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The Model

Bond-percolation in Z¢

Fix some parameter 0 < p < 1, and for every edge e in Z9,
independently of all other edges, declare that e is "open” with
probability p and "closed” with probability 1 — p. We are
interested in the (random) graph spanned by the vertices of Z¢
and the open edges.
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The Model

Simple random walk on the infinite cluster

For p > pc(d), with positive probability the origin is contained in
the unique infinite cluster.

We condition on the event that the origin is in the infinite
cluster and consider a simple random walk on the infinite cluster,
starting at the origin.



Question

Basic question

Let d > 2 and let N be a large number. What is the probability
that the walker will hit {N} x Z9~! before it hits {—N} x Z9~1?
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The Model Question

Basic question

Because of symmetry, if we average over all configurations (i.e. the
annealed case), the answer is exactly a half.

Quenched question: s it true that if N is large enough, then
with very high probability the configuration is so that this
probability is very close to %?



Question

Main Theorem

The question above is answered using the following theorem:

Main Theorem: Let d > 2 and let w be a configuration s.t. the
origin is in the infinite cluster. Let (X,)n>0 be the random walk
starting at the origin. Let

Bo(t) = %(xm (tn— 0))(Xeno1 — Xi)). 20,

be its scaled linear interpolation. Then for all T > 0 and

for Py-almost every w, (Ba(t): 0 <t < T) converges in law to a
d-dimensional isotropic Brownian motion (B;: 0 <t < T) with a
positive diffusion constant depending only on the percolation
parameter p.



Back to basic question

Since Brownian Motion hits {N} x Z9~1 before it hits

{=N} x Z971 with probability 3, we get that for most
configuration {N} x Z9~1 will be hit before {—~N} x Z9~1 with
probability very close to %
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CLT

Remark

The same result has been independently and simultaneously proven
by Mathieu and Piatnitski. Their methods are different.
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The Model

Question proof The Corrector is Small

Related results

De Masi, Ferarri, Goldstein and Wick (1984) proved an
annealed convergence to Brownian Motion.

Sidoravicius and Sznitman (2003) proved quenched
convergence to Brownian Motion for dimensions > 4.

Sidoravicius and Sznitman (2003) proved quenched
convergence to Brownian Motion for all dimensions for the
related random conductances model.

Rassoul-Agha and Seppalédinen (2004) proved quenched
convergence to Brownian Motion for a general class of
random walk in space-time random environments.

Barlow (2004) proved quenched Gaussian estimates for the
heat kernel of the walk on percolation clusters.
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Question C The Corrector is Small

Main idea of the proof - Basic Question

First we Consider the basic question: What is the probability of
hitting the top hyperplane before hitting the bottom hyperplane 7
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This is a harmonic function, so we solve the linear equations.
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The Model Question

Main idea of the proof - Basic Question

First we Consider the basic question: What is the probability of
hitting the top hyperplane before hitting the bottom hyperplane 7

Now the walk is a martingale.
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The basic question is solved if we can control the displacement of
the origin. We will do it in a slightly more general context.



Main idea of the proof - CLT

The basic question is solved if we can control the displacement of
the origin. We will do it in a slightly more general context.

The walk on the deformed lattice is a martingale. If it is an L2
martingale satisfying the conditions of the Lindeberg-Feller
Theorem, then it converges to Brownian motion.
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WANTED:

A function x : Q* x Z9 — R such that:

> X + Xw(X) : Coo(w) — RY is harmonic for (almost) every
w e Q.

> Xw(x) is typically small with respect to x.

» The increments of x are shift invariant, i.e. for every
x,y,t € Z9 and w € Q*, we have

Xw(X) - Xw(y) = XT:(UJ)(X - t) - XTt(w)(y - t)

> (Xw(x) = xw(¥)) - w({x, y)) € L2



The Corrector

If such x exists, then X, 4+ x(X,) converges to Brownian Motion,
and from this we infer that if x(x) = o(x) then X, converges to
Brownian Motion, as desired.



Question C The Corrector is Small

The Corrector

If such x exists, then X, 4+ x(X,) converges to Brownian Motion,
and from this we infer that if x(x) = o(x) then X, converges to
Brownian Motion, as desired.

Natural candidate: Let {X,SX)} be the random walk starting at x.

' i £ (x8)]

exists then it satisfies harmonicity and shift-invariance, and we can
take x(x) to be its difference from x.
Problem: We don't know how to prove convergence.



The Corrector

However, following the arguments of Sidoravicius and Sznitman
(2003) and Kipnis and Varadhan (1986) one can prove that

o(x) = lim |E (X)) — £ (x?)]

n—oo

exists in L2 and has gradients in L?>. Now we can take

V(x) = 6(x) - x
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The Corrector

However, following the arguments of Sidoravicius and Sznitman
(2003) and Kipnis and Varadhan (1986) one can prove that

o(x) = lim |E (X)) — £ (x?)]

n—oo
exists in L2 and has gradients in L?>. Now we can take

V(x) = 6(x) - x

Therefore the only missing ingredient is that x(x) is small with
respect to x.
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The Model

The Corrector is Small

The corrector is small

The Theorem will be proved once we prove the following
propositions:
Proposition 1: In Z2, w-almost surely,

1
im — max x)|| = 0.
A [[Xw ()l

Proposition 2: For d > 2, In 74, for every e,

lim %#{x :X(x) >en} =0

n—oo

w-almost surely.



The Corrector is Small

Why are these propositions sufficient?

Proposition 1 is sufficient because with very high probability

max IO = o (e 1%+ 1)1 ) = o(VT))

1<n<T

Proposition 2 is sufficient because using Barlow's bound, with very
high probability for most times we are in a vertex x such that

Gl < [Ix]]-
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The induced shift

The space Q* is not invariant with respect to the shift 7e.

Let
k(w) =min{k > 0 : The(w) € Q*},

and define
Oe(w) = Te(w).

Then 0. : 2 — Q* is measure preserving and ergodic.
p
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The Corrector is Small

The corrector is small along coordinate lines

Let ko = 0, k1, ko, ... be the points along the x-axis that are in Co.
Let F(w) = Xw(k1) — xw(0).
Then E(F) =0,
and we get
F(oi(w)) — 0 as.
j=1

By the pointwise ergodic theorem.
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The Corrector is Small

Nice lines

Fix € > 0, and for some large K we say that a line {n} x Z is nice
if:

1. (n0) € Cx
2. for every j s.t. (n,j) € Cxo,

Ix(n,J) = x(n,0)] < K+ |jle

If K is large enough, then a line is nice with positive probability.
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Proof of two-dimensional case

By the ergodic theorem, there are many nice lines. In particular,
the spacing between nice lines is sublinear.




The Corrector is Small

The corrector along nice lines

Along the nice lines, the value of the corrector is bounded by
2K + 2en.




The Corrector is Small

The corrector between nice lines

The function x + x(x) is harmonic. Therefore, by the maximum
principle, x is bounded by 2K 4 2en + maximum spacing .
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The Corrector is Small

The corrector between nice lines

Since the spacing is sublinear, for n large enough we get that

max Ix(x)| < 2K + 3en,

Xx€E[—n,n]

as desired.



The Corrector is Small

Proof of higher dimensional case
We want to show that for most pairs x and y,

IX(x) = x(¥)| < en

xy




Proof of higher dimensional case

We do so using induction:

Let d be the dimension of the space, and let ey, ..., eq4 be the
standard basis.

We use induction on k to show that the proposition holds for
span(er,...,ex) for k=1,2,...,d.

The base case k = 1 follows from the ergodic theorem.



The Corrector is Small

Proof of higher dimensional case
Induction Step

We stack a fixed number L of hyperplanes of dimension k — 1. The
statement holds for all of them. The vast majority of lines parallel
to ey are nice, and intersect Co, on one of the L hyperplanes.
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BT . B S A .k O
Open problems

1. What is the true growth rate of the corrector?

2. Are there harmonic functions of sub-linear growth on a
percolation cluster?



Playing with the corrector

p=10.95

Percolation cluster and its deformation
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Playing with the corrector

Percolation cluster and its deformation: p = 0.85
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The Model Question proof The Corrector is Small

Playing with the corrector

Percolation cluster and its deformation: p = 0.75
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The Model

Playing with the corrector

Percolation cluster and its deformation: p = 0.65
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The Model

Playing with the corrector

Percolation cluster and its deformation: p = 0.55




THE END
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