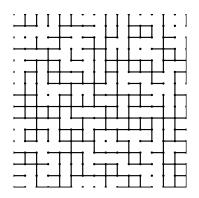
The Model	Question	CLT		The Corrector is Small
Que	nched central	limit theo	rem for rand	dom walk
on percolation clusters				
		Noam Berg	ger	
		UCLA Joint work w		
	NA	arek Biskup		
			(UCLA)	

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ◆ ● ◆

Bond-percolation in \mathbb{Z}^d

Fix some parameter 0 , and for every edge <math>e in \mathbb{Z}^d , independently of all other edges, declare that e is "open" with probability p and "closed" with probability 1 - p. We are interested in the (random) graph spanned by the vertices of \mathbb{Z}^d and the open edges.



Simple random walk on the infinite cluster

For $p > p_c(d)$, with positive probability the origin is contained in the unique infinite cluster.

We condition on the event that the origin is in the infinite cluster and consider a simple random walk on the infinite cluster, starting at the origin.

Let $d \ge 2$ and let N be a large number. What is the probability that the walker will hit $\{N\} \times \mathbb{Z}^{d-1}$ before it hits $\{-N\} \times \mathbb{Z}^{d-1}$?

Basic question

Because of symmetry, if we average over all configurations (i.e. the **annealed** case), the answer is exactly a half.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basic question

Because of symmetry, if we average over all configurations (i.e. the **annealed** case), the answer is exactly a half.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quenched question: Is it true that if *N* is large enough, then with very high probability the configuration is so that this probability is very close to $\frac{1}{2}$?

The question above is answered using the following theorem:

Main Theorem: Let $d \ge 2$ and let ω be a configuration s.t. the origin is in the infinite cluster. Let $(X_n)_{n\ge 0}$ be the random walk starting at the origin. Let

$$\widetilde{B}_n(t) = \frac{1}{\sqrt{n}} (X_{\lfloor tn \rfloor} + (tn - \lfloor tn \rfloor)(X_{\lfloor tn \rfloor + 1} - X_{\lfloor tn \rfloor})), \qquad t \geq 0.$$

be its scaled linear interpolation. Then for all T > 0 and for P_0 -almost every ω , $(\tilde{B}_n(t): 0 \le t \le T)$ converges in law to a *d*-dimensional isotropic Brownian motion $(B_t: 0 \le t \le T)$ with a positive diffusion constant depending only on the percolation parameter *p*. Since Brownian Motion hits $\{N\} \times \mathbb{Z}^{d-1}$ before it hits $\{-N\} \times \mathbb{Z}^{d-1}$ with probability $\frac{1}{2}$, we get that for most configuration $\{N\} \times \mathbb{Z}^{d-1}$ will be hit before $\{-N\} \times \mathbb{Z}^{d-1}$ with probability very close to $\frac{1}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Model	Question	CLT	The Corrector is Small
Remark			

The same result has been independently and simultaneously proven by Mathieu and Piatnitski. Their methods are different.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

The Model	Question	CLT	The Corrector is Small

・ロ> < 回> < 三> < 三> < 三> < 回> < 回> < <

Related results

The Model	Question	CLT	The Corrector is Small
Related r	results		

De Masi, Ferarri, Goldstein and Wick (1984) proved an annealed convergence to Brownian Motion.

(ロ)、(型)、(E)、(E)、 E、 の(の)

The Model	Question	CLT	The Corrector is Small
Related res	sults		

- De Masi, Ferarri, Goldstein and Wick (1984) proved an annealed convergence to Brownian Motion.
- ► Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for dimensions ≥ 4.

- ロ ト - 4 回 ト - 4 □

- De Masi, Ferarri, Goldstein and Wick (1984) proved an annealed convergence to Brownian Motion.
- ► Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for dimensions ≥ 4.
- Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for all dimensions for the related random conductances model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

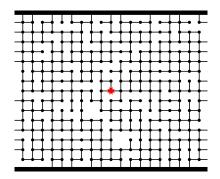
- De Masi, Ferarri, Goldstein and Wick (1984) proved an annealed convergence to Brownian Motion.
- ► Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for dimensions ≥ 4.
- Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for all dimensions for the related random conductances model.
- Rassoul-Agha and Seppäläinen (2004) proved quenched convergence to Brownian Motion for a general class of random walk in space-time random environments.

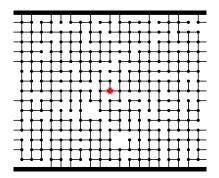
< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- - De Masi, Ferarri, Goldstein and Wick (1984) proved an annealed convergence to Brownian Motion.
 - Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for dimensions \geq 4.
 - Sidoravicius and Sznitman (2003) proved quenched convergence to Brownian Motion for all dimensions for the related random conductances model.
 - Rassoul-Agha and Seppäläinen (2004) proved quenched convergence to Brownian Motion for a general class of random walk in space-time random environments.
 - Barlow (2004) proved quenched Gaussian estimates for the heat kernel of the walk on percolation clusters.

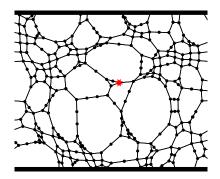
Main idea of the proof - Basic Question

First we Consider the basic question: What is the probability of hitting the top hyperplane before hitting the bottom hyperplane ?

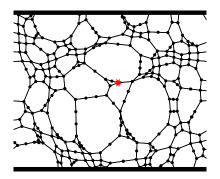




This is a harmonic function, so we solve the linear equations.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Now the walk is a martingale.

Main idea of the proof - CLT

The basic question is solved if we can control the displacement of the origin. We will do it in a slightly more general context.

Main idea of the proof - CLT

The basic question is solved if we can control the displacement of the origin. We will do it in a slightly more general context.

The walk on the deformed lattice is a martingale. If it is an L^2 martingale satisfying the conditions of the Lindeberg-Feller Theorem, then it converges to Brownian motion.

The Model	Question	CLT	proof	The Corrector is Small
WANTED:				

A function $\chi: \Omega^{\star} \times \mathbb{Z}^d \to \mathbb{R}^d$ such that:

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ → 圖 - ∽��?

The Model	Question	CLT	proof	The Corrector is Small
WANTED:				

A function $\chi: \Omega^{\star} \times \mathbb{Z}^d \to \mathbb{R}^d$ such that:

• $x + \chi_{\omega}(x) : \mathcal{C}_{\infty}(\omega) \to \mathbb{R}^d$ is harmonic for (almost) every $\omega \in \Omega^*$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

The Model	Question	CLT	proof	The Corrector is Small
WANTED:				

- A function $\chi: \Omega^{\star} \times \mathbb{Z}^d \to \mathbb{R}^d$ such that:
 - $x + \chi_{\omega}(x) : \mathcal{C}_{\infty}(\omega) \to \mathbb{R}^d$ is harmonic for (almost) every $\omega \in \Omega^*$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

• $\chi_{\omega}(x)$ is typically small with respect to x.

The Model	Question	CLT	proof	The Corrector is Small
WANTED:				

- A function $\chi: \Omega^{\star} \times \mathbb{Z}^d \to \mathbb{R}^d$ such that:
 - $x + \chi_{\omega}(x) : \mathcal{C}_{\infty}(\omega) \to \mathbb{R}^d$ is harmonic for (almost) every $\omega \in \Omega^*$.
 - $\chi_{\omega}(x)$ is typically small with respect to x.
 - ► The increments of χ are shift invariant, i.e. for every $x, y, t \in \mathbb{Z}^d$ and $\omega \in \Omega^*$, we have

$$\chi_{\omega}(x) - \chi_{\omega}(y) = \chi_{\tau_t(\omega)}(x-t) - \chi_{\tau_t(\omega)}(y-t)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Model	Question	CLT	proof	The Corrector is Small
WANTED:				

- A function $\chi: \Omega^{\star} \times \mathbb{Z}^d \to \mathbb{R}^d$ such that:
 - $x + \chi_{\omega}(x) : \mathcal{C}_{\infty}(\omega) \to \mathbb{R}^d$ is harmonic for (almost) every $\omega \in \Omega^*$.
 - $\chi_{\omega}(x)$ is typically small with respect to x.
 - ► The increments of χ are shift invariant, i.e. for every $x, y, t \in \mathbb{Z}^d$ and $\omega \in \Omega^*$, we have

$$\chi_{\omega}(x) - \chi_{\omega}(y) = \chi_{\tau_t(\omega)}(x - t) - \chi_{\tau_t(\omega)}(y - t)$$

$$(\chi_{\omega}(x) - \chi_{\omega}(y)) \cdot \omega(\langle x, y \rangle) \in L^2$$

The Model	Question	CLT	proof	The Corrector is Small
The Corre	ector			

If such χ exists, then $X_n + \chi(X_n)$ converges to Brownian Motion, and from this we infer that if $\chi(x) = o(x)$ then X_n converges to Brownian Motion, as desired.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Model	Question	CLT	proof	The Corrector is Small
The Corre	ctor			

If such χ exists, then $X_n + \chi(X_n)$ converges to Brownian Motion, and from this we infer that if $\chi(x) = o(x)$ then X_n converges to Brownian Motion, as desired.

Natural candidate: Let $\{X_n^{(x)}\}$ be the random walk starting at x. If

 $\lim_{n\to\infty} \left[E\left(X_n^{(x)}\right) \right]$

exists then it satisfies harmonicity and shift-invariance, and we can take $\chi(x)$ to be its difference from x. Problem: We don't know how to prove convergence.

(日) (同) (三) (三) (三) (○) (○)

The Model	Question	CLT	proof	The Corrector is Small
The Corre	ector			

However, following the arguments of Sidoravicius and Sznitman (2003) and Kipnis and Varadhan (1986) one can prove that

$$\phi(x) := \lim_{n \to \infty} \left[E\left(X_n^{(x)}\right) - E\left(X_n^{(0)}\right) \right]$$

exists in L² and has gradients in L². Now we can take $\chi(x) = \phi(x) - x$.

The Model	Question	CLT	proof	The Corrector is Small
The Corre	octor			
The Corre	ector			

However, following the arguments of Sidoravicius and Sznitman (2003) and Kipnis and Varadhan (1986) one can prove that

$$\phi(x) := \lim_{n \to \infty} \left[E\left(X_n^{(x)}\right) - E\left(X_n^{(0)}\right) \right]$$

exists in L² and has gradients in L². Now we can take $\chi(x) = \phi(x) - x$.

Therefore the only missing ingredient is that $\chi(x)$ is small with respect to x.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The corrector is small

The Theorem will be proved once we prove the following propositions:

The corrector is small

The Theorem will be proved once we prove the following propositions:

Proposition 1: In \mathbb{Z}^2 , ω -almost surely,

$$\lim_{n\to\infty}\frac{1}{n}\max_{x\in[-n,n]^2}\|\chi_{\omega}(x)\|=0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The corrector is small

The Theorem will be proved once we prove the following propositions:

Proposition 1: In \mathbb{Z}^2 , ω -almost surely,

$$\lim_{n\to\infty}\frac{1}{n}\max_{x\in[-n,n]^2}\|\chi_{\omega}(x)\|=0.$$

Proposition 2: For $d \ge 2$, In \mathbb{Z}^d , for every ϵ ,

$$\lim_{n\to\infty}\frac{1}{n^d}\#\{x:\chi(x)>\epsilon n\}=0$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 ω -almost surely.

Why are these propositions sufficient?

Proposition 1 is sufficient because with very high probability

$$\max_{1\leq n\leq T} \|\chi(X_n)\| = o\left(\max_{1\leq n\leq T} \|X_n + \chi(X_n)\|\right) = o(\sqrt{(T)}).$$

Proposition 2 is sufficient because using Barlow's bound, with very high probability for **most times** we are in a vertex x such that

 $\|\chi(\mathbf{x})\| \ll \|\mathbf{x}\|.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The space Ω^* is not invariant with respect to the shift τ_e .

The space Ω^* is not invariant with respect to the shift τ_e .

Let

$$k(\omega) = \min \left\{ k > 0 : \tau_{ke}(\omega) \in \Omega^{\star} \right\},\,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The space Ω^{\star} is not invariant with respect to the shift τ_{e} .

Let

$$k(\omega) = \min \left\{ k > 0 : \tau_{ke}(\omega) \in \Omega^{\star} \right\},\,$$

and define

$$\sigma_{e}(\omega) = \tau_{ke}(\omega).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The space Ω^* is not invariant with respect to the shift τ_e .

Let

$$k(\omega) = \min \left\{ k > 0 : \tau_{ke}(\omega) \in \Omega^{\star} \right\},\,$$

and define

$$\sigma_{e}(\omega) = \tau_{ke}(\omega).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then $\sigma_e: \Omega^{\star} \to \Omega^{\star}$ is measure preserving and ergodic.



▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ ト ▲ の へ ()

Let $k_0 = 0, k_1, k_2, \ldots$ be the points along the x-axis that are in C_{∞} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The corrector is small along coordinate lines

Let $k_0 = 0, k_1, k_2, ...$ be the points along the x-axis that are in C_{∞} . Let $F(\omega) = \chi_{\omega}(k_1) - \chi_{\omega}(0)$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let $k_0 = 0, k_1, k_2, ...$ be the points along the x-axis that are in C_{∞} . Let $F(\omega) = \chi_{\omega}(k_1) - \chi_{\omega}(0)$. Then E(F) = 0,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $k_0 = 0, k_1, k_2, ...$ be the points along the x-axis that are in C_{∞} . Let $F(\omega) = \chi_{\omega}(k_1) - \chi_{\omega}(0)$. Then E(F) = 0, and we get

$$rac{1}{n}\chi(k_i)=rac{1}{n}\sum_{j=1}^i F(\sigma_e^j(\omega)) o 0$$
 a.s.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

By the pointwise ergodic theorem.

The Model	Question	CLT	The Corrector is Small
Nice lines			

Fix $\epsilon>0,$ and for some large K we say that a line $\{n\}\times\mathbb{Z}$ is nice if:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

The Model	Question	CLT	The Corrector is Small
Nice lines			

Fix $\epsilon > 0$, and for some large K we say that a line $\{n\} \times \mathbb{Z}$ is nice if:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

1. $(n,0) \in \mathcal{C}_{\infty}$

The Model	Question	CLT	The Corrector is Small
Nice lines			

Fix $\epsilon > 0$, and for some large K we say that a line $\{n\} \times \mathbb{Z}$ is nice if:

- 1. $(n,0) \in \mathcal{C}_{\infty}$
- 2. for every j s.t. $(n,j) \in \mathcal{C}_{\infty}$,

 $|\chi(n,j) - \chi(n,0)| < K + |j|\epsilon$

The Model	Question	CLT	The Corrector is Small
Nice lines			

Fix $\epsilon > 0$, and for some large K we say that a line $\{n\} \times \mathbb{Z}$ is nice if:

1. $(n,0) \in \mathcal{C}_{\infty}$ 2. for every j s.t. $(n,j) \in \mathcal{C}_{\infty}$, $|\chi(n,j) - \chi(n,0)| < K + |j|\epsilon$

If K is large enough, then a line is nice with positive probability.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

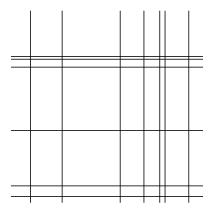
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Proof of two-dimensional case

By the ergodic theorem, there are many nice lines. In particular, the **spacing** between nice lines is sublinear.

Proof of two-dimensional case

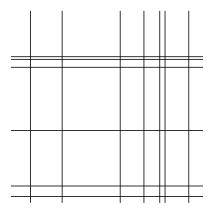
By the ergodic theorem, there are many nice lines. In particular, the **spacing** between nice lines is sublinear.



▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

The corrector along nice lines

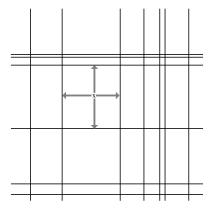
Along the nice lines, the value of the corrector is bounded by $2K + 2\epsilon n$.



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

The corrector between nice lines

The function $x + \chi(x)$ is harmonic. Therefore, by the maximum principle, χ is bounded by $2K + 2\epsilon n + \max$ maximum spacing.



▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

The corrector between nice lines

Since the spacing is sublinear, for n large enough we get that

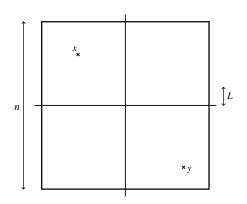
$$\max_{x\in [-n,n]^2} |\chi(x)| < 2K + 3\epsilon n,$$

as desired.

Proof of higher dimensional case

We want to show that for most pairs x and y,

 $|\chi(x)-\chi(y)|<\epsilon n$



◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @

Proof of higher dimensional case

We do so using induction:

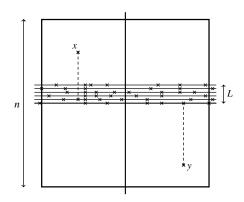
Let *d* be the dimension of the space, and let e_1, \ldots, e_d be the standard basis.

We use induction on k to show that the proposition holds for span (e_1, \ldots, e_k) for $k = 1, 2, \ldots, d$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The base case k = 1 follows from the ergodic theorem.

We stack a fixed number L of hyperplanes of dimension k-1. The statement holds for all of them. The vast majority of lines parallel to e_k are nice, and intersect C_{∞} on one of the L hyperplanes.



Open problems

Open problems

1. What is the true growth rate of the corrector?

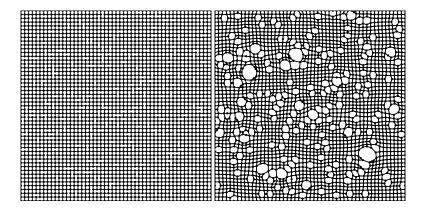
Open problems

- 1. What is the true growth rate of the corrector?
- 2. Are there harmonic functions of sub-linear growth on a percolation cluster?

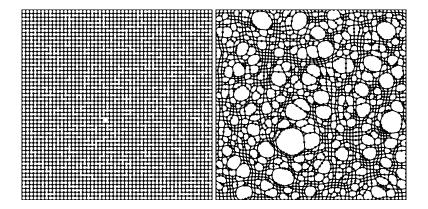
(日) (雪) (日) (日) (日)

Playing with the corrector

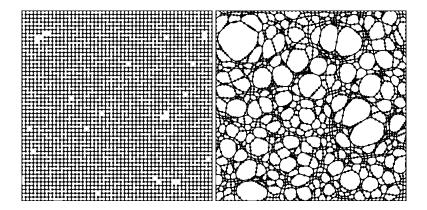
Percolation cluster and its deformation: p = 0.95



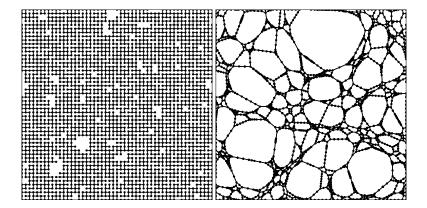
Percolation cluster and its deformation: p = 0.85



Percolation cluster and its deformation: p = 0.75

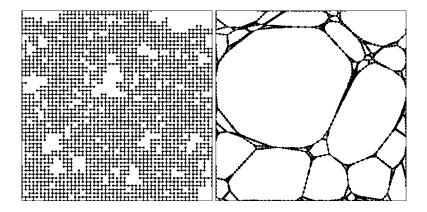


Percolation cluster and its deformation: p = 0.65



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Percolation cluster and its deformation: p = 0.55



lel	
-----	--

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

THE END