
67 On Choosing a Function at Random

1 Introduction

We use the prefix ‘‘m-’’ to abbreviate ‘‘measurable.’’ Let X and Y be m-

spaces1 and let YX denote the set of all m-transformations from X into

Y . We are interested in random procedures for choosing a member of

YX . An example of such a random procedure is a stochastic process; here

X is the time axis. Another example is a mixed strategy in a game, in

which the player has to pick a member of Y on the basis of information

which may vary over X (here YX is the set of pure strategies).

The relation of the concepts we use here to standard concepts from the

theory of stochastic processes will be briefly explored in section 7.

2 Distributions over Function Space

There are two approaches to the problem of formalizing the intuitive

notion of ‘‘random procedure for choosing a member of YX .’’ First, we

may define a distribution—i.e. probability measure—on YX . However,

since YX is not endowed with any m-structure to begin with, we must

impose an m-structure on it as part of the definition of ‘‘distribution.’’

Thus a distribution on YX should be defined as a pair (C; m), where C is a

s-ring on YX and m is a measure on C.

Let us now choose a function f at random from YX , and a point x at

random from X , and inquire as to the distribution of a point on a (not

necessarily continuous) path, when both path and time are chosen at

random. More precisely, let us fix distributions (C; m) on YX and n on2

X , and let j : YX � X ! Y be the mapping defined by jð f ; xÞ ¼ f ðxÞ;
we wish to regard j as a random variable, and seek its distribution. Now

j has a distribution only if it is an m-transformation; indeed it is easily

seen that for BHY , we have Probf f ðxÞ A Bg ¼ ðm� nÞfj�1ðBÞg, so that

j�1ðBÞ must be measurable in YX � X whenever B is measurable in Y .

This places a restriction on the choice of the m-structure C on YX ; it

should be chosen so that j is an m-transformation.

Rather surprisingly, it is in general impossible to define an m-structure

on YX that will satisfy this condition. For example, it is impossible even
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1. Spaces on which there is defined a s-ring of m-sets but not necessarily a measure. The
s-ring of m-sets is called the m-structure of the space.

2. Note that there is no need to specify an m-structure on X as part of the definition of dis-
tribution, as X is provided with an m-structure to begin with.



when X and Y are both copies of the unit interval with the usual Borel

structure [2] (henceforth this m-space will be denoted I ). Put in other

words, we cannot define a probability distribution over all of YX that will

enjoy reasonable properties. The question now arises whether we could

not achieve our aim by restricting attention to a subset F of YX (such

as the set of all continuous functions when X and Y are copies of the

unit interval). More precisely, for F HYX define jF : F � X ! Y by

jF ð f ; xÞ ¼ f ðxÞ. Is it possible to impose an m-structure on F so that jF
will be an m-transformation?

Obviously the answer depends on F ; for F ¼ YX we have seen that it is

negative, whereas when F has only one element it is trivially positive. We

will say that an F for which the answer to the above question is positive

is admissible; the appropriate m-structures will also be called admissible.

Thus the admissible subsets of YX are precisely those over which a prob-

ability distribution can reasonably be defined. The problem of character-

izing the admissible subsets of YX has been solved under fairly wide

conditions on Y and X [1,2]. In particular, when Y and X are copies of

I , then F is admissible if and only if it is a subset of some Baire class (of

arbitrary finite or denumerable order). Thus for example the set of all

continuous functions is admissible, as is the set of all functions with dis-

continuities of the first kind only, and so on.

Returning to our original problem, we see that the correct definition of

a distribution over YX is a triple ðF ;F; mÞ, where F is an admissible m-

structure on the admissible set F , and m is a probability measure on F.

Intuitively, this is a random procedure for picking a member of YX ,

under which the members of YX that ‘‘can actually occur’’ are precisely

the members of F .

3 Random Variables over Function Space

In contrast to the first approach, which is based on the idea of a ‘‘dis-

tribution’’ over YX , the second approach is based on the idea of a

‘‘random variable’’ with values in YX . Specifically, let W ¼ ðW; b; lÞ be

an arbitrary probability space which will serve as our sample space.

Intuitively, our ‘‘random variable’’ is a function Y from W to YX . Here

again we are interested in the distribution of f ðxÞ, when both f and x are

chosen at random; we may expect that some condition must be placed on

Y to ensure that f ðxÞ has a distribution. Fortunately, the appropriate

condition is not that Y be an m-transformation, because this would again

involve defining an m-structure on YX . To state the correct condition, we

recall that to every function from W to YX there is a corresponding func-
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tion from W� X to Y ; to Y: W ! YX there corresponds the function

Q: W� X ! Y defined by Qðo; xÞ ¼ YðoÞðxÞ. It is easily seen that if

x A X is chosen according to a distribution n, then for BHY , we have

Probf f ðxÞ A Bg ¼ ðl� nÞfQ�1ðBÞg. Thus the correct condition is that the

function Q be an m-transformation. Clearly the simplest procedure—

which we adopt—is to define a random variable varying over YX with

sample space W to be an m-transformation Q from W� X into Y .

4 Ranges and Admissible Sets

The purpose of this note is to investigate the relation between the con-

cepts of ‘‘random variable’’ and ‘‘distribution’’ defined in the previous

sections. Let us define the range of a random variable Q to be the set of

all functions in YX of the form Qðo; �Þ, where o A W. The range is the set

of points in YX that ‘‘can actually occur’’ under Q; thus it corresponds to

the notion of an admissible set under the ‘‘distribution’’ definition. Our

first question is to what extent this correspondence can be made precise.

theorem 1 Every range is admissible. Conversely, for every admissible set

F there is a sample space W and a random variable Q such that the range of

Q is F .

Proof The converse is trivial, because we may take W ¼ ðF ;FÞ and

Q ¼ jF , where F is an admissible m-structure on F . For the first part, let

Q be a random variable with range R. As in the previous section, denote

Qðo; �Þ by YðoÞ; thus Y : W ! RHYX . For every f A R choose one

member o of W, such that YðoÞ ¼ f ; let W0 be the subspace of W

obtained in this way, with the subspace structure (a set is measurable in W0

if and only if it is the intersection of W0 with an m-set in W). Let Q0 be the

restriction of Q to W0 � X . Now the restriction of an m-transformation

to a subspace is still an m-transformation; hence if we give W0 � X the

subspace structure (i.e. as a subspace of W� X ), then Q0 will be an m-

transformation. But it is easily verified that the subspace structure

on W0 � X is the same as the product structure; hence Q0 is an m-

transformation also when W0 � X has the product structure.

W0 and R are in one–one correspondence under the correspondence

o $ YðoÞ. Let us impose on R the structure corresponding to that of W0;

then W0 and R are isomorphic. Hence W0 � X and R� X are also iso-

morphic. Let us denote the isomorphism by z : R� X ! W0 � X ; we

have zðYðoÞ; xÞ ¼ ðo; xÞ, where on the right side o is uniquely defined

because of the definition of W0. Now jRðYðoÞ; xÞ ¼ YðoÞðxÞ ¼
Qðo; xÞ ¼ Q0ðo; xÞ ¼ Q0zðYðoÞ; xÞ; thus jR ¼ Q0z. But both Q0 and z are
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m-transformations, and therefore jR is also an m-transformation. There-

fore R is admissible, and the proof of Theorem 1 is complete.

5 Ranges and Admissible Sets when the Sample Space Is Standard

Up to now we have allowed the sample space W to be arbitrary; in prov-

ing that every admissible set F is the range of some random variable, we

even allowed W to vary with F . In some applications, though, W is a copy

of the unit interval I with Lebesgue measure, or can be taken as such

without loss of generality. This restriction does not change the fact that

every range is admissible, but it does cast doubt on the converse.

Let us further restrict our consideration to the case X ¼ Y ¼ I . (This

restriction is not as severe as it may at first seem; according to a theorem

of Mackey [6], every Borel subset of every separable metric topological

space, when endowed with the subspace structure, is isomorphic3 to I.)

As we remarked above, there is in this case an elegant characterization of

admissible sets, namely as arbitrary subsets of Baire classes of arbitrary

order. We seek now a characterization of ranges.

theorem 2 If X, Y, and W are copies4 of I, then every range is a subset of

some Baire class, and every Baire class is a subset of some range.5

This theorem does not give a complete characterization of ranges, similar

to the complete characterization of admissible sets mentioned above. For

example, I do not even know whether every Baire class is a range; on the

other hand, it is highly likely that there exist subsets of Baire classes that

are not ranges.6 What Theorem 2 does do is give an ‘‘order of magni-

tude’’ characterization for ranges; a range can be as large as a Baire class

of arbitrarily high (denumerable) order, but no larger.

Proof That every range is a subset of some Baire class is a trivial con-

sequence of Theorem 1 and the fact that every admissible set is a subset

of some Baire class (proved in [2]). To prove the second part of Theorem

2, we define a transfinite sequence fFag, where a ranges over all denu-

3. Two m-spaces are isomorphic if there is a one–one correspondence between them, which
carries m-sets onto m-sets in both directions.

4. Strictly speaking, W is a copy of ðI ; lÞ rather than of I . However we are dealing with
measurability properties rather than with measure properties, and will henceforth (for the
remainder of the section) ignore the measure on W.

5. ‘‘Baire class’’ is a topological concept, so its appearance in a theorem that deals with m-
structures should be explained. Since X and Y are in one–one correspondence with I , we
can impose on them topologies corresponding to the standard topology on I ; the theorem
pertains to these topologies. For an intrinsic characterization of Baire classes in terms of
m-structures, see [1, 2].

6. The entire discussion is under the assumption W ¼ X ¼ Y ¼ I .
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merable ordinals, inductively as follows: F0 is the set of all continuous

functions from X to Y ; Fa is the set of all functions that are pointwise

upper limits of sequences of functions in 6
b<a

Fb. We will prove by

induction on a that Fa is a range; since the a0th Baire class is clearly a

subset of Fa, this will complete our proof. To start the induction, let

F0ða;BÞ ¼ f f A F0 : f ðaÞ A Bg, where a A X and BHY . Let F0 be the

m-structure on F0 that is generated by all sets of the form F0ðr;UÞ,
where r is rational and U is open. (It happens that F0 is also gen-

erated by the uniform convergence topology on F0, but this does not

concern us here.)

lemma 1 ðF0;F0Þ is an admissible pair.

Proof We first show that if a is arbitrary and B is measurable, then

F0ða;BÞ A F0. Indeed, let r1; r2; . . . be a sequence of rationals converging

to a. Then for open U , f ðaÞ A U if and only if ðbNÞðEnXNÞð f ðrnÞ A UÞ;
thus F0ða;UÞ ¼ 6y

N¼1
7y

n¼N
F0ðrn;UÞ, and hence F0ða;UÞ A F0. Since

the m-structure of Y is generated by the open sets, and the mapping

B ! F0ða;BÞ carries unions into unions and complements into comple-

ments, it follows that F0ða;BÞ A F0 for all a and all measurable B. The

lemma now follows from theorem G of [2].

lemma 2 ðF0;F0Þ is isomorphic to I .

Proof Denote the infinite product I � I � . . . by Iy; the members of Iy

are sequences t ¼ ft1; t2; . . .g. The m-structure of Iy is generated by cyl-

inder sets of the form I � � � � � I �U � I � . . ., i.e. by the sets

ft : ti A Ug, where U is open; such a set will be denoted Iyði;UÞ.
Let fr1; r2; . . .g be the set of all rationals in I . Define a mapping

x : F0 ! Iy by xð f Þ ¼ f f ðr1Þ; f ðr2Þ; . . .g. We first show

i. x is an isomorphism between F0 and its image xðF0Þ. Since a continuous

function is completely determined by its values on the rationals,

xð f1Þ ¼ xð f2Þ implies f1 ¼ f2; in other words, F0 and its image xðF0Þ are
in one–one correspondence under x. Moreover, if xðF0Þ is considered a

subspace of Iy with the subspace structure, then x maps the generator

F0ðri;UÞ of F0 onto the generator xðF0ÞX Iyði;UÞ of the structure of

xðF0Þ. Hence the generators are also in one–one correspondence under x,

and a fortiori x is an isomorphism between F0 and xðF0Þ.

Next, we show

ii. xðF0Þ is an m-set in Iy. This follows from the remark that a function f

on the rationals between 0 and 1 can be extended to a continuous func-

tion on I if and only if it is uniformly continuous on the rationals. Thus
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we have t A xðF0Þ if and only if

ðEkÞðbjÞðjtm � tnj < 1=k whenever jrm � rnj < 1=jÞ:

In other words,

xðF0Þ ¼ 7
y

k¼1

6
y

j¼1

7
ðm;nÞ A AðjÞ

ft : jtm � tnj < 1=kg;

where Að jÞ ¼ fðp; qÞ : jrp � rqj < 1=jg. Since it is well known (and easily

proved) that the set in curly brackets is an m-set in Iy, this demonstrates

(ii).

Iy is known to be isomorphic to I ; from (ii) it follows that xðF0Þ
passes under this isomorphism to a Borel subset of I . According to a

theorem of Mackey [6], every non-countable Borel subspace B of I is

isomorphic to I . Hence xðF0Þ is isomorphic to I . The lemma now follows

from (i).7

Lemma 2 says that W and F0 are isomorphic; we may therefore assume

without loss of generality that they are identical, and define Q ¼ jF0
.

Then by Lemma 1, Q is an m-transformation, and by Lemma 2, its range

is F0. This starts our induction.

For the inductive step, let a be a finite or denumerable ordinal, and

suppose it has been shown that Fb is a range for all b < a. Let W1;W2; . . .

be a sequence of copies of W, and let Q1 : W1 � X ! Y , Q2 :

W2 � X ! Y ; . . . be a sequence of random variables such that each Fa

with a < b is the range of infinitely many of the Qi. The infinite product

W1 �W2 � . . . is isomorphic to W, and as before we suppose without loss

of generality that it equals W; thus for o A W, we may write o ¼
fo1;o2; . . .g. Define Q : W� X ! Y by Qðo; xÞ ¼ lim supi!yQiðoi; xÞ.
From the fact that the Qi are m-transformations, it follows that Q is an

m-transformation; furthermore it may be seen that the range of Q is

exactly Fa. This completes the proof of Theorem 2.

Note that we started our induction by showing that F0 is a range, but it

would have been su‰cient to show that F0 is a subset of some range; this

is in fact easier. We chose to show that F0 is a range, because this lemma

is of interest in itself.

6 The Distribution of a Random Variable

Let Q : W� X ! Y be a random variable; we wish to define the concept

of ‘‘the distribution of Q’’. According to section 2, this must be of the

7. I am grateful to B. Peleg for pointing out an error in the original proof of this lemma.
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form ðF ;F; mÞ, where F and F are admissible and m is a measure on F.

The natural definitions would be as follows: F is the range of Q. The

m-structure is the identification structure; that is, a subset G of F is in

F if and only if Y�1ðGÞ is an m-set in W. The measure m is defined by

mðGÞ ¼ lY�1ðGÞ, where l is the measure on W. These definitions are

‘‘natural’’ in the sense that the induced distribution on Y is the same if

Q or if ðF ;F; mÞ is used.

The only trouble with this ‘‘natural’’ definition is that I do not know

whether as defined, the structure F is admissible.8 Indeed, let i : X ! X

be the identity, and define Y� i : W� X ! F � X by ðY� iÞðo; xÞ ¼
ðYðoÞ; xÞ. Then Q ¼ jF � ðY� iÞ, and hence Q�1 ¼ ðY� iÞ�1j�1

F . Now

let B be an m-subset of Y . Then Q�1ðBÞ is an m-subset of W� X , and

hence ðY� iÞ�1j�1
F ðBÞ also is. We know that ðF ;FÞ is an identification

space of W under the identification map Y. If we only knew that

ðF ;FÞ � X is an identification space of W� X under Y� i, then the

measurability of j�1
F ðBÞ would follow from that of ðY� iÞ�1

j�1
F ðBÞ, and

we could deduce that F is admissible. The proposition that ‘‘if Y is an

identification map and i an identity map, then Y� i is also an identi-

fication map’’ is intuitively very compelling, but unfortunately I have not

succeeded in proving it.9 Let us call this proposition the ‘‘identification

space hypothesis’’; only the following special cases are known to me:

mackey’s result
10 The identification space hypothesis holds if the

domains and images of both Y and i are analytic11 m-spaces.

ernest’s result
12 The identification space hypothesis holds if Y carries

m-sets onto m-sets.

Though the hypotheses of both these theorems are quite general, I do

not know whether they hold in the situation under consideration, even

for some of the simplest cases, (e.g. when X ¼ Y ¼ W ¼ I , and Q is the

random variable with range F1 that we defined in the previous section).

Our conclusion is that for all we know at the present, a given random

variable may have no distribution.

8. By Theorem 1, the set F must be admissible. But the choice of the structure in the proof
of that theorem is not unique, and so cannot be used for the current purpose. Even if we
arbitrarily pick one of the structures that fit that proof, the resulting distribution may violate
the ‘‘naturalness’’ condition of the previous paragraph.

9. The topological analogue is false; the counter-example is an adaptation of an example in
Kelley’s book [4, p. 132, example G].

10. Private correspondence with Professor G. W. Mackey.

11. I.e., isomorphic with analytic subspaces of I ; cf. [6].

12. Private correspondence with Professor J. Ernest.
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7 Relation to Other Concepts

What we call a ‘‘random variable with values in YX ’’ is called a ‘‘mea-

surable random function’’ by Loève [5, p. 502]. A somewhat similar

object is called a ‘‘measurable stochastic process’’ by Doob [3, p. 60];

however, Doob fixes the m-structure of X to be the class of all Lebesgue

measurable sets. Our ‘‘distributions’’ are closely related to what Doob [3,

p. 67] calls a ‘‘process of function space type’’ (i.e. a process in which the

sample space is the function space itself ). The di¤erences are that Doob

considers the set of all functions from X into Y , whereas we consider

only m-transformations; and Doob imposes a fixed m-structure on func-

tion space, namely that generated by all sets of the form F ða;BÞ ¼
f f : f ðaÞ A Bg (of course without regard to admissibility).

What distinguishes the problem discussed here from those of much of

the theory of stochastic processes is that we allow x as well as f to vary

at random, and inquire as to the distribution of f ðxÞ as a function of both

f and x. This makes simultaneous measurability in both variables essen-

tial. In stochastic processes one is also interested in the distribution of

f ðxÞ; but usually only f varies at random, and attention is fixed on some

finite x-set. Simultaneous measurability in both variables is then often

useful, but not essential.

8 Open Questions

i. Characterize ranges of random variables when X ¼ Y ¼ W ¼ I .

ii. In particular, is every Baire class a range in this case?

iii. Prove or disprove the identification space hypothesis.

iv. Does every random variable have a distribution (in the sense of sec-

tion 6)?
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5. M. Loève, Probability Theory (second edition), Princeton, Van Nostrand (1960).

6. G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85
(1957), pp. 134–165.

Mathematical Methods606


