COUNTING LATTICE POINTS IN THE PLANE

ASAF KATZ, HEBREW UNIVERSITY

GOALS

The goals of this short paper is to discuss Hlawaka’s bound for counting lattice points in the plane.

1. GAUSS’ THEOREM

Theorem. (Gauss) - Define \(B_n(R) = \{ v \in \mathbb{Z}^n \mid \|v\| \leq R \} \), then \(B_n(R) \sim R^n \), more accurately -

\[
B_n(R) = \frac{\pi^{n/2}}{\Gamma(1+n/2)} R^n + O(R^{n-1}).
\]

The proof is trivial.

By central limit considerations, we expect much better cancellations in the reminder term.

We will present a short modification of this counting in two-dimensions, due to Hlawaka, which gives a better bound for the error - \(O(R^{2/3}) \).

2. FOURIER TRANSFORM - STATIONARY PHASE

Here we give some estimates for the actual decay of some Fourier transforms.

Define \(\chi(x) = \begin{cases} 1 & |x| \leq 1 \\ 0 & \text{otherwise} \end{cases} \) and \(\chi_R(x) := \chi(x/R) \).

Lemma 1. \(\hat{\chi}_R(z) = R^2 \cdot \hat{\chi}(Rz) \).

The proof is a trivial computation.

We will be interested in the asymptotics of \(\hat{\chi}(Rz) \).

Lemma 2. Fourier transform of a spherical function is spherical.
Proof. Let $f(x) = f(|x|)$, then $\hat{f}(z) = \int_{x \in \mathbb{R}^n} f(x) e^{2\pi i (z,x)} dx$, by changing to polar coordinates - $\hat{f}(z) = \int_{\rho=0}^{\infty} \int_{v \in S^{n-1}} f (\rho \cdot v) e^{2\pi i \rho (v,z)} f(v) dv d\rho = \int_{\rho=0}^{\infty} f (\rho) \rho^{n-1} d\rho \int_{v \in S^{n-1}} e^{2\pi i \rho (v,z)} j(v) dv$, where $j(v) = J(v, \rho)/\rho^{n-1}$.

Definition 3. The v’th Bessel function is defined as - $J_v(t) = \frac{(t/2)^v}{\Gamma(v+1/2)\Gamma(1/2)} \int_{-1}^{1} e^{i\pi v} (1 - s^2)^{-1/2} ds$.

Theorem 4. $\hat{\chi}(z) \sim |z|^{-1} J_1 (2\pi |z|)$.

Proof. As the function is spherical, we will compute the Fourier transform at the x -axis, namely $z = (z, 0)$.

$$\int_{v \in \mathbb{R}^2} e^{2\pi i (v,z)} dm(v) = \int_{v_1 = -1}^{1} \int_{v_2 = -\sqrt{1-v_1^2}}^{\sqrt{1-v_1^2}} e^{2\pi i z v_1} dv_2 dv_1 = 2 \int_{-1}^{1} \sqrt{1-v_1^2} e^{2\pi i z v_1} dv_1 = C |z|^{-1} J_1 (2\pi z).$$

Remark. Notice that $1 = \frac{n}{2}$, in general we expect the decay rate of a Fourier coefficient of “nice” k -dimensional body in \mathbb{R}^n to be of order $O \left(|z|^{-\frac{n}{2}} \right)$, by central limit.

Example 5. We would like to discover a typical example of the stationary phase method. Fix m, n not both 0, and look at the following integral (as parameter of r) - $\int_{0}^{1} e^{2\pi i (mr^2 + nx)} dx$. We would like to show that $\int_{0}^{1} e^{2\pi i (mr^2 + nx)} dx \to 0$ as $r \to \infty$, in a quantitative manner.

$$\int_{0}^{1} e^{2\pi i (mr^2 + nx)} dx \sim \int_{0}^{1} e^{2\pi i (mr^2 + nx)} \frac{(2mr+n)}{2mr+nr} dx.$$

If $x \neq -\frac{n}{2m}$, we could have used integration by parts in the following manner - $\int_{0}^{1} e^{2\pi i (mr^2 + nx)} \frac{(2mr+n)}{(2mr+nr)} dx = \left[e^{2\pi i (mr^2 + nx)} \right]_{0}^{1} + \int_{0}^{1} 2mr e^{2\pi i (mr^2 + nx)} \frac{2mr+n}{2mr+nr} dx$. The first term is bounded by $\frac{2}{\min \{2mr+n \}_{x \in [0,1]}}$, and the second term is bounded by $2 |m| \frac{1}{\min \{2mr+n \}_{x \in [0,1]}}$, and we get $O \left(\frac{4m}{r} \right)$ estimate for the integral.

But it may well happen that $x = -\frac{n}{2m}$, and we can’t write the integral in the preceding form.

So fix ε-neighborhood around $x = -\frac{n}{2m}$ and dissect the integral into 2 parts - $\int_{\frac{n}{2m}}^{\frac{n}{2m}+\varepsilon} + \int_{|x|+\frac{m}{2m}}^{\varepsilon}$, the first integral is clearly bounded by 2ε, where for the second term, we may use the preceding
computation, but we get \(\min \{ |2mx + n| \}_{m \neq \frac{n}{m}} > \) to be at-least \(2m \varepsilon \), and we get in the estimate \(O \left(\frac{2}{m^2} \right) \).

Now picking \(\varepsilon \) to be a small power of \(r \), \(\varepsilon = r^{-\alpha} \) we get \(r^{-\alpha} + r^{\alpha-1} \) estimate, choosing \(\alpha = 1/2 \) we get the optimized rate.

Corollary 6. Define \(\gamma(t) : [0,1] \rightarrow \mathbb{R}/\mathbb{Z} \) by \(\gamma(t) = (t,t^2) \). The family of curves \(\{ r \cdot \gamma(t) \}_{r \in \mathbb{R}^+} \) gets equidistributed (wrt the Lebesgue measure) as \(r \rightarrow \infty \).

Proof. Apply Weyl’s criterion with the preceding example. \(\qed \)

Remark 7. For general \(f \), when considering integral as \(\int e^{irf(x)} dx \), expand \(f(x) \) by Taylor series near the stationary points, and use the estimate which can be derived for \(e^{ikx^2} \). For multivariable version, expand the Taylor approximation to quadratic form using the Hessian and conjugate the Hessian to deal with a diagonal quadratic, hence the integral turns to a product over the different dimensions of the one-dimensional case.

Theorem 8. *(Stationary Phase estimate)* - \(J_1(z) \sim |z|^{-1/2} \) for \(z \gg 0 \).

Proof. We will use the following presentation of the Bessel functions - \(J_v(t) = \int_0^1 \cos (v \pi \theta - t \sin \pi \theta) d \theta = \Re \int_0^1 e^{v \pi i \theta - it \sin (\pi \theta)} d \theta \).

We can allegedly rewrite the integral as follows -

\[
\int_0^1 e^{v \pi i \theta - it \sin (\pi \theta)} d \theta = \int_0^1 e^{v \pi i \theta - it \sin (\pi \theta)} \frac{v \pi i - it \cos (\pi \theta)}{v \pi i - it \cos (\pi \theta)} d \theta,
\]

if \(v \pi i - it \cos (\pi \theta) \neq 0 \) (or equivalently, \(\cos (\pi \theta) \neq \frac{v}{t} \)).

If so, we could have used integration by parts -

\[
e^{v \pi i \theta - it \sin (\pi \theta)} \frac{v \pi i - it \cos (\pi \theta)}{v \pi i - it \cos (\pi \theta)} = e^{v \pi i \theta - it \sin (\pi \theta)} \frac{it \sin (\pi \theta)}{(v \pi i - it \cos (\pi \theta))^2} d \theta
\]

, where we get a bound of \(O(1/t) \).

The trouble is that we have points for which \(\cos (\pi \theta) = \frac{v}{t} \), exactly two of those for \(t \gg v \).
So circle those points \(\theta_0 = \frac{1}{2} \arccos \left(\frac{1}{r} \right), \ 1 - \frac{1}{2} \arccos \left(\frac{1}{r} \right) \) with \(\varepsilon \)-neighborhoods. outside of those neighborhoods we have \(|v \pi i - it \cos (\pi \theta)| > \delta \) and therefore we get an estimate of the form \(O(\varepsilon) + O(1/\delta t) \).

Now we investigate the relationship between \(\delta \) and \(\varepsilon \) more closely, define \(f(\theta) = \cos (\pi \theta) - \frac{1}{r}, \ \ f'(\theta) = -\pi \sin (\pi \theta), \) recall by Pythagorean theorem we have \(\sin (\arccos (\beta)) = \sqrt{1 - \beta^2} \) therefore \(f'(\theta_0) = \sqrt{1 - \frac{c^2}{\pi^2}} \), therefore we approximate \(f(\theta) \) by \(f(\theta) \sim 1 \cdot (\theta - \theta_0) \) as \(t \to \infty \) (notice we can easily get \(|f(\theta)| > C|\theta - \theta_0| \) for some explicit \(C \) as long \(t > t_0 \)).

Therefore, at \(\varepsilon \)-neighborhoods, we get \(C \varepsilon \) difference, hence \(\left| (v \pi i \theta - it \sin (\pi \theta))' \right| > C \varepsilon \) for \(\theta \) outside of those \(\varepsilon \)-neighborhoods.

Hence we get \(\delta = C \varepsilon \).

Pick \(\varepsilon = t^{-\alpha} \) and get \(t^{-\alpha} = t^{\alpha - 1} \) therefore we choose \(\alpha = 1/2 \) and deduce the required bound.

\(\square \)

Corollary 9. \(\hat{\chi}(z) \sim |z|^{-3/2} \) as \(z \to \infty \).

3. Fourier Transform - Poisson Summation

Assume that \(f \) is a Schwartz function on \(\mathbb{R} \) for now.

As a result of rapid decay, we can define \(\tilde{f}(x) = \sum_{n \in \mathbb{Z}} f(x + n) \), which converges everywhere and uniformly, and the function is bounded by say \(\sum_{n \in \mathbb{Z}} \max |f||_{[n,n+1]} \), which is less than \(K \sum_{n \in \mathbb{Z}} \frac{1}{n^2} \) for appropriate \(K \), because \(f \) is rapidly decreasing.

Exercise. \(\tilde{f} \) is invariant under integer translation (\(\tilde{f} \) is 1-periodic function).

Therefore, we can treat \(\tilde{f} \) as a nice function of \(\mathbb{R}/\mathbb{Z} \), in particular \(\tilde{f} \in L^2(\mathbb{R}/\mathbb{Z}) \), as a result, we can expend \(\tilde{f} \) to a Fourier series, \(\tilde{f} = \sum_{n \in \mathbb{Z}} c_n e_n(x) \). Due to the fact that \(\tilde{f} \) is also differentiable, we have by Dirichlet’s theorem that the Fourier series converge to \(\tilde{f} \) in the pointwise manner.

In particular, if we evaluate the equality at \(x = 0 \) we get \(\tilde{f}(0) = \sum_{n \in \mathbb{Z}} c_n \), where \(\tilde{f}(0) = \sum_{n \in \mathbb{Z}} f(n) \).

On the other hand, by unfolding we get - \(c_k = \int_0^1 \tilde{f}(x) e^{2\pi ikx} dx = \int_0^1 \sum_{n \in \mathbb{Z}} f(x+n) e^{2\pi ikx} dx = \int_{-\infty}^{\infty} f(x) e^{2\pi ikx} dx = \hat{f}(k) \), therefore \(\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n) \).

The same principle is true in \(\mathbb{R}^n \) and we get \(\sum_{\mathbb{N} \in \mathbb{Z}^n} f(\vec{n}) = \sum_{\mathbb{N} \in \mathbb{Z}^n} \hat{f}(\vec{n}) \).
4. Principles of point counting by Fourier Analysis

We are utilizing the two-dimensional analogue of Poisson summation.

Notice that \(B_2(R) = \sum_{n \in \mathbb{Z}^2} \chi_R(n) \). Notice that \(\chi_R \) is not a “valid” function for Poisson summation according to our proof, this can be fixed if we assume some decay condition at infinity for \(\max \{|f|, |\hat{f}|\} \) showing the resulting Fourier series involved in the proof of the summation formula indeed converge absolutely and uniformly. But we will mollify the function shortly, having a smoothed approximation which allows us to use Poisson summation.

Therefore we can infer from the Poisson summation formula -

\[
\sum_{n \in \mathbb{Z}^2} \chi_R(n) = \sum_{n \in \mathbb{Z}^2} \hat{\chi}_R(n) = \sum_{n \in \mathbb{Z}^2} R^2 \hat{\chi}(Rn) = R^2 \langle \chi \rangle + R^2 \sum_{n \in \mathbb{Z}^2} \hat{\chi}(Rn)
\]

Notice that the second term does not converge (one can take \(n = (n, 0) \) and get divergence).

5. Uncertainty and Mollification

Let \(\phi(x) \) be a nice smooth bump function of width \(H \) to be chosen later, with integral one, and we define the modified counting function \(B_2^H(R) = \sum_{n \in \mathbb{Z}^2} \chi_R * \phi(n) \).

Assume that \(\phi_1(x) \) is with width 1, \(\phi_1(z) \sim |z|^{-N} \), then \(\hat{\phi}(z) \sim H^{-2}H^2 |Hz|^{-N} = H^{-N} |z|^{-N} \)

As such smoothing, we are adding some additional counting in a \(H \)-neighbourhood of the boundary of \(B_R \), in particular if the main term we expect is \(\pi R^2 \), for \(B_2^H(R) \) we expect something between \(\pi R^2 \) and \(\pi (R+H)^2 \).

On the other hand, by the convolution identity, we have \(\hat{\chi_R * \phi} = \hat{\chi_R} \cdot \hat{\phi} \).

Notice that in the large modes,
\[
\sum_{|\pi| > H^{-1}}' \hat{\chi}_{\rho}(z) \cdot \hat{\phi}(\pi) = R^2 \sum_{|\pi| > H^{-1}}' \hat{\chi}(R \pi) \cdot \hat{\phi}(\pi) \sim R^2 \sum_{|\pi| > H^{-1}} \frac{1}{R^{3/2} |\pi|^{3/2}} H^{-N} |\pi|^{-N}
\]
\[
= R^{1/2} H^{-N} \sum_{|\pi| > H^{-1}} |\pi|^{-3/2-N} \sim R^{1/2} H^{-N} \int_{\rho = H^{-1}}^\infty \rho \cdot \rho^{-3/2-N} d\rho \quad (N \geq 1, \text{ for integrability})
\]
\[
= R^{1/2} H^{-N} \int_{\rho = H^{-1}}^\infty \rho^{-1/2-N} d\rho = R^{1/2} H^{-N} \left(H^{-1} \right)^{1/2-N} = R^{1/2} H^{-1/2}
\]

For the small modes,
\[
\sum_{|\pi| < H^{-1}}' \hat{\chi}_{\rho}(\pi) \cdot \hat{\phi}(\pi) \leq CR^2 \sum_{0 < |\pi| < H^{-1}} |\hat{\chi}(R \pi)| = CR^2 \sum_{0 < |\pi| < H^{-1}} R^{-3/2} |\pi|^{-3/2}
\]
\[
= CR^{1/2} \sum_{0 < |\pi| < H^{-1}} |\pi|^{-3/2} \sim CR^{1/2} \int_{\rho = 1}^{H^{-1}} \rho \cdot \rho^{-3/2} d\rho
\]
\[
\leq CR^{1/2} H^{-1/2}.
\]

Therefore we get \(B_2^H(R) \sim \pi R^2 + O \left(R^{1/2} H^{-1/2} \right) \).

Notice that the smoothing takes effect in neighborhood of size \(H \) of the boundary, so we have a boundary effect - \(|B_2^H(R) - B_2(R)| \leq O \left(2\pi R \cdot H \right) \), hence we deduce \(B_2(R) = \pi R^2 + O \left(R^{1/2} H^{-1/2} \right) + O(RH) \), pick \(H = R^{-\alpha} \) and get \(R^{1/2 + \alpha/2} = R^{1 - \alpha} \).

So we choose \(3\alpha/2 = 1/2 \) therefore \(\alpha = 1/3 \) and we have \(B_2(R) \sim \pi R^2 + O \left(R^{2/3} \right) \).

REFERENCES

