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Unique continuation principle for spectral projections

Schrédinger operators

We consider a Schrédinger operator
H=-A+V on L3R,
where A is the Laplacian operator and V is a bounded potential.
@ We define balls and boxes:

1
2
)

d
B(x,6)::{yeRd;!y—x\<5}, with  |x| = |x|, = Z\xjﬁ)
=1

L d. L : R .
M) = {y RS ly—xl <5 with [xi= max I,

@ Hy denotes the restriction of H to the the box A C RY:

Hyn=—Ap+ VA on L2(A).
e Ap is the Laplacian on A with either Dirichlet or periodic boundary
condition.
o Vj is the restriction of V to A..
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Unique continuation principle for spectral projections

A UCPSP on a box A is an estimate of the form
Xi(HAWAX(HA) > k2 (Hy) on L2(A),

where X, is the characteristic function of the interval / C R,
W >0 is a potential, and k¥ > 0 is a constant.

o If W > k> 0 (covering condition) the UCPSP is trivial.

e If V and W are bounded Z9-periodic potentials, W >0 with W > 0
on an open set, Combes, Hislop and Klopp (2003) proved the UCPSP
for Hp with periodic boundary condition, for boxes A = A, (xo) € RY
with L € N and arbitrary bounded intervals /, with a constant k¥ >0
depending on sup/ (and d,V, W), but not on the box A. Their proof
uses the unique continuation principle and Floquet theory.

e Germinet and Klein (2013) proved a modified version of the CHK
UCPSP, using Bourgain and Kenig's quantitative unique continuation
principle and (some) Floquet theory, obtaining control of the constant
K in terms of the relevant parameters.
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Theorem (UCPSP)

There exists a constant My > 0, depending only on d, such that:
o Let H=—A+V be a Schrédinger operator on L2(R9).
e Given an energy Ey >0 and & €]0, 3], define y=y(d,K,5) >0 by

2
P= %5“”4(1*’“‘), where K = K(V,Eo) =2 V|| + E.

Then, given
o {Vk}reze CRY with B(yk,8) C Ai(k) for all k € Z¢,
@ a closed interval | C|—eo, Eg] with |/| < %7,
@ a box A =A/(x0) with xo € R and L > 150V/d,

and setting

W — Z XB(yy.8)
keZd, N (k)CA

we have
Li(HOWD 1, (HA) > P (Hy)  on L2(A).
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Comments on the UCPSP

@ Rojas-Molina and Veseli¢ (2013) proved, under the hypotheses of the
Theorem, that for boxes A = A/ (xo) with xg € Z9 and L € Ny, if v is
an eigenfunction of Hp with eigenvalue E €] — oo, Eg], then

H W(’\)sz > kg, vl with kg, > 0.

This is just the UCPSP when | = { E}.Their proof uses the
quantitative unique continuation principle (Bourgain and Kenig).

@ Our Theorem is derived from the quantitative unique continuation
principle as in Bourgain and Klein using the “dominant boxes"
introduced by Rojas-Molina and Veseli¢.

@ The UCPSP is a crucial ingredient for proving Wegner estimates for
for Anderson Hamiltonians, random Schrédinger operators on L?(RY)
with gZ9-periodic background potential (g € N) and alloy-type
random potentials located in the lattice Z9. The UCPSP replaces the
covering condition.
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Quantitative unique continuation principle (Bourgain-Klein)

Let Q C RY open. Let y € H?(Q) and let { € L?(Q) be defined by
—Ay+Vy=_( ae on Q
where V is a bounded real measurable function on Q, || V]|, < K < eo.
Let © C Q be a bounded measurable set where HWXeHz > 0.
Set Q(x,0):=suply—x| for xeQ.
yeo
Let x€Q\O satisfy Q= Q(x0,0)>1 and B(x,6Q+2)C Q.

Then, given
0< 6 <min {2dist(xo,@)aﬁ}v

we have
2 4 lvzallo
5\ ma(1+K3 ) (@5 +log A2
<o) < vt lvXol3 < |WXseos)l5+ 16Xall3.

where my > 0 is a constant depending only on d.
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A corollary to the quantitative unique continuation principle

Corollary
There exists a constant My > 0, depending only on d, such that:

o Let H=—A+V be a Schrédinger operator on L?(R?), where V is a
bounded potential with ||V < K.

o Fix § €]0,1] and sites {yk}cpa C R with B(yx,8) C Ai(k) for all
kezd.
o Consider a box N = A (xg), where xo € Z¢ and L € Nygq, L > 72V/d.
Then for all real-valued w € Z(Ap) = Z(Hp) we have (on L2(N))

2
LN R W 172 78O F S IO
keAnzd

= | Wy + 5 Hhw.

v
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Proof of the Corollary

Take A = A[(0) with L € Nygg. We Q(tend functions @ on A to functions v
and @ on R and V to a potential V on R? so

(~AFV)y=(-A+ V).

Take Y € Nogq, 9< Y < % Since L is odd, we have A = Jcpnze M1 (k).
It follows that for all ¢ € L?(A) we have

Y @y iolla < 2Y)9 [loall3-
keAnzd

We now fix y € Z(An). Following Rojas-Molina and Veseli¢, we call a site
k € \ dominating (for y) if

2 1 ~ 2
lvnwolls = 5@y [ Wy woll5
and note that, letting D c ANZ9 denote the collection of dominating sites,

ZA Hw/\l(k)H; > 3l
keD
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Proof of the Corollary-continued
If k € D we apply the QUCP with Q = Ay (k) and © = A;(k), obtaining

gmal(1+<3) l¥n o ll3 < HWB(YJWS)HE +&° HE"Y(’()H;

where { = (—A+ V), Y is appropriately chosen, Y < 40v/d < % and
the map J: D — ANZ9 is defined appropriately so

J(k) € /\y( ) and #J71({j}) < 2 for aIIj
Summing over k € D and using Yich Hq/,\l k)Hz >3 Li|wall3, we get

15705) a2 <2 Y [Wapes 2+ V)96l
keNNzd

<2 Y [[Wags)lls+ (80Vd) 8% (|CAll3.
keNnzd

which implies Ewnh a different constant M, > 0)

H) < Y waoes P+ 821 Gl2.
keNNzd
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Proof of the UCSP Theorem

Let Eg >0 and / C] —eo, Fo] a closed interval; set = 3 |/|. Since
Hpn > — || V]|, for any box A, without loss of generality we assume
| =[E—B,E+B] with E € [-||V].., Eo], so

IV = Elle <[|Vl..+max{Eo, ||V} < K =2]|V|. + Eo.

Moreover, for any box A we have

I(HA=E)wlla < Bllwlly for y=2/(Hn)w.

Let A be a box as in the Corollary and y = X,(Hp)y real-valued. It follows
from the Corollary applied to H — E that

2 2 2
5"4(°) 1y < WO+ 62— EywE <[ w™ [+ 52 w3
If B2 < P = %5“”"(”"%), e, |/] <27, we get

Pl < [wOy[ . e, Pai(H) <) WO ().
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Crooked Anderson Hamiltonians

A crooked Anderson Hamiltonian is the random Schrddinger operator
Hy :=Ho+ Vs on L2(]Rd)
Q@ Ho=—-A+ VO with V(© a bounded potential and inf 6(Hp) = 0.
@ V, is a crooked alloy-type random potential:
Vo(x) =}, @jui(x), with u(x) = vi(x—y),
jezd
where, for some §_ €]0,1] and u_, 84, M €]0,c[:
© {yj}jcge are sites in RY with B(y;,8-) C A(j) for all j € 29
© the single site potentials {v;},_ ;4 are measurable functions on R with
u-2B(0.5-) = Vi = s, (0) forall jez9;
© ®={;};.z0 is a family of independent random variables whose
probability distributions {1;};.4 are non-degenerate with
suppi; C [0,M] forall je z.
Remark: If V() is qZ9-periodic with g €N, and y; = j, v; = v, 1 = lo
for all j € Z9, then H,, is the ergodic (usual) Anderson Hamiltonian.
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Optimal Wegner estimates

Finite volume crooked Anderson Hamiltonians

We define finite volume crooked Anderson Hamiltonians on a box
A= NAr(x0), X0 € R? and L > 0, with either Dirichlet or periodic boundary
condition, by
Hon=Hoa+VEY on L2(A),

where

@ Hoa = (Ho), is the restriction of Hp to A with the specified boundary

condition,
o
Y ou(x) for xeA
JjeNNzd

We also set

U(x) = ZjeZduj(X) and UM (x):= Y, ui(x),
jeAnZd
W(x) := Z %B(yj,éi_)(x) and W(A) Z XB(y;.5
jezd jE/\ﬂZd
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Remark and notation

Note that
0< Wy < U

We will use the following notation:
o PyA(B):=xg(Hpn) for a Borel set B C R€.

@ The concentration function of the probability measure u is defined by

Su(t):=supu([a,a+t]) for t>0.

acR

Sa(t) 3=jef‘/1\?]>z<d5uj(f)-
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Optimal Wegner estimates

An optimal Wegner estimate for Anderson Hamiltonians is an estimate of
the form

E{tr Poa(l)} < CSA(I]) A

e Combes, Hislop (1994) proved optimal Wegner estimates for ergodic
Anderson Hamiltonians with a covering condition.

e Combes, Hislop, Klopp (2007) proved optimal Wegner estimates for
ergodic Anderson Hamiltonians with periodic boundary condition and
boxes A = Aj(xp) with L a multiple of the period.

Their proof uses the UCSP for the (nonrandom) periodic operator Hp.

@ Rojas-Molina and Veseli¢ (2013) proved Wegner estimates for
Delone-Anderson models, optimal up to an additional factor:

E {tr Pya(l)} < C [log|1]|? Sa(|1]) |Al.
They used their single energy UCSP for the (nonrandom) operator Hp.

@ Wegner estimates for crooked Anderson Hamiltonians imply
corresponding Wegner estimates for Delone-Anderson models.
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Optimal Wegner estimate for crooked Anderson Hamilts.

Using the UCPSP for the full random operator H,,, we prove
Theorem

Let H,, be a crooked Anderson Hamiltonian. Given Eg > 0, define vy >0 by

Md(1+K%)

P=1s

and My > 0 is the constant in the UCPSP Theorem.
Then for any closed interval | C]— oo, Eg] with |I| < %}/ and any box
A=A (x0) with xo € R? and L > 150v/d + 8, we have

. where K:Eo+2(||v(0)]|w+l\/l\|U||m).

logd
21+ log2

E{trPoa()} < Cys. v (1227 *(1+ )™ Sa(I/DIAl-
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Optimal Wegner estimates

UCPSP = Optimal Wegner estimate

The theorem (optimal Wegner estimates) follows from the UCPSP theorem
and the following lemma.

Lemma

Let Hy, be a crooked Anderson Hamiltonian.

Let | C] —oo, Eg] be a closed interval and N =\ (xp) a box centered at
xo € R with L > 246,

Suppose there exists a constant k¥ > 0 such that
Poa(NUN Py A(1) > kPy (1) with probability one.
Then

logd

_ 2 log2
E{trPoa(1)} < Cys, v (K2(1+E0)" 7 Sa()IAI.
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Proof of Lemma

We fix A and | C] — oo, Bg), let P = Py a(1) U= U™, Then (Dirichlet bc)

trP <k 1tr PUP = x 1tr VUPVU < x 2tr VUPUPVU = x2tr PUPU
=k 2tr PUPUP < k7 2(1+ Eg)tr PU(Hp A +1)"*UP
<Kk ?(1+ Eg)tr PU(Hop +1)"1UP
=k 2(1+ Eo)trUPU(Hop +1)7!
=k (1+E) Y tryuPVuTy,

ijennzd

where TU:\/F;(H07A+1)_1\/U7j for i,jeAnZ.

We may now adapt an argument in in Combes, Hislop, Klopp obtaining
L logd

EtP<C,o o (k2(1+6))° ™ S\(I)IAl-

d,5, v
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Wegner estimates at high disorder

Let Hy ) = Ho+ AV be a crooked Anderson Hamiltonian, where A > 0 is
the disorder parameter.We want make explicit the dependence on A in the
Wegner estimate.

If we have the covering condition UM > oy with o > 0, we get,
following Combes-Hislop or the Lemma,

E{trPosn(1)} < Cys. ajvor..e SANA T HIAL

a Wegner estimate that gets better as the disorder increases.
Without the covering condition, we get, using the UCPSP,

2
E {trPyanll)} < Cee™ (M) S5 1) .
If we use the UCPSP for Hp, as in Combes, Hislop and Klopp, we get

logd

2
E{trPyan(l)} < Cg, <1+7t2 +'°g2> SAATHIN A

These Wegner estimates get worse as the disorder increases.
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Wegner estimates at high disorder

Optimal Wegner estimate at the bottom of the spectrum at
high disorder

Theorem

Let Hy, ) be a crooked Anderson Hamiltonian with disorder . > 0. Then

E(e0):= lim E(t) =supE(t) >0, where E(t):=info(Hy+ tu_W).

t—roo t>0

Moreover, for each E; €]0, E(0)[ there exists k = k(E;) > 0, independent
of A, such that the following holds for all A > 0:

Given a box N = A\ (xg) with xo € RY and L > 24§, we have

PO Q= E)UN PLP) (1 = oo, E1]) > 1 PLD) (1= 0, 1)),

and, for any interval | C] — oo, E1],

logd

gz .
E{trPS) (N} < Cus 0 (;c 204+ 6))> " SAA L)AL
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A lower bound on E (<o)

Lemma

Let Hy, u_, W be as in a crooked Anderson Hamiltonian, set
H(t) = Ho+tu_ W for t >0, and let E(t) =info(H(t)),
E(o0) = lim;_e E(t) = sup;>o E(t). Then

M, <1+(2V°£0)+2tu_> %>

E(t)>tu_d_ for all t>0,

so we conclude that

Md<1+(2vi,°)+2t)§>
E(c0) > sup té_
te[0,00]

> 0.

This lemma is proven from the Corollary to the QUCP.
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An abstract UCSP

The Theorem now follows using an extension of an abstract UCPSP due to
Boutet de Monvel, Lenz, and Stollmann (2011).

Lemma

Let Hy be a self-adjoint operator on a Hilbert space 77, bounded from
below, and let Y > 0 be a bounded operator on 7.
Let H(t) = Ho+tY for t >0, and set E(t) = info(H(t)).
Let E(o0) = lim¢_ye E(t) = sup,~q E(t).
Suppose E(s0) > E(0). Given E; €]E(0), E()][, let
E(S) — E1

k=«k(Ho,Y,E1)= sup —— > 0.
5>0; E(s)>E; s

Then for all bounded operators VV >0 on 5 and Borel sets B C| — oo, E;]
we have

2e(Ho+ V)Y Xs(Ho+ V) > xXxg(Ho+ V).
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Wegner estimates at high disorder

Proof of the abstract UCPSP

Fix E1 €]E(0), E(e°)[. For all Borel sets B C]— oo, E1] we have, writing
Pv(B) =xg(Ho+ V),

Py(B)(Ho+ V)Pyv(B) < E1 Py(B).
Since E; €]E(0), E(e0)[, there is s > 0 such that E(s) > E;. Then,
Pv(B)(H(s)+V —sY — E1)Pv(B) = Pv(B)(Ho+ V — E1)Py(B) <0,
and hence, using V >0,

sPv(B)YPv(B) = Pv(B)(H(s)+V — E1)Pv(B)
> Pv(B)(H(s) — E1)Pv(B) = (E(s) — E1)Pv(B).
We conclude that

2e(Ho+ V)Y Xs(Ho+ V) > xXxs(Ho+ V).
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Localization in a fixed interval at high disorder
Theorem

Let Hy, ; be an ergodic Anderson Hamiltonian with disorder A > 0, and
suppose the single-site probability distribution L has a bounded density (or
is uniformly Hélder continuous).

Then, given E; €]0, E(o0)[, there exists A(Ey) < oo, such that H,, ; exhibits
complete localization on the interval [0, E1[ for all A > A(Ey).

.

By complete localization on an interval | we mean that for all E € | there
exists 0(E) > 0 such that we can perform the bootstrap multiscale analysis
on the interval (E—06(E), E+ 6(E)), obtaining Anderson and dynamical
localization.

This theorem was previously known only with a covering condition
UM > axa, a >0, in which case E(o0) = oo.

This theorem holds for crooked Anderson Hamiltonians with appropriate

hypotheses on the single site probability distributions p;.
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