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Quantum statistics

The standard formulation is to take

H, =H K- - H, n-particle Hilbert space,

and restrict to

o|U) = (sgno)€|¥),o € 5,

0, Bose statistics
€ —
1 Fermi statistics
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The standard formulation is to take

H, =H K- - H, n-particle Hilbert space,

and restrict to

o|U) = (sgno)€|¥),o € 5,

0, Bose statistics
€ —
1 Fermi statistics

Are there other possibilities?
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Quantum mechanics on non-simply con-
nected spaces

M, manifold, with fundamental group 71 (M).

Standard quantization prescriptions depend on the choice of
an irreducible rep’'n of w1 (M).
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Quantum mechanics on non-simply con-
nected spaces

M, manifold, with fundamental group 71 (M).

Standard quantization prescriptions depend on the choice of
an irreducible rep’'n of w1 (M).

If the rep’n is one-dimensional, it corresponds to a
representation of Hy(M).

Hl(M) ~ 7P D (Z/dl @'-'@Z/dq),

where d; divides d;41. Z™ is free component, and
Z/dy @ --- @B 7Z/d, is torsion component.

Repn’s of H1 (M) are classified by p free phase factors
2™ and ¢ discrete phase factors e2™*ek/dk
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Path integrals

M = R? — {0}, punctured plane
m(M)=H{(M) =17
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Path integrals

M = R? — {0}, punctured plane
m(M)=H{(M) =17

U(I’, r, t) _ / t eiSp—l—i¢[p]
p:r—>r

eisp+i¢[p]

%
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Path integrals

M = R? — {0}, punctured plane
m(M)=H{(M) =17

Ue,r,t) = [, eSrion
p:r—>r

eisp+i¢[p]

%

q etSqtidld]

Unitarity and composition properties of the propagator imply
that

¢|p] = a x winding number(p)
4122




Schrodinger formulation

M = R? — {0}, punctured plane

mi(M) = Hi(M) =7
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Schrodinger formulation

M = R? — {0}, punctured plane

mi(M) = Hi(M) =7

H = L*(R? — {0}), Hiloert space
1 2
—V? = (—,V — A(r)) , vector potential
i

VANA =0, %A-dr:a

A = aVi = (r) ~ r™®1=9) change of domain
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Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977)

X, one-particle configuration space

Cn(X) = (X" = An)/ S,

configuration space of n indistinguishable particles, with
coincident configurations A,, removed
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Quantum statistics

Laidlaw and DeWitt (1971), Leinaas and Myrheim (1977)

X, one-particle configuration space

Cn(X) = (X" = An)/ S,

configuration space of n indistinguishable particles, with
coincident configurations A,, removed

71 (Cr(X), %), fundamental group

71 (Cr (X)) projects into .Sy, but they are not necessarily
the same. Eg,

e X =R: 7T1:1

o X = R3Z 7T1(On) — Sn, H1 = Z/Q
Bose/Fermi alternative

e X =R?% m(C,) = braid group, H,(C,) = Z
(Cy ~R?* — {0})
Anyon statistics, €'“

What about many-particle graphs?
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Combinatorial and metric graphs

(&, combinatorial graph
V ={1,..., N}, vertices

E = {{j,k}}, edges (undi- )

rected)
4

Take G to be simple (no loops or parallel edges) and
connected.

A, adjacency matrix

1, e(j,k) € E,
A = _
0, otherwise,

symmetric off-diagonal, (A?)x # 0 for p large

d;, degree of vertex j
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Combinatorial and metric graphs

I', metric graph

V ={1,..., N}, vertices

E = {{j,k}}, edges (undi-
rected)

Take GG to be simple (no loops or parallel edges) and
connected.

A, adjacency matrix

{1, e(j, k) € E,
Ajp = _
0, otherwise,

symmetric off-diagonal, (A?P) ;i # 0 for p large

d;, degree of vertex j
Associate an interval [0, L] to each edge {7, k}.

|dentify endpoints with coincident vertices.

I‘::[Ji]é/ ™~

1-dimensional cell complex
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Quantum metric graph

U = {1 (xe)}, wavefunction

2
H=%. (_idge _ Ae(xe)) + e (), Hamiltonian

Boundary conditions on ),’s required to make H self-adjoint

Eg, Neumann conditions,

1. continuous at vertices,

Z L (7) = 0, sum of outgoing derivatives vanishes
elj€e

See, eg, Berkolaiko and Kuchment 2013
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n-particle quantum metric graphs

I', metric graph
FQ = CQ(P) = {F x ' — AQ}/SQZ

12

¢ Y23

3

U = {9es(xe,yr) }, wavefunctions
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I', metric graph
FQ = CQ(P) = {F x ' — AQ}/SQZ

12

¢ Y23

3

U = {9es(xe,yr) }, wavefunctions

To start, take

0> 0>

Require boundary conditions which render H self-adjoint.
Then try to incorporate rep’'n of 7 . ..

Balachandran and Ercolessi (1991), Aneziris (1994), Bolte
and Kerner (2011)
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n-particle quantum metric graphs

I', metric graph
FQ = CQ(P) = {F x ' — AQ}/SQZ

12

¢ Y23

3

U = {9es(xe,yr) }, wavefunctions

To start, take

0> 0>

Require boundary conditions which render H self-adjoint.
Then try to incorporate rep’'n of 7 . ..

Balachandran and Ercolessi (1991), Aneziris (1994), Bolte
and Kerner (2011)

The topology is more easily incorporated in the combinatorial

setting. . .
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Quantum combinatorial graphs

(&, simple connected combi-
natorial graph

V ={1,..., N}, vertices 0o 1

E ={(j,k)}, edges 3
A, adjacency matrix

{1, (7,k) € E,
A = |
0, otherwise.
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Quantum combinatorial graphs

(&, simple connected combi-
natorial graph

V ={1,..., N}, vertices 0o 1

E ={(j,k)}, edges 3
A, adjacency matrix

{1, (7,k) € E,
A = |
0, otherwise.

Quantum model

) = Zj V;ilj) € C¥, N-dimensional Hilbert space
7)), state for particle at vertex j

H, N x N hermitian matrix, Hamiltonian
Eg, KE = A— D, Dj, = vjd;, discrete Laplacian
Hj;r =Ounless j = kor A =1

Short-time dynamics involves transitions to adjacent vertices.

Hamiltonians can be parameterised by 1-dimensional repn’s

of the first homology group. . .
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w1 and H; for combinatorial graph

For a combinatorial graph G . . .

(Jo, - - -, Jp), path, sequence of adjacent vertices

¢ = (jo,.--,Jp = Jo), cycle on G, starts and ends at jg
C(G, x), cycles which start and end at

Regard cycles which differ by retracings as equivalent.

WT(G) — C(G7 *)/ ™~
fundamental group of G.

Unchanged by adding/removing vertices of degree 2.
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w1 and H; for combinatorial graph

For a combinatorial graph G . . .

(Jo, - - -, Jp), path, sequence of adjacent vertices

¢ = (jo,.--,Jp = Jo), cycle on G, starts and ends at jg
C(G, %), cycles which start and end at

Regard cycles which differ by retracings as equivalent.

71_i:(G) — C(G7 *)/ ™~
fundamental group of G.

Unchanged by adding/removing vertices of degree 2.

12

mi(G) = m(T)

7$(G) is the free group on 3 elements, where

§=|E| - V] +1

H{(G) = Z°
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Gauge potentials

H — H() \kx/

0.
ij — e’ Jkij

(), real antisymmetric, is gauge potential

ijZOifAijO
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Gauge potentials

H — H() \kx/

0.
ij — e’ Jkij

(), real antisymmetric, is gauge potential
ij = OifAjk; =0
c=(j,k,1l,...,n,j),cycle
Q(C) = ij + Qg + - - an, flux through c
Eg, gauge transformations.
Y — iy,
ij — ei(ej_gk)ij

Q) determined (up to gauge) by ¢ — ().

() — H(€2), Hamiltonians parameterised by rep’n of
Hi(G).

12/22




n~particle combinatorial graph

Gn=0Cnh(G) = {V"—=A,}/Sx

Regard as combinatorial graph. . .
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n-particle combinatorial graph

Gn=0Cnh(G) = {V"—=A,}/Sx

Regard as combinatorial graph. . .

Edges on (5, correspond to moving one particle along an
edge of GG while keeping the others fixed.

Examples (n = 2)

K3

(1,3)

1 (1,2)

3 (2,3)

A c5 cycle — two particles exchanged around a cycle.
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Examples (n = 2)
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2 (0,2) (1,2)

0 (0,1) (2,3)

3 (0,3) (1,3)
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n-particle combinatorial graph

Gn=0Cnh(G) = {V"—=A,}/Sx

Regard as combinatorial graph. . .

Edges on (5, correspond to moving one particle along an
edge of GG while keeping the others fixed.

Examples (n = 2)

Y graph

2 (0,2) (1,2)

0 (0,1) (2,3)

3 (0,3) (1,3)

A Y -cycle — two particles exchanged on a Y junction.
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n-particle combinatorial graph

Gn=0Cnh(G) = {V"—=A,}/Sx

Regard as combinatorial graph. . .

Edges on (5, correspond to moving one particle along an
edge of GG while keeping the others fixed.

Examples (n = 2)
Lasso

2 (0,2) (1,2)

0 (0,1) (2,3)

3 (0,3) 1,3)
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n-particle combinatorial graph

Gn=0Cnh(G) = {V"—=A,}/Sx

Regard as combinatorial graph. . .

Edges on (5, correspond to moving one particle along an
edge of GG while keeping the others fixed.

Examples (n = 2)
Lasso

2 (0,2) (1,2)

0 (0,1) (2,3)

3 (0,3) 1,3)

An A B-cycle — one particle goes around a cycle
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n-particle combinatorial graph

Gn=0Cnh(G) = {V"—=A,}/Sx

Regard as combinatorial graph. . .

Edges on (5, correspond to moving one particle along an
edge of GG while keeping the others fixed.

Examples (n = 2)
Lasso

2 (0,2) (1,2)

0 (0,1) (2,3)

3 (0,3) 1,3)

This is an example of a contractible cycle.
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Contractible cycles

We will contractible cycles on G, as trivial.

. » Co(T) (part of)
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Contractible cycles

We will contractible cycles on G, as trivial.

Contractible cycles are generated by pairs of disjoint edges
of GG.

7§ (Gy,), combinatorial fundamental group of Gy,

T¢(Gy), subgroup generated by contractible cycles

If G is sufficiently subdivided, then

71 (Gn)/T(Gr) = m1(Th)

Abrams (2000)

Sufficiently subdivided: Every path in G between vertices of
degree not equal to two passes through at least n edges,
and every cycle in G contains at least n + 1 edges (can
always be achieved by adding vertices to subdivide edges)
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Topological gauge potentials

Abelian statistics on (&, determined by a gauge potential
(Qn)JK, where

2, (c) =0 mod 27 for every contractible cycle

We'll call these topological gauge potentials.

Correspond to a 1d rep’n of 71 (I',),

c — exp(i€(c))

15/22




Topological gauge potentials

Abelian statistics on (&, determined by a gauge potential
(Qn)JK, where

2, (c) =0 mod 27 for every contractible cycle

We'll call these topological gauge potentials.

Correspond to a 1d rep’n of 71 (I',),
c — exp(i€(c))

Given n-particle Hamiltonian H,,, e.g. sum of 1-particle
discrete Laplacians, abelian statistics is incorporated via

H,(Q) 7 = exp(i(Qn) sk ) (Hp) sk

Problem: Calculate H1(I';,) in terms of graph invariants. . .

Ko and Park 2012 (discrete Morse theory)
Harrison, Keating, JR and Sawicki 2013
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Key relation

AB

(@,1)

(0.2)

(1,2)

(0,3)

(1,3)

(2,3)
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Key relation

AB
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QY) = Q(AB) + Q(cs)
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Key relation

AB

(@,1)

(2,3)

QY) = Q(AB) + Q(cs)

Y’s, AB’s, and c3’s span H1(Gy,) . ..
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Connectivity

A graph is k-connected if it cannot be disconnected by
removing k — 1 vertices.
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Connectivity

A graph is k-connected if it cannot be disconnected by
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3-connected graphs

HI(Gn) — ZB S {

7./2,

if GG is planar,

if G is nonplanar.

(follows from key relation and structure theorems for

3-connected graphs)
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3-connected graphs

7, if G is planar,

Hi(Gr) =7ZF &
1(Gn) {Z/Q, if G is nonplanar.

3-connected planar graphs: 5 AB phases and 1 anyon
phase (like R?).

K4: 3 AB phases, 1 anyon phase
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3-connected graphs

7, if G is planar,

Hi(Gr) =7ZF &
1(Gn) {Z/Q, if G is nonplanar.

3-connected planar graphs: 5 AB phases and 1 anyon
phase (like R?).

K 4: 3 AB phases, 1 anyon phase

3-connected nonplanar graphs: 5 AB phases and 1 sign (like
R3+1).

K5: 6 AB phases, 1 sign
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3-connected graphs

7, if G is planar,

Hi(Gr) =7ZF &
1(Gn) {Z/Q, if G is nonplanar.

AB, AB,

Q(AB;1) # Q(ABs), in general
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3-connected graphs

7, if G is planar,
Z/2, if G is nonplanar.

A puzzle, perhaps. . .
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2-connected graphs

GG may be decomposed into 3-connected components and
cycles. ..
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2-connected graphs

GG may be decomposed into 3-connected components and
cycles. ..

u(xi, y; ), # of connected components at two-vertex cut
Ly Yi

No =) s(l@iy yi) — 1) (s, i) — 2)

N3, # of planar 3-connected components

3, # of nonplanar 3-connected components
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2-connected graphs

GG may be decomposed into 3-connected components and
cycles. ..

u(x;, y;), # of connected components at two-vertex cut
Liy Yi

Ny =) s (@i, yi) — 1) (s, yi) — 2)

N3, # of planar 3-connected components

é, # of nonplanar 3-connected components

Hi(Gp) = 7B+ Na+N3 g (Z/Q)Né

Chain of 3-connected components

I
ws]
M
(ws]
M

|
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2-connected graphs

GG may be decomposed into 3-connected components and
cycles. ..

u(xi, y; ), # of connected components at two-vertex cut
Ly Yi

No =) s(l@iy yi) — 1) (s, i) — 2)

N3, # of planar 3-connected components

3, # of nonplanar 3-connected components

Hi(Gp) = 7B+ Na+N3 g (Z/Q)Né

Building-up principle: H1(G,,) is independent of n for
n > 2. Prescription for n-particle gauge potential in terms of
2-particle gauge potential.
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1-connected graphs

(GG may be decomposed into 2-connected components. . .
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1-connected graphs

(GG may be decomposed into 2-connected components. . .

o OO
C O
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1-connected graphs

(GG may be decomposed into 2-connected components. . .

u, # of connected components at one-vertex cut x;

v, # of edges at one-vertex cut x;

Ni(zi) = (A7) (v =2) = ("457) — (v —p = 1)

N1 =) Ni(zi)
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v, # of edges at one-vertex cut x;

Ni(zi) = (A7) (v =2) = ("457) — (v —p = 1)

N1 =) Ni(zi)

H1(G,,) = ZPHNi+Na+Ns g (Z/Q)Né

Depends on number of particles.
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1-connected graphs

(GG may be decomposed into 2-connected components. . .

u, # of connected components at one-vertex cut x;

v, # of edges at one-vertex cut x;

Ni(zi) = (A7) (v =2) = ("457) — (v —p = 1)

N1 =) Ni(zi)

H1(G,,) = ZPHNi+Na+Ns g (Z/Q)Né

Depends on number of particles.

n-particle Y graph: (%) phases

20 /22




How phases might arise

H = C? (fast) x CP (slow)

2o Y s

HJ’I“,KS — h’rs(J)(SJK + EHJK(S’I“S

Adiabatic approximation introduces gauge potential in slow
Hamiltonian . . .

Qyx ~ Im (v(J)[v(K))

Can regard J, r as multiparticle indices. {2 jx does not
automatically satisfy the topological condition. 21 /92




An engineer’s questions

e physical effects
e physical models

Happy Birthday, Yosi!

22 /22
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