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1. Introduction

In 1999 Yosi Avron and Alexander Elgart proved an adiabtic theorem
without gap condition:

Traditionally, the adiabatic theorem is stated for Hamilto-
nians that have an eigenvalue which is separated by a gap
from the rest of the spectrum. Folk wisdom is that some
form of a gap condition is sine qua non for an adiabatic
theorem to hold.

[Avron, Elgart; CMP 1999]

They went on to show that wise folks are not always right.
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1. Introduction: recap on adiabatic theorems

Notation and setup

Let H : R → L(H), t 7→ H(t), be a time-dependent family of
self-adjoint Hamiltonians and Uε(t, t0) the solution of

iε d
dt Uε(t, t0) = H(t)Uε(t, t0) Uε(t0, t0) = Id .

Then the asymptotic limit ε→ 0 is the adiabatic limit.
Let σ∗(t) ⊂ σ(H(t)) be a subset of the spectrum and P(t) the
corresponding spectral projection.

Adiabatic Theorem Kato (1950)

The gap condition and H ∈ C 2

imply for any t0,T ∈ R that

sup
t∈[t0,T ]

∥∥∥P⊥(t) Uε(t, t0) P(t0)
∥∥∥ = O(ε)
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1. Introduction: recap on adiabatic theorems

Higher order adiabatic invariants: Lenard (1959), Garrido (1964)

Improved Adiabatic Theorem 1
Version of Avron, Seiler, Yaffe (1987)

Assume in addition to the gap condition
and H ∈ C 2+N that supp‖H ′‖ ⊂ [t1, t2],
then∥∥∥P⊥(t) Uε(t, t0) P(t0)

∥∥∥ = O(εN+1)

for any t0 ≤ t1 < t2 ≤ t.

Non-adiabatic transitions Error of the adiabatic approximation
�

O(εN+1) O(ε)
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1. Introduction: recap on adiabatic theorems
Improved Adiabatic Theorem 2
Version of Nenciu (1981,1993), Berry (1990)

Assume the gap condition and H ∈ CN+2, then there exist super-
adiabatic subspaces Ran Pε

N(t) with

‖Pε
N(t)− P(t) ‖ = O(ε) for all t

and
Pε
N(t) = P(t) if dj

dt j
H(t) = 0 for j = 1, . . . ,N .

such that for t0,T ∈ R

sup
t∈[t0,T ]

∥∥∥Pε⊥
N (t) Uε(t, t0) Pε

N(t0)
∥∥∥ = O(εN+1) .

Exponential bounds
Joye, Pfister (1991), Nenciu (1993), Sjöstrand (1993), Jung (2000)

For t 7→ H(t) analytic there are Pε(t) such that one replace O(εN+1)
by O(e−

γ
ε ) in the previous result.
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1. Introduction: recap on adiabatic theorems

More than bounds: transition probabilities
Zener (1932); . . . ; Joye, Kunz, Pfister (1991), Joye (1993)

Let t 7→ H(t) be analytic and matrix-valued, let σ∗(t) = {E (t)} be
a simple eigenvalue and let limt→±∞ ‖H ′(t)‖ = 0. Then

lim
t→∞

∥∥∥P⊥(t) Uε(t,−t)P(−t)
∥∥∥2

= 4 sin2
(πγ

2

)
e−

2τc
ε (1 + o(1)) .

More than bounds: adiabatic transition histories
Berry (1990); Hagedorn, Joye (2004); Betz, T. (2005)

Let t 7→ H(t) be analytic and 2 × 2-real-matrix-valued, let σ∗(t) =
{E (t)} be a simple eigenvalue and let limt→±∞ ‖H ′(t)‖ = 0. Then

lim
t0→−∞

∥∥∥Pε⊥(t) Uε(t, t0)Pε(t0)
∥∥∥2

= 4 sin2
(πγ

2

)
e−

2τc
ε

(
erf
(

t√
2ετc

)
− 1
)2

where Pε(t) are the optimal super-adiabatic projections.
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1. Introduction: recap on adiabatic theorems

Plots of t 7→ ‖P⊥(t)Uε(t, t0)P(t0)‖ for t0 � 0
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1. Introduction: recap on adiabatic theorems

Plots of t 7→ ‖Pε⊥
N (t)Uε(t, t0)Pε

N(t0)‖ for t0 � 0 and ε = 1
7 .
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1. Introduction: recap on adiabatic theorems

This suggests to define

Transitions with respect to the optimal
Non-adiabatic transitions :=

super-adiabatic subspaces



1. Introduction: recap on adiabatic theorems

Adiabatic theorem without gap condition
Avron, Elgart (1999), Bornemann (1998)

Let σ∗(t) = {E (t)} be an eigenvalue and let t 7→ P(t) be finite rank
and C 2. Then for t0,T ∈ R

lim
ε→0

sup
t∈[t0,T ]

∥∥∥P⊥(t) Uε(t, t0) P(t0)
∥∥∥ = 0 .

Applications:
I Dicke model (Avron, Elgart 1998)
I Nelson model (T. 2001)
I Isothermal processes (Abou-Salem, Fröhlich 2005)
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1. Introduction: recap on adiabatic theorems

Adiabatic theorems for resonances
Abou-Salem, Fröhlich (2007); Faraj, Mantile, Nier (2011);

T., Wachsmuth (2012)

Adiabatic theorems can still hold if the eigenvalue E (t) is replaced
by a resonance.

Adiabatic theorems for non-self-adjoint generators
Nenciu, Rasche (1992); Abou-Salem (2005); Joye (2007);

Avron, Fraas, Graf, Grech (2012), Schmid (2012)

Adiabatic theorems can still hold e.g. for generators of contraction
semigroups.
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1. Introduction

What about non-adiabatic transitions in the gapless case?

I Physically they correspond e.g. to radiation or transfer of heat.

E.g.: Polkovnikov, Gritsev. Breakdown of the adiabatic limit in
low-dimensional gapless systems, Nature Physics (2008)

I We show that in several relevant examples it is still true that

non-adiabatic transitions � transitions between adiabatic
subspaces

I Instead it turns out that

non-adiabatic transitions = transitions between super-adiabatic
subspaces

I The super-adiabatic subspaces have a clear physical meaning.
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2. Massless scalar bosons (jointly with J. von Keler (2012))

Consider a field of massless scalar bosons with point sources at the
positions xj(t), j = 1, . . . ,N, and an UV-cutoff in the coupling,

H(t) = dΓ(|k |) +
N∑
j=1

ej Φ

(
ϕ̂(k)√
|k|

eik·xj (t)

)
.

If
∑N

j=1 ej = 0, then H(t) has a ground state eigenvalue Einf(t) with
spectral projection P(t).

It is not difficult to prove an adiabatic theorem with∥∥∥P⊥(t) Uε(t, t0) P(t0)
∥∥∥ = O(ε ln(ε−1)) .

However, even in the absence of a spectral gap one can use the ma-
chinery of adiabatic perturbation theory to construct super-adiabatic
projections Pε(t) that satisfy∥∥∥Pε⊥(t) Uε(t, t0) Pε(t0)

∥∥∥ = O(ε) .
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2. Massless scalar bosons (jointly with J. von Keler (2012))

Physics check: Radiated energy

Let the initial state ψ(t0) ∈ RanPε(t0) be the dressed vaccuum.
Then the energy of the bosons created relative to the dressed
vaccuum, i.e. of ψrad(t) := Pε⊥(t)ψ(t), is

Erad(t) =
ε3

12π

∫ t

t0

|d̈(s)|2 ds + o(ε3) .

Here d̈(t) is the second derivative of the dipole moment
d(t) :=

∑N
j=1 ej ẍj(t).

Note that defining ψrad(t) := P⊥(t)ψ(t) would give a radiated
energy of order ε2 depending on the instantaneous velocities.
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3. Heavy particles coupled to massless scalar bosons

If we replace the time-dependent Hamiltonian for the field

H(t) = dΓ(|k |) +
N∑
j=1

ej Φ

(
ϕ̂(k)√
|k|

eik·xj (t)

)
by a time-independent Hamitlonian for heavy particles interacting
with the field

Hε = −
N∑
j=1

ε2

2mj
∆xj + dΓ(|k |) +

N∑
j=1

ej Φ

(
ϕ̂(k)√
|k|

eik·xj
)
,

one can still apply adiabatic methods to understand the asymptotics
of the unitary group

Uε(t) := e−iHε t
ε

for ε→ 0.



3. Heavy particles coupled to massless scalar bosons
(jointly with L. Tenuta, CMP 2008)

Theorem: almost invariant subspaces
For any E ∈ R there are orthogonal projections Pε projecting on the
subspace of dressed electrons such that∥∥∥Pε⊥ Uε(t) Pε χ(Hε ≤ E )

∥∥∥ = O (ε |t|) .

Theorem: effective dynamics
The evolution of the reduced density matrix for states starting in the
range of Pε is unitarily equivalent to the evolution generated by

Hε
eff = −

N∑
j=1

ε2

2mεj
∆xj + Einf(x) + ε2HDarwin

up to O(ε2) when tested against semiclassical observables.
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4. Spontaneous emission of photons in dynamical molecules
(jointly with J. Wachsmuth, CMP 2012)

Units: Bohr raduis = 1
2mα and Rydberg = 2mα2

Hε,α = ε2
Nn∑
j=1

(
pj ,x − 2

√
πα

3
2 Zj Aλ(αxj)

)2
nuclei

+
Ne∑
j=1

(
pj ,y − 2

√
πα

3
2 Aλ(αyj)

)2
electrons

+ Hf photons

+ Ve(y) + Ven(x , y) + Vn(x) electrostatic potentials

⇒ two small parameters, ε :=
√

m
M and α ≈ 1

137 .



4. Spontaneous emission of photons in dynamical molecules
(jointly with J. Wachsmuth, CMP 2012)

In contrast to the standard Born-Oppenheimer problem, the excited
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4. Spontaneous emission of photons in dynamical molecules
(jointly with J. Wachsmuth, CMP 2012)

Theorem: spontaneous emission probability

Let Ej > Ei and Ψ = ψ ⊗ Ω ∈ (Pε
j ⊗ PΩ)χE (Hε,α)H. Then∥∥∥Pε

i e−i t
ε
Hε,α Ψ

∥∥∥2
=

4α3

3

1

ε

∫ t

0
ds
〈
ψ(s), |Dij |2∆3

E ψ(s)
〉
Hnuc

+ o(α3/ε)

uniformly on bounded intervals in time.

Here ψ(s) := e−i s
ε
Hj,BO ψ is the nuclear wave function according to

the standard BO-approximation,

Dij(x) =
∑Ne

`=1〈ϕi (x), y`ϕj(x)〉Hel

is the dipole matrix element and ∆E (x) = Ej(x) − Ei (x) the energy
gap.

For the proof one has to use super-adiabatic projections Pε,α
j corre-

sponding to dressed electrons.
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5. Conclusion

I Non-adiabatic transitions for gapless systems have physical
significance. Computing them requires careful distinction
between the error of the adiabatic approximation and true
non-adiabatic transitions. A useful tool are super-adiabatic
projections.

I The work of Yosi Avron was the basis and inspiration for much
of my own work in adiabatic theory.

Many Thanks and Happy Birthday!
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