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Introduction

In this talk | will consider the decay as |x| — oo of solutions %) to the
eigenvalue problem
(H—=X)y =0.

Here H is in a class of self-adjoint partial differential operators of the
form

H=Q(-iV)+ V(x)
where Q is a real elliptic polynomial and V is bounded.
But first a review of some results for the Laplacian.



Laplacian - the one body problem

Consider solutions ¥ to
(A + V(x) =\ = 0,9 € L*(RY),
V(x) — 0 as |x| — oo, A and V real. Well known results: define o

oc =sup{o: e’ € Lz(Rd)}

Theorem (Combes-Thomas, Bardos-Merigot, FH2HO)
i) If A <0 and V(x) = o(1) or A > 0 and V(x) = o(|x|™1), then
oc > 0.
i) If V(x) = O(|x|~/2) then either o. < oo or 1) = 0.
i) If V(x) = o(|x|"¥/?) and o, € (0,00) then A < 0 and 5. = v/—\.

OPEN PROBLEM: If V is bounded or even V(x) = O(|x|~?),d > 0,
is it true that o, < oo unless ¢ = 07



Laplacian - the N-body problem

Consider now the N-body problem, H = —A + V,(H — A\)¢) = 0 where
for simplicity V is a sum of fast decaying 2-body potentials plus a fast
decaying N-particle interaction.

Let

Yc={Vr—A:7€T(H),7>\}

T(H) is the set of thresholds of H, a closed countable set independent
of the N-particle interaction.

Theorem (Froese, H)
Suppose H, X\, v (# 0) are as above and A ¢ T(H). Then o. € X..

The particular value of 0. € X will depend on the N-particle
interaction as well as \.

The point of this slide is to emphasize that there are situations (unlike
the one-body problem with the Laplacian) where there may be several
possibilities for the decay rate for a given A.



Results for Q(—iV)

We consider L2(R9) solutions 1 to
(Q(=/V)+ V(x) = A)p =0
with @ a real elliptic polynomial and lim,|_,o V(x) = 0. Consider the
two conditions on a point (0,&,w) € Ry x RY x §9-1
Q& + iow)= A (1)
PL(w)VEQ(f -+ im,u): 0 (2)

where P, (w) is the projection onto the subspace of RY perpendicular
to w.



Let
Y.={0>0:3(£w) e RY x S97 5o that (1) and (2) are satisfied}

We will give conditions under which the decay rate o, is in X .
Let V = Vi + V5, both real and bounded.

Theorem (There is exponential decay)

Under either of the following two conditions we can conclude that
oc > 0:
Q )\ ¢ RanQ and V(x) = o(1) at infinity
@ )\ € RanQ but X is not a critical value of Q and in addition
Vo(x) = o|x| 1) and Yo : 9*V4(x) = of|x|~1e).



The next theorem eliminates the possibility of super-exponential decay
(under strong conditions on the potential - too strong).
Let g be the degree of the polynomial Q.

Theorem (There is no super-exponential decay)

Suppose Vo(x) = O(|x|~(9/249), 9oV (x) = O(|x|~(*Hlel+a)/2)  where
1<|a|<qgandd>0. Then o < oo or ) =0.

Given the last two theorems we know conditions on the potential so
that o € (0,00). In this case we can determine the decay rate
“algebraically”.

Theorem (Decay rate determined)

Assume Vo(x) = o(|x|~1/?) and Ya : 9*V4(x) = o(|x|1*!). Suppose
oc € (0,00). Then o € X..




Example: Q(&) = G(£?)

We take degree of Q = g. Then degree G = q/2. We assume
o € (0,00). With z = (£ + iow)? the critical equations (1) and (2)
which determine the possible decay rates o reduce to

G(z) = A
G'(2)PL(w)E =0

Except for at most (¢ —2)/2 A's (arising from non-simple roots of
G — ), these equations reduce to G((|¢| + ic)?) = .

If G(—A) = Hj'.’zl(A2 - UJ‘-‘),O <01 <---<o0p, all these o's occur as
decay rates for embedded eigenvalue 0 with different compact support
potentials.

In fact for any real A\ except possibly for the at most (¢ — 2)/2
exceptional ones, any o € X, is a decay rate o, for some real compact
support potential and some eigenfunction .



Proof: decay rate o. determined when o, € (0, 00)

We only give some of the main ingredients of the proofs.

Condition (1) above, Q(£ + iow) = A, involves an energy estimate for
the state e?"¢) which we do not discuss here.

To understand Condition (2), P, (w)V:Q(& + iow) = 0, we use
commutator methods with a special conjugate operator dependent on
a parameter o constructed as follows. First decompose Q(& + in) into
its real and imaginary parts:

Q(E+in) = X(&,n) +iY (& n)
Let
a(x,f) = rY(g,aw(x))

Then the conjugate operator A is defined as the operator with Weyl
symbol a:

A= 0p“(a)



Note that if Q(p) = p?, then A=c(x-p+p-x), p=—iV.
To get an idea where this comes from note that
Q(p+ iow) =€e"Q(p)e 7" and

i[Q(p), e’ Ae”"] = e (i[X, A] + 2Re Y A)e’"

where X = Re(e?"Q(p)e ") and Y = Im(e”" Q(p)e~").
To leading order the symbol of the operator between exponentials to
the right has symbol

X, Y} +2rY2 +{X,r}Y. (3)

We can calculate the Poisson bracket {X, Y} using the Cauchy -
Riemann equations:

{X, Y} = |PLW)VQ(E + iow)|®

The last term in (3) can be bounded by the middle term and
something of lower order.



Absence of super-exponential decay, o, < oo

Two key points:
<& No pseudo-differential operators. Exact computations.
O r=|x| = r=<x>—<x>"¢41 (Rodnianski - Tao)

Let a = p — iow, w = Vr. The eigenvalue equation for ¢, = €7 is
(Q(a")+V — N, =0
Thus

< 1o, ([Q(a), Q(a")] + |Q(a) + Vi — AP)ps >=
— < g, (2Re[Q(a), i] + | Va2 ¥y >

Another key point: P :=[a,a*] > cor—(1+e)]



We extract positivity from [Q(a), Q(a*)]. Write the commutator as a
sum of Wick ordered operators. Let

Im = U1,y Jm), Km = (k1, ..., km). Then

[Qa), Q(a")] = F + E
F = anzlzjm,ch‘)Jm Q(a*)PmeKmaKmQ(a)/m!

Here 0, = 0}y -+ 0j, Ok, = Oy ** Oks Pk = Pkt =+ Py ki and
E is negligible for large o.
Note for example that the term with m = ¢ is bounded below by

codra(+e),



Improvement for the bi-Laplacian

Theorem (Improved super-exponential decay result)

Take Q(—iV) = (—A)9/2,q = 2,4.
Suppose

Vo(x) = O(|x|~9/*°)
Vi (x) = O(|x|~0+a/2+1a/2) for1 < |a| < q/2, and § > 0.

Then o, < 0.

This theorem replaces g by /2 in the assumptions on the potential
for Q(—iV) = (~A)¥/?,q=2,4.



