Uniqueness of the invariant measure
for networks of interactions

Work with Noe Cuneo
background material with
M Hairer, C-A Pillet, L Rey-Bellet, L-S Young, E Zabey
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How to Park a Truck with n Trailers

Internal notes for the Mechanics course

J.-P. Eckmann, J. Rougemont, A. Schenkel

Fig. 1: The coordinates of the truck with its 2 trailers.

In the notation of Nelson, the generators of the corresponding vector fields are

steer = Oy ,

drive = cos(d + ()9, + sin(¥ + ¢y)d,
+sin(9)d,,
+ cos(¥) sin(yy — ¢1)0,,
+ cos(¥) cos(ipy — ) sin(p; — 9,)0,, -



The questions

Restrict the discussion to

Heat Bath(s) ¢ Classical Hamiltonian System <> Heat Bath(s)

NOT guantum,
NO friction in the classical system,
NO stochastic driving (except for baths)



The questions

Typical guestions:

e Existence of a steady state
e Unigueness of the steady state (if it exists)
e Approach to the steady state

Today | want to concentrate on uniqueness



The questions

Also restrict models:
Chains of “springs”



The questions

Example of a complicated graph
Here, just 2 heat baths

T

Tr



The questions

But let me start with the “heat baths”. Their role is to
“forget” things about the state of the Hamiltonian system,
and is the only source of dissipation in the study



Uniqueness

Unigueness

Absence of existence is caused by piling up of energy in
the system

Absence of uniqueness is more related to absence of
(effective) coupling, altogether



Unigueness

Example (JPE, E Zabey; C Maes, K Neto\c’ny,
and M Verschuere)
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Also non-unigue in case of equilibrium



Unigueness

I will give now a review of what is known about this problem
for general networks of springs
The main insight as of today can be summarized as follows

So what is “special” and what is “generic?

One can actually look at mixtures of the two conditions



The Hamiltonian

Getting Started

We consider a graph G made of (equal) masses (vertices) V
and of springs (edges) &

H= 2 (p2/2+Uq)) + D Vel8qy),  89s = gsrom ~ gso

vey eef

Also assume V (x) = V_.(-x) # 0, x € R’
All potentials are smooth

Some masses are attached to heat baths with temperatures
Ty > 0 and coupling constant 7y



The Hamiltonian

V2

Vo V3

Vn

For simplicity | discuss the case when only v, is attached to
a bath and | let & be the edges vo ©v;, J=1,...,n.



The Liouvillian

The Hamiltonian

H= > (p2/2 +Uylq)) + ) Velq,)

vey eef

with the bath Coupling, leads to the Liouville operator
L = %o + T2,
with

Xo = ~YPodpe* Y (Pvq,~UL(q) D5, ) =D Vilgu=q.) (9;,-3;)
vey ect



The Liouvillian

It is then convenient to rewrite this
& the edges of links connected to the bath and V), their other ends,

Po =P, 90 =9
_ 2
L—Xo‘f’YTaP

with Pinning potentials U are irrelevant here, | omit them, except Uo = ug

Xo = ~Ypd; + POy ~ Uo(q)2,
D Pva, = 2 Viowlq =9, @, -9

veVo veVo

e ST, - Y Visq) - D, - 9,)

VQVO e@go

where the top 2 lines deal with the masses connected to
the heat bath



Controllability

The unigueness is shown by showing that the system is
controllable,

the noise can drive the system from any phase space point
to any other point in finite time. And this is shown using a
Hormander condition

This is often used in control theory, and has been used in
the current context in papers with Pillet and Rey-Bellet but
also by Hairer & Mattingly for the 2D Navier-Stokes, and in
another variant by Villani for the Boltzmann equation

| will describe some new variants which are useful in our
context



Controllability

Task: show that “all” vector fields can be generatecl from
the baths

Let /M be the smallest set of vector fields that is closed
under Lie brackets and multiplication by smooth functions
and that contains

9, and where one acts with [, %]

To show:



Controllability

Sketch of method

First, [9,,%Xo] = ~0, + 9, and therefore, since 9, € M, we
find

2, e M.
Moreover, since for all v € V we have [d, ,Xo] = qu, we
have the general implication
if 9, € M = 9, € M

Thus, we need only show that the 9, are in /A



Controllability
Since

[9%, Xo] = —uo(q)aP - Z \//e/(q/ - q,to) ‘ (SP - an) N

ec&y

and 9, € M, we obtain that

Z Z/OAV)(C{, - Qv) an eM

vEVo

Can we split this sum into individual 9, € M for each v
and all x = q- qv? Note! the translation depends on g,
It is convenient to introduce the notation

ge(x) = VL(x)

which is the second derivative of the coupling potential



Controllability

With this notation, the inventory of vector fields in M we
have found so far is then

., and Z Jom'q = 419,

vEVy

o o

P ’

Starting from this, and taking further commutators (also
with Xo) we want to show that each 9, is also in M

QUESTION




Controllability

Result 1: E, Pillet, Rey-bellet

If

e only one spring is attached to bath (i.e. Vol = 1)

e the dimension of system is 1

® g = Vg, is strictly positive (i.e. the potential is strictly
convex) then

glq-4)9, €M = 9, €M

(Obvious, since /M is closed under multiplication by scalar
functions)

= These chains can be handled because network is special



Controllability

Result 2: E, Hairer, Rey-Bellet (to be written up)
The dimension of system is arbitrary

I
e topological condition on network (explained below)
e conditions on the potentials: for every x € R®

{P*VV(x) : |l K €}

spans R?  (some sort of “eventual convexity”)
then D*VV(X)9,, € M for all x => 9, € M

Trick: The matrix
My = Y (D)) (D*9,V) (x)

1<l e

is invertible (this is the analog of convexity of 91)



Controllability

B ? ? 1 B
B
? _ 1 B
No “already controlled” node controls more than one new
node

= Can be handled because network is special



Controllability
Result 3: E, Cuneo (with some help by D. Sullivan, probably
never written up)
Basically no restriction on anything, but only a relatively
abstract result
Assume for every edge e in the connection graph the
potential is a polynomial of the form Ve(x) = 3 agx

So, generically controllable if deg V. 2n+1 when &l = n.
= Holds when potentials are generic



Controllability

Result 4: Cuneo, Eckmann  More precise genericity

Harmonic potentials make problems

New technique: not only commutators with the 9, but also
with 0, of the other side of the links

Main algebraic ingredient (with e = (0, V)):

Z ge(xe) 9Pv eM = Z gle(xe) 9Pv e M

% vEVo
D gelxe) 9 €M = Y (ke gelxl)) 9y, € M
vEVo veVo

Result 4 holds because potentials are generic; details after talk



R OO
Controllability

Result 5: Cuneo, Eckmann
Restrictions on topology of network but not on potential
(1-D)




Examples

///O Vi
V1 f\fo V2
V2
c Vz Y0 V3

),)/)/‘bvn

Vi

Pairwise inequivalent potentials:
One node can control all particles on the right



Examples

Gy Vi
Co Vo
Cz V3

Purely toPological example



Examples

G Vi
Cz 2
Cz V3

Purely toPological example

Y2 Vi, € Moand 30,5 VD, € M then

=Py %Py
V1,0, € M and therefore 0, € /M



Examples

T

Is controllable !

Tr



Examples

toPological SPlitting potential sPlitting

<)

’4 effect of toPology and potentials



There are networks which are not handled by our theory,
and which are (or are not) controllable.

Example 1:
Vi
2
© m
1
\Z 1 V3 k  va

Harmonic : k=2 is bad, k# 2 is good



Example 2:
V1 v\/1V2 V2

VC\/:I,

V3 Vysvs Vg

what happens if V., = V7
No conclusion from what | showed, need to dig “deeper”



Example 3:

A\
Ve
c
Ve,
w
Vo) =xb,  Ulg) =g

Vo (x) = x7 + ax ,U.(g.) = qu + bg,,

If & =b not controllable
else controllable, but not by the general theory.



Summary of techniques:

L=Xo+ X2

»o
Hormander: Aq = {X }iso,
Aj+1 =AJU {[X,Y] : X Gfa\j,Y GAoU {Xo}} .

Use reasonable subsets
Eckmann, Pillet, Rey—-Bellet:

9y =10, %], 9y, = M2)! (94, %), 9y, = 10,,,%0],

Villani:

Co={Xpo, Cur=1C;,Xo]+ remainder; .

Cuneo, Eckmann:

[[F,%],G] with F=) f.(x)9,.G =D g.x)9,,

[[F,%),Gl= ) (f,9.)9,, , e.g.F =29,



The future?

Try to get rid of as many conditions as possible. But
remember! Not every network works. (And not all
controllable networks are captured by our methods)

B
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Analytic potentials?



And for Yosi?

No problem

Just keep playing with commutators, invariants, trucks,
L



