answer is exactly a half.

Quenched question: Is it true that if N is large enough, then
with very high probability the configuration is so that this
probability is very close to 1

2?
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Main Theorem

The question above is answered using the following theorem:

Main Theorem: Let d ≥ 2 and let ω be a configuration s.t. the
origin is in the infinite cluster. Let (Xn)n≥0 be the random walk
starting at the origin. Let

B̃n(t) =
1√
n

(
Xbtnc + (tn − btnc)(Xbtnc+1 − Xbtnc)

)
, t ≥ 0.

be its scaled linear interpolation. Then for all T > 0 and
for P0-almost every ω, (B̃n(t) : 0 ≤ t ≤ T ) converges in law to a
d-dimensional isotropic Brownian motion (Bt : 0 ≤ t ≤ T ) with a
positive diffusion constant depending only on the percolation
parameter p.
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Back to basic question

Since Brownian Motion hits {N} × Zd−1 before it hits
{−N} × Zd−1 with probability 1

2 , we get that for most
configuration {N} × Zd−1 will be hit before {−N} × Zd−1 with
probability very close to 1

2 .
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Remark

The same result has been independently and simultaneously proven
by Mathieu and Piatnitski. Their methods are different.
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Related results

I De Masi, Ferarri, Goldstein and Wick (1984) proved an
annealed convergence to Brownian Motion.

I Sidoravicius and Sznitman (2003) proved quenched
convergence to Brownian Motion for dimensions ≥ 4.

I Sidoravicius and Sznitman (2003) proved quenched
convergence to Brownian Motion for all dimensions for the
related random conductances model.

I Rassoul-Agha and Seppäläinen (2004) proved quenched
convergence to Brownian Motion for a general class of
random walk in space-time random environments.

I Barlow (2004) proved quenched Gaussian estimates for the
heat kernel of the walk on percolation clusters.
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First we Consider the basic question: What is the probability of
hitting the top hyperplane before hitting the bottom hyperplane ?

This is a harmonic function, so we solve the linear equations.
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Main idea of the proof - CLT

The basic question is solved if we can control the displacement of
the origin. We will do it in a slightly more general context.

The walk on the deformed lattice is a martingale. If it is an L2

martingale satisfying the conditions of the Lindeberg-Feller
Theorem, then it converges to Brownian motion.
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WANTED:

A function χ : Ω? × Zd → Rd such that:

I x + χω(x) : C∞(ω) → Rd is harmonic for (almost) every
ω ∈ Ω?.

I χω(x) is typically small with respect to x .

I The increments of χ are shift invariant, i.e. for every
x , y , t ∈ Zd and ω ∈ Ω∗, we have

χω(x)− χω(y) = χτt(ω)(x − t)− χτt(ω)(y − t)

I (χω(x)− χω(y)) · ω(〈x , y〉) ∈ L2
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The Corrector

If such χ exists, then Xn + χ(Xn) converges to Brownian Motion,
and from this we infer that if χ(x) = o(x) then Xn converges to
Brownian Motion, as desired.

Natural candidate: Let {X (x)
n } be the random walk starting at x .

If
lim

n→∞

[
E

(
X

(x)
n

)]
exists then it satisfies harmonicity and shift-invariance, and we can
take χ(x) to be its difference from x .
Problem: We don’t know how to prove convergence.
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The Corrector

However, following the arguments of Sidoravicius and Sznitman
(2003) and Kipnis and Varadhan (1986) one can prove that

φ(x) := lim
n→∞

[
E

(
X

(x)
n

)
− E

(
X

(0)
n

)]
exists in L2 and has gradients in L2. Now we can take
χ(x) = φ(x)− x .

Therefore the only missing ingredient is that χ(x) is small with
respect to x .
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The corrector is small

The Theorem will be proved once we prove the following
propositions:

Proposition 1: In Z2, ω-almost surely,

lim
n→∞

1

n
max

x∈[−n,n]2
‖χω(x)‖ = 0.

Proposition 2: For d ≥ 2, In Zd , for every ε,

lim
n→∞

1

nd
# {x : χ(x) > εn} = 0

ω-almost surely.
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Why are these propositions sufficient?

Proposition 1 is sufficient because with very high probability

max
1≤n≤T

‖χ(Xn)‖ = o

(
max

1≤n≤T
‖Xn + χ(Xn)‖

)
= o(

√
(T )).

Proposition 2 is sufficient because using Barlow’s bound, with very
high probability for most times we are in a vertex x such that

‖χ(x)‖ � ‖x‖.
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The induced shift

The space Ω? is not invariant with respect to the shift τe .

Let
k(ω) = min {k > 0 : τke(ω) ∈ Ω?} ,

and define
σe(ω) = τke(ω).

Then σe : Ω? → Ω? is measure preserving and ergodic.
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The corrector is small along coordinate lines

Let k0 = 0, k1, k2, . . . be the points along the x-axis that are in C∞.

Let F (ω) = χω(k1)− χω(0).

Then E (F ) = 0,

and we get

1

n
χ(ki ) =

1

n

i∑
j=1

F (σj
e(ω)) → 0 a.s.

By the pointwise ergodic theorem.
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Nice lines

Fix ε > 0, and for some large K we say that a line {n} × Z is nice
if:

1. (n, 0) ∈ C∞
2. for every j s.t. (n, j) ∈ C∞,

|χ(n, j)− χ(n, 0)| < K + |j |ε

If K is large enough, then a line is nice with positive probability.
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Proof of two-dimensional case

By the ergodic theorem, there are many nice lines. In particular,
the spacing between nice lines is sublinear.
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The corrector along nice lines

Along the nice lines, the value of the corrector is bounded by
2K + 2εn.
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The corrector between nice lines

The function x + χ(x) is harmonic. Therefore, by the maximum
principle, χ is bounded by 2K + 2εn + maximum spacing .

x
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The corrector between nice lines

Since the spacing is sublinear, for n large enough we get that

max
x∈[−n,n]2

|χ(x)| < 2K + 3εn,

as desired.
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Proof of higher dimensional case

We want to show that for most pairs x and y ,

|χ(x)− χ(y)| < εn

x

y

n
L
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Proof of higher dimensional case

We do so using induction:

Let d be the dimension of the space, and let e1, . . . , ed be the
standard basis.

We use induction on k to show that the proposition holds for
span(e1, . . . , ek) for k = 1, 2, . . . , d .

The base case k = 1 follows from the ergodic theorem.
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Proof of higher dimensional case
Induction Step

We stack a fixed number L of hyperplanes of dimension k − 1. The
statement holds for all of them. The vast majority of lines parallel
to ek are nice, and intersect C∞ on one of the L hyperplanes.

x

y

n
L
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Open problems

1. What is the true growth rate of the corrector?

2. Are there harmonic functions of sub-linear growth on a
percolation cluster?
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Playing with the corrector

Percolation cluster and its deformation: p = 0.55
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THE END
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