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Econometrica, Val. 66, Na. 4 (July, 1998}, 929-938

COMMON PRIORS: A REPLY TO GUL

By ROBERT J. AUMANN'

1. INTRODUCTION

GuL (1998) (henceforth simply Gul) attacks the conceptual foundation of the Common
Priar Assumption {CPA}, which is essential for the derivation of correlated equilibrium
in Aumann (1987) (henceforth [Al). We are grateful for the opportunity to discuss the
CPA and the underlying information model in more detail; evidently, our 1987 discussion
was too sketchy.

" To avoid misunderstanding, we stress that we do not consider the CPA “true;” the
concept of truth does not apply here. We do think that it embodies a reasanable and
useful approach to interactive decision problems, though by no means the only such
approach; and that it does not suffer from the deficiencies attributed to it by Professor
Gul.?

Section 2 is devoted to technical preliminaries, and can perhaps be omitted or only
brieflty scanned at a first reading. In Sections 3 through 6, we flesh out an argument for
the CPA that was presented sketchily in [Al. This is then used in Sections 7 and § to
respand to Gul's points.

2. PARTITION STRUCTURES AND HIERARCHIES

There are several representations of information in #-person environments. One
consists of a space X of parameter values, a finite? space (2 of “states of the world,” a
funetion x: 42 — X, and for each of the n players i, an information partition of £2 and a
probability distribution p(-; i, ) on each atom P of his partition; call this a partition
strucrure. Tn such a structure, the meet* of the information partitions is called the
conminon knowledge (ck) partition, its atoms are the ck components of the structure. A
connected® structure is one with a single ck component; since at any state «w, the “true”

'Research support from NSF Grant SES-9209277, and from the Game Theory Program at
SUNY-Stony Brook, is gratefully acknowledged. Alsa, we heartily thank Professar Dav Samet far
several impartant discussions regarding this material. Finally, we wish to express our gratitude,
appreciation, and admiration to the co-editor of Econametrica in charge of this note, and to two
anonymous referess. Over a period of years, they have invested an unusually large amount of time,
effart, and energy in the processing of this note, far beyond the call of duty, and 50 have plaved a
large role in shaping its current farm.

2Gul starts by disputing our ¢laim, in the intraduction to [A], that “the notion of equilibrium is an
unavoidable consequence of (Bayesianism).” We readily agree that (objective) correlated equilib-
rium is not literally an wnavoidable consequence of Bayesianism alone; one alse needs the CPA.
This is made abundantly ¢lear at several places in [A] (Sectians 3, 4b, and 3).

Even with the CPA, Bayesianism itself is not enough for eorrelated equilibrium; one needs
common Kknowledge of Bayesianism, which is a different keitle of fish altogether. We are sorry if
anyone was misled.

IThe finiteness restrictiaon is not without lass of generality, as noted bath in [A] and by Gul.

*Finest common coarsening,

SWith a given partition structure P, ane can associate a graph G, whose vertices are the states e,
and whose edges are pairs of states lying in the same information set for some player. Then P is
connected iff G is.

929



G30 ROBERT 1. AUMANN

ck companent is commonly known by the players, one may for many purposes limit
discussion to connected structures.

Information may also be represented by an n-tuple of knowledge-belief hierarchies
likeS those in Harsanyi (1967-68), Mertens-Zamir (1985), and others; call this a
hierarchy n-tuple.

These two representations of information (by partitions and by knowledge-belief
hierarchies) are closely related, they are two ways of looking at the same thing, two sides
of the same coin. Thus, each state w in a partition steucture P induces a unique hierarchy
n-tuple in a natural way; we call it the hierarchy n-tuple ar . Conversely,” given a
hierarchy n-tuple A, one may find a connected partition structure P with a unique state w
at which & is the hierarchy n-tuple. If, moreover, one asks that P be reduced—i.e., that
each twa different states in P induce different hierarchy n-tuples—then P is uniquely
determined.?

Partition structures look much like the model of [A} and Gul's “information madel,”
but there is a noteworthy difference. There each player { starts out with a prior on all of
02; his posterior probabilities given his information can then be derived, using ordinary
conditional probability calculations. Here, we start with the posteriors. Mathematically,
the two kinds of model are equivalent; each can easily be derived from the other. Here
we have chosen to avaid defining the basic model in terms of a prior on the entire state
space, in order to emphasize our primary concern with the players’ actual information
and probability assessments—not with how the information and assessments were
derived, and not with the situation at any previous time.

3. THE INTUITION FOR COMMON PRIORS

A common prior for a partition structure P is defined as a probability measure g on £2
such that p(E;i, Plq(P) =g(E N P) whenever E is an evenr (subset of {2}, i a player,
and P an atom of £’s infarmation partition. In words, each player’s probability is derived
from g by conditioning on the information in his partition. The common prior assumption
{(for P} says that P is endowed with a common prior.

The basic intuition for the CPA, prominently cited by Gul, was set forth in [A, pp.
13-14] as follows: .. the CPA expresses the view that probabilities should be based on

®But not identical with them. They deal with beliefs—probabilities—only; we are interested also
in knowledge, in the sense of absolute certainty (as distinguished from probability 1). Already in the
twa-player case, a pair of knowledge-belief hierarchies is an awesomely complex object. At the first
level of the hierarchy, each player has a knowledge-belief profile about X that is, he knows that the
true parameter value is in a certain subset B of X, and he has a probability distribution on 8. The
knowledge of the two players must be consistent; one player cannat know something that the other
knows to be false. At the second level of the hierarchy, each player has some knowledge and beliels.
about pairs consisting of elements af X and the ather players’ fiest-level knowledge and beliefs;
these second-level knowledge-belief profiles of the two players must be consistent with each other in
a sense like that deseribed for the first level, and each player’s secand stage profile must also be
consistent with his fiest level profile (e.g., the first level must be the marginal of the second level
when projected onto the first level). And so an, ad infinitum.

"See, for example, Mertens and Zamir (1985)—though we stress again that their set-up is 2 little
different, in that they do not deal with absolute certainty (as distinguished from probability 1 belief).

®Indeed, not only each hierarchy n-tuple, but even just the hierarchy of ane player alone,
uniquely determines the associated partition structure. Since a player may always be presumed to
know his own knowledge-belief hierarchy, it follows that he also knows precisely the relevant
partition structure.
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infarmation; that people with different information may legitimately entertain different
probabilities, but there is no rational basis for people who have always been fed precisely
the same information to do so. ... Under the CPA, differences in probabilities express
differences in information ondy.”

A decade later, we must admit that we could have been more explicit here. After all,
the players do nof in general have the same information; why is the argument relevant
for them?

Ta apswer this, let us imagine that the players forget all their differential information;
formally, this is represented by a partition structure in which each of the partitions is
replaced by the trivial partition (consisting of (2 only). In this new situation, the players
do-have precisely the same information. So we ean apply the abave argument from [A],
and conclude that then they all do have the same prabability; denote it 4.

Now, suppose the players are reminded of what they forgot; formally, return to the
original partitions. Being reminded is a way of acquiring information; so each player's
current probabilities may be derived from g by conditioning on his information. Since we
are now back where we started, it is reasonable to suppose that also the probabilities are
the same as those with which we started; that is, they are all derived from g by
conditioning on. the private information. But this means that g is a comman prior.

This argument is informal. If we wish to formalize it, we must expand the framework
to a dynamic one, in which a player's information can change. And, we must formulate
axioms that embaody the underlying principles that

(1) players with the same information have the same probabilities; and

(2) when information is acquired, probabilities are updated by the usual rules of
conditioning.

Do we wish to formalize it? We think yes. In conceptual discussion, it js easier ta come
to grips with an argument—tao identify the essential points, to separate the difficulties—if
it is formal. Nevertheless, the “theorem™ below is nothing more than a precise formula-
tian of the above informal argument fram [Al

It appears that our main difference with Gul revolves around the dynamic framework.
He views the given informational situation as static, and considers it inappropriate to ask,
“where did we come from, what might we have known before?” Imbedding the given
set-up in a larger one with hypothetical elements bothers Gul, even though such
imbeddings are standard in axiomatic analyses (see Section 8a).

Note that the argument in this section depends basically on the substantive notion of
“acquiring information" rather than on this or that formalism.

4. FORMAL TREATMENT

Define a dynamic framework as a family I of partition structures P, with the same
state space {2 and the same player set, that is closed under coarsening; i.e.,

(0) If 2 is the partition profile’ in some struciure P in the family 3, and & is obtained by
coarsening’® one or mare of the partitions in P, then there is a structure Q in 3 with
partition profile &.

The structures in a dynamic framework 3 represent different situations that may arise
as time progresses and the players acquire more and more information. Each P in 3 is

qnltuplc of infarmation partitians.
“One partition coarsens another if each atam of the coarser partition is a union of atoms of the
finer one.
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viewed as resulting from some history; we ask that 3 contain all possible structures that
may have preceded P in this history. Call 3 censistens if for all F and Q in 3, events E,
and players ¢ and j, we have :

(1) If the same eventr P is an atom of the partitions of both { and | in P, then
peli L, PY=pole; f, ), where pp denotes the probabifities in P; and

(2} Suppose that i's pariition in P refines his partition in Q, while each other player's
partition is the same in P as in Q. Let P be an atom of I's partition in P, and { that atom of
s partition in Q that includes P. Then pplE; i, PYpolPi L, Q) =po(ENP;L,Q) and
pelidi Y =polij,) forj #i.

These two axioms embody the two numbered “principles” in Section 3. Note that (1)
yields

(1a} If each player’s partition has just one atom—namely, all of l—then there is a single
probability ¢ on () that is the same for all players and represents all their probabilities.

This means that if the players know “nothing,” they must have the same probabilities.

THEOREM: In a cansistent dynamic framework, each partition structure P has a common
pror.

Proor: For simplicity, take n = 2; the case of general # is similar. Call the players 1
and 2.

Starting from the partition profile & = (', #?) in P, canstruct two auxiliary profiles
& and . Define & as the trivial profile, in which &' and & have only ane atom each,
namely all of (2. Define &% by &' =" and #*=4". Thus & arises from 2 when
both players “forget” their private information; & from &, when 1 is then “reminded” of
her information, but 2 is not. One may also think of # as arising from % when 2 is then
reminded of Ais information.

By (0}, there are partition structures Qt and R in 3 whose partition profiles are & and
ZZ respectively. By (1a), there is a single probability distribution g on &2 that represents
both players’ probabilities in Q. Applying (2) twice, first to go from Q to R, then from R
to P, we find that the probabilities in P are the conditionals of g given the information of
each player in P. Thus P has the common prior 4, so the proof is complete.

5. DISCUSSION

It is worthwhile to be a little more explicit ahout the mativation for our treatment. .

As we have said, the CPA expresses the idea that differences in probabilities shodld
reflect differences in information osfy. If one sets forth all relevant information in
sufficient detail, then in principle, there should be no room for differing probabilities.
When we say all relevant information, we mean afl' the schools the players attended,
their childhood experiences, even their genes (which indirectly reflect the experience of
previous generations). Of course, the players do not need to know all this information;
indeed, usually they know very little, What we are saying is that if people have precisely
the same information about all these factors—no matter how much or how little it
is—then it is not unreasonable to assume that they entertain the same beliefs.

Admittedly, in concrete instances it is far beyond anybody’s power to write down an
explicit model of this kind. Yet solid, down-to-earth conelusions are routinely drawn from
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theoretical models whose complexity—or simply sheer size—defies the imagination.
General equilibrium theory requires that economic agents have complete preferences
over commaodity spaces whose dimension may run into the tens of thousands. The first
theorem in game theory (Zermelo (1913)) says that chess has a pure strategy saddle
point; it cannot even be stafed—much less proved—without considering strategies that
are beyaond anyone’s power to describe or even imagine in any concrete sense, Using
Zermelo’s theorem, one can shaw that in the game of Hex, the first player has a winning
strategy (Gale (1979)); nobody knows what it is, and prabably it cannot be described in
any practical sense. The infinite hierarchies of beliefs to which Gul refers are objects of
astounding complexity, which it is utterly unrealistic to ascribe to human agents. One
could adduce more and more examples.

In all these cases, the theoretical models have important, widely recognized implica-
tions. We suggest that here too, it is perfectly legitimate to see where we are led when we
allow the states to include alf relevant information, without providing details,

6. A QUESTION ABQUT AXIOM {(2)

Thaugh the partitions of players other than { are the same in P and Q, nevertheless it
does not seem that only i's information is changed in going from Q to P. Let & and &'
be i’s partitions in P and Q respectively. Suppose the true state « of the world lies in an
atom of &’ that is nontrivially partitioned by 2. Let j be a player other thap i. In Q,
Player / does not know the element of % in which o lies, and j knows that i does not
know this. In P, Player { does know the element of 2’ in which w lies, and j knows that
i knows this. Thus in the passage from Q to P, both ¢ and | have learned something; {
has Jearned the element of £, and j has learned that i has learned the element of 22",
Indeed, in P it is common knowledge that { knows the element of #°, so { has learned
mote than just the element of 2 she has, for example, learned that j has learned that
she has learned the element of #‘. Under these circumstances, is it still true that in
going from Q to P, Player j should not change his probabilities, and i should simply use
the otdinary rules of conditioning?

To answer this, we must look more closely at the meaning of the partition structures P
and Q. Imagine that the players are called into a room, and in each other’s presence are
told 12, P, and Q, that upon leaving the room, { will be told the true element of &', each
ather player will be told the true element of his partition, that i will be told the true
element of 2 at a specified time ¢ in the future, and that nobody will find out anything
else.'” Then Q and P represent the situations before and after ¢ respectively. Clearly i
learns something new at time ¢, but does any other player § learn anything that he did
not already know?

We claim that he does not. It is true that j gets to know at time ¢ that i knows the
element of ', but he knew beforehand that he would get to know this. It is as if j is
taking a train from Basel to Zurich. As the train pulls out of the Basel station, he knows
that he is in Basel, and later he knows that he is in Ziirich. But that is not “learning.” He
knew already in Basel that he would get to Ziirich; that he indeed did so should not make
him revise his probabilities. Similarly, { knew that j will know that she (£) will know the
element of ', so what she really learns at time ¢ is only the actual element of ¢
Therefore, { should indeed apply the ordinary rules of conditioning in passing from Q
to P.

'The stary abaut the toom is for vividness only; it should nat be taken too literally.
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Differently put: the elements of (2 deseribe the situation in P—that after time ¢. The
partitions in Q describe what the players know before ¢ about what they will know after ¢.
Clearly, then, only { learns anything at time ¢; what she learns is only the true element of
P

7. GUL'S “PRIOR INTERPRETATION"

This interpretation of Gul's “information model” (essentjally our “partition structure}
involves two stages: “prior™ and “current.” The given partition structure represents the
current stage. At the prior stage—which is meant to model “a situation that actually
occurred at some previous time"”—there is no differential information; all players
consider all elements of £2 possible. As Gul points out, this implies that the agents know
each others’ beliefs. He says that “much of informaticn economics is predicated on this
view™ and it “is often boldly assumed,” but is *certainly not a tautology.” It appears from
this that he considers his *prior interpretation” as dubious, even without common priors.

We agree. Though it may happen that there is an “actual” prior stage at which beliefs
are commanly known, this is the exception rather than the rule. If there is, then the
analysis in the foregoing sections applies, and we conclude that at that stage the beliefs
must be the same—i.e., we have a common prior. If, as seems more likely, the beliefs at
an “actual” prior stage are different and nof commanly known, then there must be
differential information already at that stage; and then again, the foregoing analysis leads
us to a common prior at a hypothetical stage that precedes the *prior stage,” and so also
at the “current” stage. The only case that would be inconsistent with the CPA is if the
beliefs at the prior stage were commanly known and different; but Gul has adduced no
evidence or even argument that such a situation is tenable,!”

> The passage from Savage (1954) cited by Gul in his footnote 6 must be read in cantext. As his
bool’s title indicates, Savage's primary concern was not decision theory but statistics; specifically,
statistics as a taol for scientific induction. Here Savage sensed a difficulty. His theory was personal.
It depended on the individual; in principle, based on the same evidence, different individuals could
legitimately reach different conclusions on, say, the temperatuce of the sun, This personal appraach
~does not seem to jibe with generally accepted views of science. Many of us view science as an
attempt to get at the truth, and that seems unrelated to our personal preferences for tea or coffee.

The whaole of Savage's Section 4.6 {from which the passage is quated) is devated to grappling with
this problen1, to trying to bridge this gap. On the one hand, Savage does not, in fact, include
anything like the CPA or our Axiom (1)—his formal apparatus really is purely personal. On the
other, he did consider this a problem, and was locking for ways around it. See footnote 13 in [A],
which describes some of Savage's approaches to this problem (and concludes, quite mildly, that “it's
just possible that he would have welcomed the CPA").

So there is some ambivalence in this section. In the cited passage, Savage says that the
“incompleteness” (the personalistic nature of the probabilities) does not “distress” him. It does,
however, bother him enough to address; and he is willing to call it an “incompleteness.” One can
read this as saying that though inconsistent beliefs are an embarrassment, they are something one
can live with, are not unacceptable, not a reason to reject the theory. But that doesn't mean that he
would not have weleamed a2 more “complete” theory, as [A] suggests.

Note the end of the quote: “...though the harmful effects of (friction in communication} are
almost incapable of exaggeration.” This is typical of his ambivalence; he seems to be backing away
from what he just said—to be saying, “well, maybe disagreements are, after ajl, the cesult of ‘friction
in communication.’”
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. GUL'S “HIERARCHY INTERPRETATION

This is basically what is presented in Section 2 above. Let us start by noting that Gul
does not challenge the formal correctness of [A}; the issues he raises are all interpretive.
An axiomatic development, like that in Sections 2-6 above, is ideally suited to deal with
such matters: By separating sharply between assumptions and the formal process of
deducing conclusions from them, it enables us to focus and clarify the interpretive
discussion.

We agree with Gul that the above development of common priors is essentially
dynamic, that it depends on the idea of acquiring information and using it to update
one's probabilities. And though we consider this perfectly legitimate and intuitive, we
also agree that it would be desirable to characterize common priors and /or the CPA
directly in terms of the “current,” posterior probabilitics, without any reference, cither
implicit or explicit, to any prior stage."?

We now list Gul’s arguments, together with our responses:

{a) A hierarchy n-tuple does not refer to any prior stage. So the prior stage is irrelevant, and
any arguments using a hypothetical, artificially constructed prior stage are inappropriate.

What Gul fails to realize is that in amy axiomatic system, the arguments depend
crucially on hypothetical, artificial situations that never existed. The essence of the
axiomatic approach is that it works with an entire system, and with the relations between
the objects in it. In particular, it relates the given, “real,” situation to a whole lot of other
situations, all of them hypothetical. This happens constantly—in Arrow’s {1951} social
welfare theory, in the Shapley value (1953}, in Nash's (1950} bargaining solution, indeed
even in Savage’s (1954) development of probabilities themselves! Thus to derive Nash's
solution of a given unsymmetric bargaining problem, one must consider a whole lot of
other problems, including a symmetric one. That is, one must say how the players would
divide the payoff if they were in this other situation, even though they are not, never
were, and never will be. In Savage's theory, to deal with a single “real” choice problem,
one must consider a hast of ather, hypothetical anes.** Similarly for Arrow, Shapley, and
indeed almost any axiomatic system.

Y Nevertheless, we disagree with Gul's assertion that “to talk about one player being more ...
informed than another ... necessitate(s) a dynamic framework in which information is actually
acquired.” Tn fact, no dynamics are required for this, in either representation of infermation. With
partitions, 1 is more informed than 2 at the state « if and only if the atom of ' containing w is
strictly included in an atom of 2. This nicely captures the intuitive idea of being “more informed:"
1 knows everything thar 2 knows, but 2 does not know everything that 1 knows. With hierarchies, 1 is
more informed than 2 if and only if 1 knows 2's hierarchy (.e., 1's hierarchy allaws for only ane
hicrarchy of 2, and so ascribes prabability [ to it), but 2 does not know 1's.

“Savage himself was very much aware of the crucial role played in probability by hypothetical
constructs that never existed and never will. {n discussing a medical decision problem, Savage (1971)
wrote, It [s quite usual in this theory ta contemplate acts that are not actually available, These
serve something like construction lines in geometry. A typical decision theoretic argument runs, “If
B8 were available, T would clearly prefer A to B and B ta C; therefore, my momentary impression
that C is moré attractive than A4 will not bear inspection.” In particular, I can contemplate the
possibility that the lady dies medically and yet is restored in good health to her husband.” In
referring to a different problem in the same letter, he wrote, I would regard it as fanciful but not as
nonsense to say, “You experience sunshine if it rains, and rain otherwise.”” Hypothetieal, actificial
caonstructs were bread and butter to Savage.
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(b} Since there never was a prior stage, the prior distribution is meaningless. In particular,
a common prior—if there is one—is “uninterpretable.”

Whereas point (a} challenged the conceptual cvalidity of the theorem and/or its
derivation, here it is the conceptual meaningfuiness of the conclusion that is challenged.

In response, we note first that the conclusion does have at least one important
practical implication not involving the prior at all, and so not requiring “interpretation’
of the prior: When knowledge and probability 1 are the same,'® the action profile at any
state must be among those occurring with positive probability in some correlated
equilibrium. Since the correlated equilibria often constitute a rather circumscribed set,
which can be explicitly calculated by solving a finite family of linear inequalities, this has
cansiderable “predictive” content.

Second, we hold that the conclusion does have clear intuitive meaning, even as stated.
We do not agree that a common prior has no “meaning” or “interpretation” unless there
actually was a time at which some particular person held this prior as his probability
distribution. The interpretation of a common prior derives naturally from the axioms: It
represents the “correct” or “appropriate” probabilities—what people would or should
believe—if there were no private information. Admittedly, the existence of such “neu-
tral” probabilities is not obvious. But that is what the axioms yield; and in any case, the
meaning or interpretation of this concept is clear,

{c) A state w in ) represents an n-tuple of infinite hierarchies of beliefs of the players over
the space X of relevant parameter values. A partition structure is only a “notational device”
for representing these hierarchies. Therefore, the CPA can be defended only by defending its
implications for these infinite hierarchies. These implications are unclear. Therefore, the CPA
cannot be defended; ir must be refecrad.

First, Gul’s claim is not quite correct; a state o represents an z-tuple of knowledge-be-
lief hierarchies, not just of helief hierarchies (see Section 2). While this is not very
important, it helps us to see why some of Gul's other claims may be problematic (see
Section 8d).

Second, we do not agree that partition structures are merely “notational devices” to
represent hierarchies. The two madels are simply equivalent. The hierarchy madel has
the advantage that its tautological nature is more apparent. For other purposes, including
ours, the partition model is more useful; it is more transparent and less cumbersome.
Since the maodels are equivalent, one may choose the more convenient ane far any
particular task that comes to hand; for our task, the partition maodel is more convenient.

Third, even if we would graot that the hierarchy model is the “primitive,” our
argument would not be affected. We could still construct {2 and the various partition
structures P (see the scenario in Section 6), still assume the axioms in Section 4, and still
deduce common priors. If. the originally given hierarchies do not admit commaon priors,
the axioms are violated. Thus if Gul wishes to challenge the CPA, he must come to grips
with the axioms.

Fourth, the idea that interpretations must be directly in terms of primitives is strange.
We do not go back to Dedekind cuts every time we think about real numbers, nor to €, §
every time we think of continuity. Savage derives probabilities from preferences, but
surely we do not return to preferences every time we formulate an idea about probability.

Le., at each state, each player assigns probability 1 to an event if and only if he knows it. When
this is not the ease, a similar but more complicated conclusion halds.
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Try “interpreting” covariance 0, or even just independence, directly in terms of prefer-
ences!

(d) How can common priors reflect the view that “differences in probabilities reflect
differences int information only™ if the beliefs of player 1 alone can preclude a common prior?

The force of this argument eludes us. First, it is afways the case that the hierarchy of
one player alone determines the entire associated partition structure, and therefore also
whether or not the CPA applies; see footnote 8. Second, our position can be roughly
summarized by “CPA iff {(differences in probabilities imply differences in information).”
Gul's example has “not CPA.” How is our position contradicted?

“(e) The CPA does not imply that the beliefs of an “outside observer™ over the players’
action profiles constinute a correlated equilibrium.

This sounds incorrect, at least when the term “outside™ has its straightforward, usual
meaning, as in [Al—that the observer has no private information.’® f, as Gul suggests,
we take him as an ordinary person with his own beliefs, then our axioms (i.e., the CPA)
apply to him as well as the players; so since he has no private information, his probability
must be a commen prior of the players. By [Al, this is a correlated equilibrium.

In any case, outside observers are not central to our view; in [A] they appear anly once,
and then not i connection with the CPA.

{f) Arguing for common priors on the grounds that people with the same Information
should have the same beliefs is like arguing for visk aversion on grounds of decreasing
marginal wtiliey,

The comparison with risk aversion is quite apt in a number of ways. In bath cases
there are three modes of formulation:

the purely conceptual, as in “people dislike taking risks and “beliefs
are based on information;”

the abstract formal, as in “a sum of money is preferred to a lottery
whase expectatian is that sum™ and Axiom (1} in Section 4; and

1

the concrete formal, as in “the marginal utility of money is decreasing’
and “there exists a common prior.”

We don't believe in one formulation “because” we believe in another; the three modes
simply express the same ideas in different ways. Indeed, we don’t “believe” in these
axioms at all; they are not articles of faith. Like Euclid’s parallel postulate, they have
intuitive appeal, but are not “compelling.” Their importance stems from their pulling
together a large body of theory, while maintaining a certain simplicity and spareness.
Like other scientific hypotheses, they must be judged by where they lead rather than by
considerations of innate plausibility.

Institute of Mathematics and Center for Rationality and Interactive Decision Theory, The
Hebrew University of Jerusalem, 91904 Jerusalem, Israel.

Manusenpt received July, 1994, final revision received July, I997.

' By this we mean that it is cammon knowledge that each player knows what the gbserver knows;
i.e., the chserver’s partition coarsens each player’s partition.
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