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The Model

Percolation on Z2: Choose 0 < p < 1, and declare

each edge of Z2 open with probability p and closed with

probability 1 − p. We do it so that different edges are

independent of each other.

If p > 1
2

then, a.s., there exists a unique infinite open

cluster. We only focus on this phase.
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Random walk biased to the right: Choose some

β > 1. With probability proportional to β, the walker

tries to walk to the right, and with probability propor-

tional to 1, it tries to go to any other direction.

1

1
1 β

We condition on the event that the origin is in the infi-

nite cluster, and start the walk at the origin
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Previous results on unbiased walk on percola-

tion clusters (partial list):

Transience vs. Recurrence:

Grimmet, Kesten, Zhang (1993)

Benjamini, Pemantle, Peres (1998)

Haggstrom, Mossel (1998)

Angel, Benjamini, Berger, Peres (2002)

Return Probabilities:

Heicklen, Hoffman (1999)

Mathieu, Remy (2003)

Barlow (2003)

Mixing times:

Benjamini, Mossel (2002)

Scaling limit:

Sidoravicius, Sznitman (2003)
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Results:

Theorem: Fix 1
2

< p < 1. Let Zn = (Xn, Yn) be the

location at time n. Then,

1. For every β > 1, a.s. the walk is transient to the

right, i.e.

lim
n→∞

Xn = ∞

and the speed

S(β) = (Sx(β), Sy(β)) = lim
n→∞

Zn

n

exists and is a constant a.s.

2. If β is large then S(β) = 0.

3. If β is small then Sx(β) > 0.

Conjecture: There exists 1 < βc < ∞ s.t. if β > βc

then 2 holds and if β < βc then 3 holds.

5



Remark: In an independent and simultaneous

work Sznitman (to appear, CMP) obtained sim-

ilar results for all dimensions.
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The path of the walker:

On a different scale
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Proof of zero speed for large β

pipe

If the walker entered a pipe of length n, then

the expected exit time from the pipe is βn.

The frequency of the appearance of pipes of

length n is (1− p)2n+1pn. Therefore, for every

n the speed is bounded from above by

(1− p)−1
(
βp(1− p)2

)n (1)

and (1) approaches zero for β > p−1(1− p)−2.
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Plan of the proof of positive speed for small β:

1. For p close enough to 1:

(a) Definition of good points, bad points

and traps.

(b) Time spent in traps.

(c) Transience to the right.

(d) A priori bound for progress.

(e) Definition of regenerations and time be-

tween regenerations.

2. For all 1
2 < p < 1: Renormalization.
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Good point: We say that z = (x, y) is a good

point if there exists an open path

z = z0, z1, z2, z3, . . .

s.t. z2k+1 − z2k = (1,0) and z2k − z2k−1 =

(0,±1).

Bad points: We say that z is a bad point if

it is in the infinite cluster but it is not a good

point.

Traps: A trap is a connected component of

bad points.
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Lemma: Let T be the trap containing 0. If

p is close enough to 1, then the length

max {x1 − x2 : (x1, y1), (x2, y2) ∈ T}
and the width

max {y1 − y2 : (x1, y1), (x2, y2) ∈ T}
of T both have exponential tails.

In particular, a point has a positive probability

of being good.
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Time spent in traps:

Lemma: Let T be a trap whose length and

width are bounded by k. Then the expected

time spent in T is no more than β2k.

Number of visits to a point:

Conditioned on having visited a point z, the

number of visits to z is distributed geometri-

cally.

Lemma: Let T be the trap including z, and

assume that its length and width are bounded

by k. Then, the expected number of visits to

z is bounded by Cβ2k.
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Transience to the right:

Lemma: Assume z = (x, y) is a good point,

and let l be a positive number. Starting from

z, with probability 1− e−Ω(l) the walker will hit

{x + l} × Z before it hits {x− 3l} × Z.

Iterating this lemma, with the value of l grow-

ing, we get transience to the right.
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An a priori bound for the progress to the

right:

Lemma: If β is close enough to 1, then for

n large enough, with probability bigger than

1− n−2, we have

Xn > n
1
10.

Why?

Consider the square Rn = [−n, n]2. Up to time

n the walker does not leave Rn.

With Probability 1 − n−3, The biggest trap in

Rn is no bigger than u logn.

Therefore, no point is visited more than β6u logn

times. But,

β6u logn < n
1
20

for β small enough.

Therefore, we visit at least n
19
20 points.

Now, the lemma follows from Varopoulos–Carne’s

bound.
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Regenerations

We say that a regeneration occurred at time

n if Xk < Xn for all k < n and Xj > Xn for all

j > n.

On a different scale
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Lemma: Almost surely, infinitely many re-

generations occur.

Proof: Because of transience to the right and

the Markov property of the walk given the con-

figuration.

Lemma: Let Ti be the time of the i-th regen-

eration. The segments of the walk {Zt : Ti ≤
t < Ti+1} form an i.i.d. process.
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Finishing the proof

All we have to show is that

E(Ti+1 − Ti) < ∞. (2)

We show E(T1) < ∞.

(2) follows from a similar argument.

We want to show that
∞∑

n=1

P(T1 > n) < ∞.

We estimate P(T1 > n) for big n.
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Estimating P(T1 > n):

P(T1 > n) is the probability that no regenera-
tion happened until time n.

Let τk be the first time t such that

Xt >= k(logn)2.

With probability bigger than 1−n−2, for every
k < n1/20, τk < n.

Lemma: There exists a constant ρ s.t. for
every n large enough and every k < n1/20, there
exists an event E of probability bigger than
1−n−2 s.t. conditioned on E and on the event
that there was no regeneration at τj, j < k, the
probability of regeneration at τk is at least ρ.

By this lemma,

P(T1 > n) < 2n−2 + (1− ρ)n1/20
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