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Background 1

Statistics of Current Fluctuations — Fluctuation Relations (FR)

Evans, Cohen, Morriss, PRL 71 (1993)
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FIG. 1. The probability distribution of segment averages,

(Pyy.i)x, of the xp element of the pressure tensor for 56 WCA
disks at Ho/N=1.56032, n=0.8, a shear rate y=0.5, and a
segment time 7 =0.1. For those states where (Py, ;). =Py, is
positive the entropy production is negative for a period of time
7, counter to the second law of thermodynamics.
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FIG. 2. The logarithmic probability ratio IN(Py.) and
(a),,pm as a function of the segment averaged shear stress
Prye =(Pxyi). for =0.16 and y=0.1. As can be seen the two
curves are essentially linear [11], with very nearly equal slopes.
The agreement between the two slopes becomes progressively
better as 7 increases. The straight line shows the results of a
weighted linear least-squares fit to the logarithmic probability

ratio data.
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Background 1

Statistics of Current Fluctuations — Fluctuation Relations (FR) )

Transient FR [Evans—Cohen—Morriss '93, Evans—Searles '94+]
Steady state FR [Gallavotti—-Cohen '95]

FR in stochastic dynamics [Kurchan '98, Lebowitz—Spohn '99]
FR for Gibbsian measures [Maes '99]
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Including extensions to quantum dynamical systems

@ More recent reviews: [Rondoni—Mejia-Monasterio '07, Jaksic—P—-Rey-Bellet '11]
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Transient FR [Evans—Cohen—Morriss '93, Evans—Searles '94+]
Steady state FR [Gallavotti—-Cohen '95]

FR in stochastic dynamics [Kurchan '98, Lebowitz—Spohn '99]
FR for Gibbsian measures [Maes '99]
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Including extensions to quantum dynamical systems
@ More recent reviews: [Rondoni—Mejia-Monasterio 07, Jaksic—P—Rey-Bellet '11]

©

FR are structural (model-independent) properties of dynamical systems
They are refinements of the 2" Law of Thermodynamics

They reduce to Fluctuation-Dissipation Relations (Green-Kubo formula,
Onsager reciprocity relations) near equilibrium [Gallavotti '96]

e o
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Background 2

Effective Quantum Dynamics of Open Systems (Completely Positive Maps) J

Small system S Large environment £
@ Hilbert space Hs(dim < oo) @ Hilbert space Hg
@ Hamiltonian Hg @ Hamiltonian Hg

@ Observables O = B(H.s) @ Observables A¢
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Background 2

Effective Quantum Dynamics of Open Systems (Completely Positive Maps) J

Small system S Large environment £
@ Hilbert space Hs(dim < oo) @ Hilbert space Hg
@ Hamiltonian Hg @ Hamiltonian Hg
@ Observables O = B(H.s) @ Observables A¢

Joint system S + R
o Hilbert space Hs ® He
@ CouplingV=3%,Q®Rac O® Ag
o Hamiltonian H = Hs + He + AV
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Background 2

Effective Quantum Dynamics of Open Systems (Completely Positive Maps) )

Small system S Large environment £
@ Hilbert space Hs(dim < oo) @ Hilbert space Hg
@ Hamiltonian Hg @ Hamiltonian Hg
@ Observables O = B(H.s) @ Observables A¢

Joint system S + R
o Hilbert space Hs ® He
@ CouplingV=3%,Q®Rac O® Ag
o Hamiltonian H = Hs + He + AV

TH(X) = trg, (1 ® pe)e™(X ® 1)e~ i) J

T:0s = OsisCPy Y Y Te(X Xi) Yi > 0, T(1)=1
ik
w(pT(X)) = tr (0 ® pe)e™(X @ 1))
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Background 3

Weak Coupling Limit — QDS - Lindbladians J

[Davies '74+]

{Tt}t>0 is not a semigroup, but [Hg, pg] = 0 and suitable decay of correlations in £ imply,
foranyr >0and X € O,

lim  sup |Ti(X) — e!EstXL) (x| = 0
A=0 32¢e00,7]

Ls =1i[Hs, -] and L (=Davies Generator) generate QDS (=CP; -semigroup).
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Background 3

Weak Coupling Limit — QDS - Lindbladians

[Davies '74+]

{Tt}t>0 is not a semigroup, but [Hg, pe] = 0 and suitable decay of correlations in £ imply,
forany 7 > 0and X € O,

lim  sup ||T(X) = fEsH0) (X)) = 0
A=0 2¢e(0,7]

Ls =i[Hs, -] and £ (=Davies Generator) generate QDS (=CP; -semigroup).

Important property: [Ls, L] =0 J

spec(A2L)

B -

spec(Ls)

spec(Ls + A’L)
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Background 3

Weak Coupling Limit — QDS - Lindbladians

[Davies '74+]

{Tt}t>0 is not a semigroup, but [Hg, pg] = 0 and suitable decay of correlations in £ imply,
forany 7 >0and X € O,

lim  sup |Ti(X) — elEstXL) (x| = 0
A=022¢¢(0,7]

Ls =1i[Hs, -] and £ (=Davies Generator) generate QDS (=CP; -semigroup).

Important property: [Ls,£] =0 J

Remarks.
o For small but finite values of A
o [Derezinski-Jaksic¢ '07] To leading order in X the resonances of the Liouvillian implementing the
dynamics of the joint system S + £ in the GNS representation are given by spec(Ls + A2L).

o [de Roeck '07] Systematic expansion of T; around its leading contribution e/(£5+3%2).

o [Derezinski—de Roeck '08] Extended weak coupling limit.
@ Scaling limits in extended systems = Boltzmann and diffusion equations

o [Erdés—Salmhofer—Yau '02+]
o [de Roeck—Frohlich—Pizzo "10+]
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Background 3

Weak Coupling Limit — QDS - Lindbladians J

[Davies '74+]

{Tt}t>0 is not a semigroup, but [Hg, pg] = 0 and suitable decay of correlations in £ imply,
forany 7 >0and X € O,

lim  sup |Ti(X) — elEstXL) (x| = 0
A=0 32¢e00,7]

Ls =i[Hs, -] and £ (=Davies Generator) generate QDS (=CP; -semigroup).

Important property: [Ls,£] =0 J

[Lindblad, Gorini-Kossakowski—Sudarshan '76]
Structure of QDS-generators (Lindbladians)

LX) = i[T, X] + &(X) — %{cb(]l),X}

T=T*c€Oand®: O — O aCP-map.

Remark. T and ¢ are uniquely determined if one imposes the conditions tr(T) = 0
and tr(®) = 0.
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Equilibrium Thermodynamics

Thermal Equilibrium & Detailed Balance

Let p be a faithful state on O (strictly positive density matrix)

Hilbert space structures on O & dualities

XIY) = u(X*Y) (X|F(Y) = (F*(X)]Y)
XIY)p = u(pX™Y) (X|F(Y))p = (FA(X)IY)p
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Equilibrium Thermodynamics

Thermal Equilibrium & Detailed Balance )

Let p be a faithful state on O (strictly positive density matrix)

Hilbert space structures on O & dualities

XIY) = u(X*Y) (X|F(Y) = (F*(X)]Y)
XIY)p = u(pX™Y) (X|F(Y))p = (FA(X)IY)p

[Kossakowski—Frigerio—Gorini—Verri '77]

Lindbladian £ =i[T, -]+ ¢ — %{cb(]l), -} € DB(p) if it satisfies detailed balance
w.rt. p:

L*(p) =0and ¢” = @
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Equilibrium Thermodynamics

Thermal Equilibrium & Detailed Balance J

Let p be a faithful state on O (strictly positive density matrix)

Hilbert space structures on O & dualities

XIY) = u(X*Y) (X|F(Y) = (F*(X)]Y)
XIY)p = u(pX™Y) (X|F(Y))p = (FA(X)IY)p

[Kossakowski—Frigerio—Gorini—Verri '77]

Lindbladian £ =i[T, -]+ ¢ — %{d>(]1), -} € DB(p) if it satisfies detailed balance
w.rt. p:

L*(p) =0and ¢” = @

L € DB(p) implies that p is a steady state of the QDS e!~

tr(pe!” (X)) = {ple£ (X)) = (=" (0)|X) = {pIX) = tr(pX)

forallt > 0and X € O.
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Equilibrium Thermodynamics

Example: The Davies Generator at Equilibrium )

If pe is a thermal equilibrium state at inverse temperature 8 = (ks T) ' then the Davies
generator

L(X)=i[T, X] + ®(X) — %{cb(]l),X}

’ e—BHs
DB | ——————
€ tr(e—AHs)

satisfies
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Equilibrium Thermodynamics

Example: The Davies Generator at Equilibrium )

If pe is a thermal equilibrium state at inverse temperature 8 = (ks T) ' then the Davies
generator

L(X) =i[T, X] 4+ &(X) — %{tb(]l),X}
e—BHs
L € DB <7tr(e*5"/5)>

T=3 > sa@a’af), ox)=3 > ha@)al” xaf”

a,b wespec(il s) a,b wespec(il s)

satisfies

where

hap(w) = 2Imr (peRa(Hg —w —i0) 'Ry ), Sab(w) = Retr (pe Aa(He —w —10) ™" Ay

Q) = Pu(iLs)(Qa) = > Pu(Ms)QaPu(Hs)

n—r=w
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Equilibrium Thermodynamics

Example: The Davies Generator at Equilibrium J

If pe is a thermal equilibrium state at inverse temperature 3 = (ks T)~' then the Davies
generator

LOX) = [T, X] + (X) — %{cb(]l),x}
e—BHs
.

7= 3 sp@a"Q¥, o) =3 3 hapw)a xQl

a,b wespec(ilg) a,b wespec(ilg)

satisfies

[Spohn *77]
{Hs,Qa} =C1, [hap(w)] > 0 for all w € spec(iLs)

imply that the QDS e!£ is positivity improving. It follows that Ker(£) = C1 and
e—BHs

for any state p, lim ef 7 (p) = (e PHs)

= the unique state in Ker(L£*)
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Nonequilibrium Thermodynamics

QDS for Open Systems Out of Equilibrium

[Lebowitz-Spohn '78]

E=Ri+ - +Ry

R in thermal equilibrium at inverse temperature 3,
V= Ek,a Qk,a ® Rk,a Qk,a® Aka € O ® Agr,
Davies generator £ = >~ L

L = Davies generator for S + R

Ly € DB(py = e~ Prts /ir(e=BiHs)))

© 060 0600
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Nonequilibrium Thermodynamics

QDS for Open Systems Out of Equilibrium J

[Lebowitz-Spohn '78]

E=R1+-+Ru

Ry in thermal equilibrium at inverse temperature S«
V=23 aCQka® Rka Qka®FRra€ O AR,
Davies generator £ = >, Lk

L = Davies generator for S + R

Ly € DB(px = e PiHs /(e PrHs))

© 060 0600

@ Under Spohn’s Conditions dim Ker(£) = 1 and Ker(£*) contains a unique NESS p.,
s.t. for any state p on O

lim e'“" (p) =
t—o0
@ The Heat/Entropy flux observable
ok = Lk(Hs), ¢k = Lx(—log px) = Brdk

describes the energy/entropy current out of heat reservoir R

o 15t Law:
> tr(prdk) = (p+|L(Hs)) = (L*(p+)|Hs) =0
K
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Nonequilibrium Thermodynamics

QDS for Open Systems Out of Equilibrium J

[Lebowitz-Spohn '78]

E=R1+ - +Ru

Ry in thermal equilibrium at inverse temperature S«
V=3 aCQka® Rka Qka®FRxa€ O AR,
Davies generator £ = >, Lk

L = Davies generator for S + R

Ly € DB(px = e PiHs /(e PKHs))

© 0606 0600

@ The von Neumann entropy S(p) = —tr(plog p) satisfies the balance equation

d . )
RGO o(0) v
t=0 S~~~ ~~
entropy production entropy current

o Entropy currentis j(p) = >, tr(pk)
o Entropy production o(p) is a non-negative Isc convex function of p
o Inthe NESS

a(ps) = —i(p+) = — Z"’(P#/)k) >0

k
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Nonequilibrium Thermodynamics

QDS for Open Systems Out of Equilibrium J

[Lebowitz-Spohn '78]

E=R1+-+Ru

Ry in thermal equilibrium at inverse temperature S«
V=3 aCQka® Rka Qka®FAra € O®AR,
Davies generator £ = >, L

L = Davies generator for S + R

Ly € DB(px = e PiHs /(e PrHs))

© 06606 0600

0 0(p) =0<= By == By = Beqand p = peq = e~ Peatls /tr(e—Pealls))
0 By ==y =Beq = p+ = Peq
o The Onsager matrix
7]
Ly = aftr(/brtﬁj)
B B1="=Bn=Peq
satisfies Green-Kubo (fluctuation—dissipation) relation

Ly = /o “ (peact(@)ok) at G # k)

@ Time reversal invariance implies Onsager’s reciprocity relations

ij = ij
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Entropic Fluctuations

Let £ = 3", L with £, € DB(pk) and for a = (e, ..., ap) € RM set

=D Lk(Xp, “)p
k

Theorem 1. [de Roeck, Maes, Derezinski, JakSic—P—Westrich]
Assume that the QDS ¢!~ is positivity improving (e.g., that Spohn’s criterion holds).

o Forall @ € RM, e!fe s a positivity improving CP-semigroup.

@ Forall « € RM, e(a) = max Re(spec(La)) is a simple eigenvalue of L and its only
eigenvalue on the line Re(z) = e(a).

@ For any state p there exists a probability measure P[) on RM such that

tr (petfe (1)) = /RM et (c)

o e(a) is a real-analytic convex function of o and

t—oo t

lim 7Iog/ —tersqpi (o) = e(ar)

holds for  in a complex neighborhood of RM.
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Entropic Fluctuations

Unraveling — Quantum Trajectories

. 1
Ly = ﬁk,no jumps + Py, ﬁk,no jumps — 1[Tk¢ ] - §{¢k(]1)7 }

Detailed balance (£, € DB(px)) implies the spectral decomposition

Op =D b, Dpu(Xpg Mo = e Wy, (X)
weQ

with Q4 = spec(log px) — spec(log px) (=spectrum of the modular group of py)

Set Lo jumps = Zk ['k,no jumps
The Dyson expansion of et around e!“no s |eads to
(pleteer (1)) = [ =Dt (e)

where u’p is a probability measure on the set of Quantum Trajectories £ = [¢1, .. .

NEN,gk:(jk,UJk,Sk),jk6{1,...,M},UJKEQ[\/,0§S1 <o <Ssy <t

7€N]

P}) is the joint distribution of the RV ¢;(¢) = 1 Zk:jk:j wy under Hfo
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Entropic Fluctuations

Full Counting Statistics )

Let £ be a Davies generator (px = e~ #«*s /tr(—)) and Ns denote the joint spectral projection
of 8 = (B1HRy, - - -, BuHR,,) for finite reservoirs. The Positive Operator Valued Measure

A C spec(S) x spec(S) = Pa(-) = > MNge MMs(-)Nse™Mg,
(s,s’)EA

describes two sets of subsequent measurements of the reservoir energies separated by a

time interval t. )

Full Counting Statistics of entropy transport = thermodynamic limit of the measure

PL(s) = tr (Py(s,s) | s'—stc} (P ® pr, ® - ® pr,,))

The measure Pf) of Theorem 1 is the weak coupling limit of FCS

[ 163p) = fim, [ 10:-2)ae2 (0
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Entropic Fluctuations

LDP - CLT }

Theorem 1 + Gartner—Ellis = Large Deviation Principle
PL(%) =~ exp (—t inf I(c)) (ZCRM t — o)
SEX

with rate function
I(s) =— inf (a-s+ e(a))
aeRM

Theorem 1 + Bryc = Central Limit Theorem

LA

centered Gaussian on RM with covariance

Vils = (©)) € A} ) = no(4)

52e(a
b, = el
Oda;0q;

a=0
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Entropic Fluctuations

Fluctuation Relations )

Theorem 2

If Time-Reversal Invariance holds (£Lx 0 © = © o L‘,fk, ©*(pk) = pk) then
e(1-a)=e(a), ela+rB ') =ela)

with1=(1,...,1), 87" =(8;",....8y") and for any o € R and « € R.

@ The first identity is the Evans—Searles symmetry. It implies /(—<) = /(¢) + 1 ¢, i.e,,

Pie==9) _ i
Pi(s =s)

@ The translation symmetry displayed in the second identity is a consequence of energy
conservation [Andrieux et al., '09]. It implies that the rate function enforces the 15t Law

I(s) = +oo unless B~ 1 -c =0

and that the Gaussian measure 1p is concentrated on the hyperplane 3~ ' - ¢ = 0.
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Entropic Fluctuations

Linear Response Theory a la Gallavotti

Theorem 3
@ The expected heat/entropy fluxes in the NESS are given by

10 o]
w(org) = 222 (e = 22
j 7 P— j

a=0

o If time-reversal invariance holds then the Onsager matrix is given by

1 9%e(a)
Lie = 0t (P91 ppu1 =~ 352 Hagon,
eq

B=Peq1,a=0

@ Combining the two symmetries of Theorem 2, Relation (1) gives
1 1 _
w(p+¢y) = = (9a;€)(0) = ——(9;€)(1 — feaB ™)
Bj Bj

and (2) follows from differentiation w.r.t. 5 at 3 = feq1.
@ The Green—Kubo formula follows from direct evaluation of the right hand side of (2).
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Main Ingredients of the Proofs of Theorem 1 & 2

Non-Commutative Perron-Frobenius Theory

Theorem 4. <= [Evans—Hgegh-Krohn ’78, Schrader '01]

If the CP semigroup e is positivity improving and £ = max Re(spec(L)) then
@ (is a simple eigenvalue of £, and the only one on the line Rez = ¢.
o For any state p and any non-zero X > 0

— qim ] te
¢= Jim —logtr (pe (X))
o If £(1) = 0then ¢ = 0 and there is a faithful state p4 € Ker(£*) such that
jir (pe(X)) = (o X)| < Ce X

for some constants C, v > 0, all states pand all X € O.

Structural properties of CP semigroups

@ Ly € DB(px) = L commutes with the modular group of p
o Time reversal invariance = Lo 0©® =© o0 L]_,
@ erHts /2£a(X)an5/2 — L"a-%—nﬁ*‘ (CNHs/ZXeKHs/z)

o Elementary calculations
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Happy Birthday Yosi !
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