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Experimental Relevance 

Nonlinear Optics 

Bose Einstein Condensates (BECs) 

Paradigm for competition between randomness and  

Nonlinearity a Fundamental Question 
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The Nonlinear Schroedinger (NLS) 

Equation 
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Does Localization Survive the 

Nonlinearity??? 

0   localization 



Does Localization Survive the 

Nonlinearity??? 
1. Yes, if there is spreading the magnitude 

of the nonlinear term decreases and 
localization takes over. 

2. No, may  depend on realizations or on     

     found in numerical calculations. 

3. No, the NLSE is a chaotic dynamical 
system. Will it remain chaotic for all 
densities?? 

4. No?, but localization asymptotically 
preserved beyond some front that is 
logarithmic in time  





Point 4, conjectured by Wang and Zhang in the limit of strong disorder 

: 
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Perturbation theory supports this conjecture for any disorder 

With probability 
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Point 4 also in agreement with work of Basko ( perturbation theory 

Selecting a type of dominant excitations ) 

***Bourgain and Wang |1 | ||x    

Spreading slower than any power of  t



Perturbation Theory 

1. A perturbation expansion in     was developed 

2. Secular terms were removed 

3. A bound on the general term was derived  

4. Perturbation theory was used to obtain a controlled numerical 
solution 

5. A bound on the remainder was obtained, indicating that the series 
is asymptotic. 

6. For limited time tending to infinity for small nonlinearity, front 
logarithmic in time                     

 

7. Improved for strong disorder 

 

8. Posed problems in Linear Anderson Localization for example 
combinations of eigen-energies (in denominators)   



lnfx t



Bound on the remainder 
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Numerical Simulations 

• In regimes relevant for experiments looks that 
localization takes place 

• Spreading for long time (Shepelyansky, Pikovsky, 
Mulansky,  Molina,  

    Flach, Kopidakis, Komineas, Krimer, Laptyeva, Bodyfelt) 

• We do not know the relevant space and time scales 

• All results in Split-Step 

• No control (but may be correct in some range) 

• Supported by various heuristic arguments 



Pikovsky,  Sheplyansky  

Slope does not change (contrary to Fermi-Pasta-Ulam)  



S.Flach, D.Krimer and S.Skokos  Pikovsky,  Shepelyansky 

2log x 
2log x 
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Effective Noise Theories 

• D. Shepeyansky and A. Pikovsky 

• S. Flach, Ch. Skokos, D.O. Krimer, S. 

Komineas 

• E. Michaely and SF 
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2 1/3x tleading to  

P C   Number of resonant states 

It was checked effective  

noise holds for realizations  

with sub-diffusion  



Equilibrium  
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Can it go on forever? 
What happens when nearly no  

weight in localization volume? 

numerically 1.85 2.56 

P C   Number of resonant states 

For the theory to be valid require that the number of  

resonant terms larger then a number of order unity  

otherwise NO effective noise. Requires: 

1 (..)P   
*t t 

7.4 10.24 



Scaling Properties of Chaos 
Arkady Pikovsky 

Competition 
Spreading                      effective  number  of degrees of freedom  increases  

chaos  enhanced 

Spreading                 amplitude decreases regularity  enhanced 

Who wins?? 

Model for the region of large amplitude 
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( )x Are dynamical variables 

( ) ( 0) tt t e    Largest Lyapunov exponent 

0  Chaos 
Is it possible that chaos disappears? 

Growth of deviations 

Initial data, nearly homogeneous spreading  in space    
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Divide chain into intervals of length  
0L Number of intervals 
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Scaling 
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Singular limits 

small x
1q c x 

large x
2q c x 

Numerical fit  
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What can one conclude from the scaling?? 
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Large system limit 
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What the scale required to see it?? 
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Spreading 

No chaos 

Localization ? 

If no additional singularity in  Q



Emerging Picture 

• For small  nonlinearity initially no spreading 

• For strong nonlinearity some part does not spread 

• For some nonlinearity wide regime of sub-diffusion 

• Asymptotic spreading at most logarithmic (shown for limited time): 

a. perturbation theory 

b. rigorous results in the limit of strong disorder  

• Unlikely that sub-diffusion continues forever:  

a. scaling theory showing that as result of spreading system becomes 
regular for an increasing fraction of realizations 

b. Effective noise “theories” indicate that as a result of spreading noise  

Decays 

c. More realizations quasiperiodic (Aubry) 

   

Coherent picture for various regimes?    What is the relevant time scale 
for asymptotics? 

     
What of this can be established rigorously?? 



Possible asymptotic behavior 

• Localization 

• Logarithmic spread 

• Sub-diffsion  

• Spread to some distance depending on 

realization of disorder 

 

 


