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Abstract. Formal Interactive Epistemology deals with the logic of knowledge
and belief when there is more than one agent or ``player.'' One is interested
not only in each person's knowledge and beliefs about substantive matters,
but also in his knowledge and beliefs about the others' knowledge and beliefs.
This paper examines two parallel approaches to the subject. The ®rst is the
semantic, in which knowledge and beliefs are represented by a space W of
states of the world, and for each player i, partitions Ii of W and probability
distributions pi� � ; o� on W for each state o of the world. The atom of Ii

containing a given state o represents i 's knowledge at that state ± the set of
those other states that i cannot distinguish from o; the probability distribu-
tions pi� � ; o� represents i 's beliefs at the state o. The second is the syntactic
approach, in which beliefs are embodied in sentences constructed according
to certain syntactic rules. This paper examines the relation between the two
approaches, and shows that they are in a sense equivalent.

In game theory and economics, the semantic approach has heretofore been
most prevalent. A question that often arises in this connection is whether, in
what sense, and why the space W, the partitions Ii, and the probability dis-
tributions pi� � ; o� can be taken as given and commonly known by the players.
An answer to this question is provided by the syntactic approach.
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11. Introduction

In interactive contexts like game theory and economics, it is important to
consider what each player knows and believes about what the other players
know and believe. Two di¨erent formalisms ± the semantic and the syntactic ±
are available for this purpose. A companion paper (Aumann 1999, henceforth
[A]) discusses and relates the two formalisms in the context of knowledge.
Here we extend that analysis to include issues of belief ± i.e., probability.

The semantic formalism consists of a ``partition structure.'' For knowledge
only [A], this consists of a space W of states of the world (or simply states),
together with a partition of W for each player i. To deal with probability as
well, one adds a probability distribution pi� � ; o� on W for each player i and
each state o. The atoms of i 's partition are his information sets1; W is called
the universe. Like in probability theory, events are subsets2 of W; intuitively,
an event E is identi®ed with the set of all those states at which the event ob-
tains. Thus E obtains at a state o if and only if o A E. Player i 's probability
for event E at state o is represented by pi�E; o�. If a is between 0 and 1 and E
is an event, then ``i 's probability for E is at least a'' is itself an event, denoted
Pa

i E; explicitly, it is the set of all states o at which pi�E; o�V a. Similarly, ``i
knows E'' is an event, denoted KiE; explicitly, o is in KiE if and only if the
information set of i containing o is included in E.

The syntactic formalism, on the other hand, is built on propositions, ex-
pressed in a formal language. The language has logical operators and con-
nectives, operators ki expressing knowledge, and operators pa

i expressing be-
liefs. If e is a sentence, then kie and pa

i e are also sentences; kie means ``i
knows, e,'' and pa

i e means ``i has probability at least a for e.'' The operators ki

and pa
i can be iterated: The sentence kj pa

i e means ``j knows that i 's probability
for j knowing e is at least a.'' Logical relations between the various proposi-
tions are expressed by formal rules.

There is a rough correspondence between the two formalisms: Events
correspond to sentences, unions to disjunctions, intersections to conjunctions,
inclusions to implications, complementation to negation, semantic knowledge
operators Ki and belief operators Pa

i to syntactic knowledge operators ki and
belief operators pa

i . But the correspondence really is quite rough; for example,
only some ± not all ± events correspond to syntactically admissible sentences.

While the semantic formalism is the more convenient and widely used of
the two, it is conceptually not quite straightforward. One question that often
arises is, what do the players know about the formalism itself? Does each
know the others' partitions, and does he know the others' probability mea-
sures as functions of o? If so, from where does this knowledge derive?

1 I.e., he can distinguish between states o and o 0 if and only if they are in di¨erent atoms of his
partition.
2 But unlike in [A], not every subset of W is an event; certain measurability conditions must be
met. See Section 1.
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For the case of knowledge, this question is answered by constructing
a unique canonical semantic partition structure, in terms of the syntactic
formalism; see [A]. The main purpose of this paper is to do the same in
the expanded context that includes also probability.

The underlying idea is as in [A]. A state o in the canonical semantic for-
malism is de®ned as a list of (syntactic) sentences that is complete and consis-
tent in the appropriate senses; intuitively, the list is the set of all sentences that
``hold at'' o. Also as in [A], the concept of a semantic model for a list of sen-
tences plays a central role; a list is consistent if and only if it has a model.

But there are some signi®cant divergences from [A]. For one thing,
probability involves measurability; though this o¨ers no particular di½culty,
it must be dealt with. More important, in [A] the de®nition of ``consis-
tency'' is syntactic, and one proves that a list of sentences is consistent if
and only if it has a model. Here ± in the context of probability ± we did
not succeed in formulating a satisfactory syntactic de®nition of consistency
that would enable the proof of such a result. We therefore de®ne a consis-
tent list of sentences as one that has a model. This and other conceptual
issues will be discussed in Sections 15 and 17.

While we have tried to make this paper self-contained, it does have im-
portant ties to [A], both conceptual and formal. To make it easier to refer to
[A], we continue [A]'s numbering system here: The current paper starts with
Section 11, so that a reference to 1.8, say, refers to [A]. For notations that are
not explained here, the reader is referred to [A].

The remaining sections are numbered roughly as in [A], with the number
10 added. Thus Section 12 here describes the semantic knowledge-belief
formalism, whereas Section 2 in [A] describes the (multi-player) semantic
knowledge formalism. Sections 13 and 3 are conceptual discussions of the
semantic formalisms. Sections 14 and 4 respectively set forth the syntactic
knowledge-belief formalism, and the syntactic knowledge formalism; Sections
15 and 5 discuss these constructions. Sections 16 and 6 respectively construct
the canonical semantic knowledge-belief and knowledge systems; again, Sec-
tions 17 and 7 discuss these constructions. Like Sections 8 and 9, Sections 18
and 19 explore and justify the foregoing material, using mathematical tools.
Speci®cally, we show that there is a rough ``isomorphism'' between the two
formalisms, similar to that established in Section 8 for the case of knowledge.
Also, we show that the canonical system constructed in Section 16 is indeed a
knowledge-belief system as de®ned in Section 12 (the corresponding statement
for knowledge systems is immediate). The paper closes with a discussion in
Section 20, roughly parallel to the discussion of knowledge formalisms in
Section 10.

12. Semantic knowledge-belief formalisms

Recall that a semantic knowledge system (Section 2) consists of a universe W, a
population N, and a knowledge function ki for each individual i in N. De®ne a
®nite semantic knowledge-belief system to consist of a semantic knowledge
system with a ®nite universe, and, for each individual i and state o, a
probability measure pi� � ; o� on the ®eld E of subsets of W (called events).
The interpretation is that at state o, individual i ascribes probability pi�E; o�
to event E. Set
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Pa
i E :� fo : pi�E; o�V ag; �12:1�

Pa
i E is the event that i ascribes probability at least a to E. Assume that

KiE HP1
i E; and �12:2�

Pa
i E HKiP

a
i E: �12:3�

Intuitively, 12.2 says that if i knows something, then he assigns it probability
1; 12.3, that he knows the probabilities that he assigns to events. Technically,
12.2 says that pi� � ; o� is concentrated on i 's information set I�o�; 12.3, that
pi�E; � � is Ki-measurable3.

In the general (not necessarily ®nite) case, de®ne a knowledge-belief system
as a knowledge system fW;N; fkigi ANgg, together with a sigma-®eld Fs of
sets in W (called events), and, for each individual i and state o, a probability
measure pi� � ; o� on Fs such that

the atoms of the Ii are Fs-measurable; and �12:4�

pi�E; o� is Fs-measurable in o for each fixed E in Fs: �12:5�

As before, pi�E; o� signi®es i 's probability for E at o; and we assume 12.2 and
12.3, where Pa

i is de®ned by 12.1.
For future reference, note that

pi�E; o� � supfrational a : o A Pa
i Eg: �12:6�

Indeed, ®x o, i and E. By 12.1, for any a (not necessarily rational) we have

o A Pa
i E iff pi�E; o�V a: �12:7�

Therefore pi�E; o� is V any rational a for which o A Pa
i E, which establishes

V in 12.6. On the other hand, if a rational b is U pi�E; o�, then by 12.7,

o A P
b
i E, so b U supfa : o A Pa

i Eg; this establishes U in 12.6. 9

13. Discussion

First, note that as presented here, the beliefs of the players depend explicitly
on their information; in e¨ect, each player's probability is concentrated on his
information set. This is in contrast to formulations (e.g., Aumann (1987)) in
which the probability distributions are initially given on the entire state space
W, and then the players compute posterior probabilities, conditional on their
information. Proceeding as we do here emphasizes that we are analyzing a
single moment of time, at which the players have the information that they
have; we are interested in the beliefs of the players at that time, and at that
time only.

3 This means that if o 0 and o are in the same atom of the information partition Ii, then
Pi�F ;o 0� � Pi�F ;o�.
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Next, the conceptual issues discussed in Section 3 arise here also. Basically,
the problem is to justify the implicit assumption that the players know the
model itself, including the partitions of the other players and their probability
distributions (for each of their information sets). The problem could be re-
solved by presenting an explicit canonical semantic formalism, with explicit
descriptions of the states, partitions, and probabilities. This, indeed, is what
we do in Section 16.

14. The syntactic knowledge±belief formalism

Start with a ®nite population N, and a keyboard consisting of an alphabet
X :� fx; y; z; . . .g and the symbols 4;: ; �; �; ki, and pa

i , where i ranges over
the individuals in N and a over the rationals between 0 and 1 inclusive. A
formula is de®ned as a ®nite string of symbols obtained by applying ®nitely
often, in some order, the following rules:

Every letter in the alphabet is a formula: �14:1�
If f and g are formulas; so is � f �4 �g�: �14:2�

If f is a formula; so are : � f �; ki� f �; and pa
i � f � for each i

and each a: �14:3�
We often omit parentheses, and in particular write pa

i f for pa
i � f �; intuitively,

pa
i f means ``i ascribes probability at least a to f.'' Adding the probability op-

erators pa
i to the language enables us to refer to the players' beliefs, in addi-

tion to the elements treated in Section 4.
The set of all formulas with the given population N and alphabet X is

called a syntax, and is denoted S�N;X�, or just S. Assume that N and X are
®nite or denumerable; it follows that S is denumerable. De®ne a represen-
tation of S as a knowledge±belief system, P̂, together with a function
j : S! F̂s such that for all f ; g; i, and a,

j�: f � �@j� f �; j� f 4 g� � j� f �W j�g�;

j�ki f � � K̂ij� f �; and j�pa
i f � � P̂a

i j� f �; �14:4�
where F̂s is the s-®eld of events in P̂, and K̂i, P̂a

i , are the corresponding
semantic knowledge and belief operators. Given a representation �P̂; j� and a
state ô in P̂, a formula f is said to hold at ô if ô is in j� f �. A list L is a set of
formulas. A model for L is a representation j and a state ô in P̂ such that
every formula in the list holds at ô. A formula f is a consequence of (or follows
from) L if every model for L is also a model for f f g.

15. Discussion

In Section 5 we discussed and interpreted the syntax of pure knowledge, as set
forth in Section 4; much of that discussion applies, mutatis mutandis, to the
knowledge-belief syntax set forth in Section 14.
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Each of these two syntaxes provides both a grammar and a logic. The
grammar tells us how to construct ``well-formed formulas,'' i.e., meaningful
sentences; the logic, how to deduce formulas from one another.

The two grammars are entirely analogous. Both are embodied in the de-
scriptions of the keyboards, and in the rules for constructing formulas from
keyboard elements (14.1 through 14.3 for knowledge-belief, 4.1 through 4.3
for knowledge). Indeed, the only di¨erence is that the knowledge-belief
grammar has probability operators pa

i in addition to the other elements.
But the two logics are quite di¨erent, in several ways. In Section 4 ± which

treats knowledge only ± the fundamental notion of consequence is de®ned in
purely syntactic terms: g is a consequence of f if it follows from f by repeated
use of certain axioms and rules of deduction4. Moreover, it is ®nitary, in that
the hypothesis comprises just one formula f; and though one can speak of g
following from a list L of formulas, that is tantamount to g following from a
conjunction of ®nitely many formulas in L.

In contrast, in Section 14 the notion of consequence is in®nitary: A for-
mula can follow from a list L without following from any ®nite sublist. For
example, p1=2x follows from all the pax with a < 1=2, but not from any ®nite
number of them. Moreover, the de®nition is no longer purely syntactic; it
involves ``models,'' which are essentially semantic.

While these di¨erences are conceptually signi®cant, their practical e¨ect is
limited. Though in®nitary deductions are in principle possible, we know of
none in actual game-theoretic or economic applications of epistemological
formalisms. As for the issue of syntax versus semantics in de®ning ``conse-
quence,'' practically speaking it shouldn't matter. In the case of knowledge, it
indeed doesn't matter; by 9.4, the two approaches are equivalent. In the case
of probability (knowledge-belief ), we have not succeeded in developing a de-
ductive logic that allows us to establish such a result formally. Conceptually, it
would certainly be desirable to do so; and for a ``purely'' syntactic logic,
without any semantic component, it is indispensable. But even without this,
the de®nition of tautology in Section 14 does, practically speaking, provide a
coherent logic for the syntactic grammar.

Section 16 uses the syntactic formalism of Section 14 to construct an
explicit canonical semantic knowledge-belief system. But it should be re-
membered that the syntactic formalism is important not only as a tool for
constructing the canonical semantic formalism, but also in its own right, as a
formalism of deduction. In this formalism, there are no explicit states; one
simply deduces true statements from other true statements. As noted in the
introduction, this mode of deduction is in a sense more compelling ± has more
immediacy ± than the semantic mode.

16. The canonical semantic knowledge-belief system

As in Section 14, assume given a ®nite population N and an alphabet X. Call a
list L of formulas closed if it contains all its consequences; coherent, if

: f A L implies f B L; �16:1�

4 That is what ``strong closure'' amounts to.
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and complete if

f B L implies : f A L: �16:2�

A state is a closed, coherent, and complete list. Denote the set of all states
P�N;X�, or simply P. For all individuals i, de®ne a knowledge function ki on
P by specifying that for all states o,

ki�o� is the set of all formulas in o that start with ki: �16:3�

For each formula f, de®ne an event Ef (a subset of P) by

Ef :� fo A W : f A og: �16:4�

Let Fs be the s-®eld generated5 by the events Ef . For each f, i, and o, de®ne

pi�E f ; o� :� sup�a : pa
i f A o�: �16:5�

We will show below (Section 18) that pi� � ; o� is well-de®ned on the events Ef

for each o and i, and extends uniquely to a s-additive probability measure on
Fs, which is also denoted pi� � ; o�; moreover (Section 19), that the system
comprising P, the ki, the s-®eld Fs, and the probability measures pi� � ; o�
satis®es 12.2 through 12.5, and so is a knowledge-belief system. We call it the
canonical semantic knowledge-belief system for �N;X�, or simply the canonical
system.

17. Discussion

As before, much of the discussion of the canonical semantic knowledge for-
malism applies, mutatis mutandis, also here; see Section 7.

We have seen (Section 15) that the logic of the syntactic knowledge-belief
formalism depends on the notion of a semantic model, and so is not ``purely''
syntactic. This raises the question as to whether there is not some kind of cir-
cularity implicit in our construction of the canonical semantic formalism.

The answer is ``no''. Our aim, as stated at the end of Section 13, is
to present an explicit canonical semantic formalism, with explicit descriptions
of the states, partitions, and probabilities. The construction in Section 16
accomplishes this in a coherent and valid manner.

18. The canonical probabilities are well-de®ned and superadditive

Throughout this section and the next, o denotes a state in the canonical sys-
tem. In this section we prove that pi� � ; o� is well-de®ned on the events Ef

(18.32), that it is ®nitely additive (18.4), that it extends uniquely to a sigma-
additive measure on Fs (18.56), and that it is a probability measure (18.6). In
the process, we will begin, in the current knowledge-belief context, to establish

5 The smallest sigma-®eld containing all the Ef .
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a correspondence between syntax and semantics analogous to that established
in Section 8 in the context of knowledge (18.1).

Let x be in the alphabet. Since o is coherent, either : x B o or x B o.
Suppose w.l.o.g. that x B o. Since o is closed, x is not a consequence of o.
Thus it is not true that every model for o is also a model for x. So there is a
model for o that is not a model for x. In particular, there is a model for o;
denote it �P̂; j; ô�. Let p̂i� � ; ô� be the probabilities of i in P̂ at ô. Call an
event of the form Ef syntactic, and denote the family of syntactic events by F.

Proposition 18.1.

@Ef � E: f ; �18:11�

Ef WEg � Ef 4g; and �18:12�

Ef XEg � Ef 5g: �18:13�

Proof: Analogous to that of 8.3, and so omitted.

Corollary 18.14. The family F of syntactic events is a ®eld; that is, it is closed
under complementation, ®nite unions, and ®nite intersections.

Lemma 18.2.

If Ef HEg; then j� f �H j�g�; �18:21�

f A o iff ô A j� f �; and �18:22�

p̂i�j� f �; ô� � supfa : pa
i f A og: �18:23�

Proof: Suppose it is not the case that j� f �H j�g�; i.e., that there is an element
n̂ of j� f �nj�g�. Let n be the list of all formulas that hold at n̂. Then n is a
consistent and complete list ± i.e., a state in the canonical system P. By con-
struction, f A n and g B n, and the existence of such a state is incompatible
with Ef HEg. This establishes 18.21.

The ``only if '' part of 18.22 is what we mean by saying that �P̂; j; ô� is a
model for o. For the ``if '' part, let f B o. Then : f A o by completeness
(16.2). So by the ``only if '' part, ô A j�: f � �@j� f �; that is, ô B j� f �. This
proves the contrapositive of the ``if '' part.

Finally, by 12.6 and 18.22, p̂i�j� f �; ô� � supfa : ô A P̂a
i j� f �g �

supfa : ô A j�pa
i f �g � supfa : pa

i f A og, as asserted in 18.23. 9

Lemma 18.3. If Ef HEg, then sup�a : pa
i f A o�U sup�a : pa

i g A o� for all i
and o.

Proof: By 18.21, j� f �H j�g�, so p̂i�j� f �; n̂�U p̂i�j�g�; n̂�; the lemma then
follows from 18.23. 9

Corollary 18.31. If Ef � Eg, then sup�a : pa
i f A o� � sup�a : pa

i g A o� for all i
and o.
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Corollary 18.32. The pi� � ; o�, as de®ned by 16.5, are well-de®ned on the events
Ef .

Corollary 18.33. pi�Ef ; o� � p̂i�j� f �; ô�.

Proof: Follows from 16.5 and 18.23. 9

Lemma 18.4. The pi� � ; o� are ®nitely additive; that is, if Ef XEg �q, then
pi�Ef ; o� � pi�Eg; o� � pi�Ef WEg; o�.

Proof: Ef XEg �q and 18.1 yield Ef HE: g. So by 18.21, j� f �H j�: g� �
@j�g�, so j� f �X j�g� �q, so by 18.12, 18.33, and 14.4, pi�Ef WEg; o� �
pi�Ef4g; o�� p̂i�j� f4g�; ô�� p̂i�j� f �W j�g�; ô�� p̂i�j� f �; ô��p̂i�j�g�; ô� �
pi�Ef ; o� � pi�Eg; o�. 9

Lemma 18.5. Let g; f1; f2; . . . be an in®nite sequence of formulas such that

Ef1 HEf2 H � � � and �18:51�

Ef1 WEf2 W � � � � Eg: �18:52�

Then for each individual i and state o,

pi�Eg; o� � lim
n!y

pi�Efn
; o�: �18:53�

Proof: By 18.21,

j� f1�H j� f2�H � � �H j�g�: �18:54�

We claim that

j� f1�W j� f2�W � � � � j�g�: �18:55�
If not, then the last inclusion in 18.54 is strict; that is, there is a n̂ in j�g� that is
not in any of the j� fn�. Set n :� f f : n̂ A j� f �g. Then n is a consistent and
complete list of formulas ± i.e., a state in P. This state contains g but none of
the fn, contradicting 18.52; so 18.55 is proved. Then by 18.33, 18.54, 18.55,
and the countable additivity of the p̂i� � ; ô�,

lim
n!y

pi�Efn
; o� � lim

n!y
p̂i�j� fn�; ô� � p̂i�j�g�; ô� � pi�Eg; o�: 9

Corollary 18.56. The de®nition (16.5) of pi� � ; o� extends uniquely to a s-
additive measure on Fs.

Proof: By 18.14, the events Ef form a ®eld. So, by Caratheodory's theorem, it
su½ces to show that pi� � ; o� is countably additive when restricted to events of
the form Ef ; i.e., that if Eg1 WEg2 � � � � Eg and the Egm

are mutually disjoint,
then

pi�Eg1 ; o� � pi�Eg2 ; o� � � � � � pi�Eg; o�:
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To this end, set fn :� g1 4 � � �4 gn, apply 18.5, 18.12, and 18.4, and conclude
that

pi�Eg; o� � lim
n!y

pi�Efn
; o� � lim

n!y
pi 6

n

m�1
Egm

; o

 !

� lim
n!y

Xn

m�1
pi�Egm

; o� �
Xy
m�1

pi�Egm
; o�: 9

Lemma 18.6. pi�P; o� � 1.

Proof: By completeness (16.2), each state contains x or : x, and so in any case
x4: x. Therefore P � Ex4: x, so by 11.9 and 13.23,

pi�P; o� � pi�Ex4: x; o� � supfa : pa
i �x4: x� A og � p̂i�j�x4: x�; ô�

� p̂i�j�x�W j�: x�; ô� � p̂i�j�x�W j�: x�; ô�

� p̂i�j�x�W@j�x�; ô� � p̂i�P̂; ô� � 1: 9

19. The canonical system satis®es the conditions for a knowledge-belief system

In this section we show that the canonical system satis®es the conditions set
forth in Section 4 for knowledge-belief systems: That an individual's proba-
bilities are concentrated on his information set (19.5); that he knows his own
probabilities (19.6); and that everything in sight is Fs-measurable (19.7 and
19.9). These four propositions establish Conditions (12.2) through (12.5) re-
spectively.

We will also ®nish establishing, in the current knowledge-belief context,
the correspondence between syntax and semantics (19.2 and 19.4).

The knowledge and probability operators of i in the canonical system will
be denoted Ki and Pa

i (see 12.1). As in the previous section, o denotes a state
in the canonical system, �P̂; j; ô� a model for o, p̂i� � ; ô� the probabilities of i
in P̂ at ô, K̂i and P̂a

i the knowledge and probability operators in P̂.
We use 18.22 and 14.4 repeatedly in this section, without explicit mention.

Lemma 19.1.

If ki f A o then f A o; �19:11�

if aU b and p
b
i f A o then pa

i f A o; and �19:12�

if pa
i f A o then ki p

a
i f A o: �19:13�

Proof: If ki f A o, then by 1.31, ô A j�ki f � � K̂ij� f �H j� f �, so f A o,

proving 19.11. Next, let p
b
i f A o, where aU b. Then ô A j�pb

i f � � P̂
b
i j� f � �

fn̂ : p̂i�j� f �; n̂�V bg, so p̂i�j� f �; ô�V b V a, so ô A fn̂ : p̂i�j� f �; n̂�V ag �
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P̂a
i j� f � � j�pa

i f �, so pa
i f A o, proving 19.12. Finally, if pa

i f A o, then ô A
j�pa

i f � � P̂a
i j� f �H K̂iP̂

a
i j� f � � j�ki pa

i f �, by 12.3 applied to P̂; so ki p
a
i f A

o, proving 19.13. 9

Proposition 19.2. KiEf � Eki f .

Proof: We have o A KiEf i¨ Ii�o�HEf , and o A Eki f i¨ ki f A o. So we
must show that Ii�o�HEf i¨ ki f A o. If indeed ki f A o, then ki f is in each
member of Ii�o�, so f is in each member of Ii�o� (by 19.11, when applied to
arbitrary states in Ii�o�), so indeed Ii�o�HEf . For the opposite direction,

suppose ki f B o, so ô B j�ki f � � K̂ij� f �. So Îi�ô� is not included in j� f �. So
there is an element n̂ of P̂ with k̂i�n̂� � k̂i�ô� and n̂ B j� f �. Set

n :� fg : n̂ A j�g�g; �19:21�

in words, n is the list of all formulas that are true ``at'' n̂. If kih A o, then
ô A j�kih� � K̂ij�h�. Since k̂i�n̂� � k̂i�ô�, it follows that also n̂ A K̂ij�h� �
j�kih�, so kih A n by 19.11. If kih A n, it may be seen similarly that kih A o. So
ki�n� � ki�o�. So Ii�n� � Ii�o�. But n̂ B j� f � and 19.21 yield f B n, so n B Ef .
But by de®nition, n A Ii�n� � Ii�o�. So it is not the case that Ii�o� is included
in Ef . This completes the proof of the opposite direction. 9

Proposition 19.3. If p
b
i f A o for all b < a, then pa

i f A o.

Proof: By hypothesis, ô A j�pb
i f � � P

b
i j� f � for all b < a. So by 12.1,

p̂i�j� f �; ô�V b for all b < a. So p̂i�j� f �; ô�V a. So by 12.1, ô A Pa
i j� f � �

j�pa
i f �. So pa

i f A o. 9

Proposition 19.4. Pa
i Ef � Ep a

i
f for rational a.

Proof: By 12.1 and 16.5, o A Pa
i Ef i¨ a U pi�Ef ; o� :� sup�b : p

b
i f A o�; by

19.12 and 19.3, this happens i¨ pa
i f A o, which in turn is i¨ o A Ep a

i
f . 9

Proposition 19.5. KiE HP1
i E for all E in Fs.

Proof: This says that pi� � ; o� is concentrated on Ii�o�, i.e., that pi�Ii�o�; o�
� 1. Since Ii�o� �7

ki f Ao
Eki f , and there are only denumerably many for-

mulas in o, it su½ces to show that

pi�Eki f ; o� � 1 whenever ki f A o:

Since ki f A o, 1.8 and 12.2 yield ô A j�ki f � � K̂ij� f � � K̂iK̂ij� f � �
K̂ij�ki f �H P̂1

i j�ki f �. So by 12.1, p̂i�j�ki f �; ô��1. So by 18.33, pi�Eki f ; o� �
p̂i�j�ki f �; ô� � 1. 9

Proposition 19.6. Pa
i E HKiP

a
i E for all E in Fs.

Proof: By 19.13, 19.2 and 19.4, we know that Pa
i E HKiP

a
i E when E is syn-

tactic (i.e., of the form Ef ). Now the proposition says that
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if ki�o� � ki�n�; then pi�E; o� � pi�E; n�:

Fix o and n such that ki�o� � ki�n�. We know that pi�E; o� � pi�E; n� when E
is syntactic. Since the syntactic events form a ®eld, and this ®eld generates Fs,
it follows that any E in Fs is approximable w.r.t. the sigma-additive measure
pi� � ; o� � pi� � ; n� by syntactic events; so pi�E; o� � pi�E; n� for all E in
Fs. 9

Proposition 19.7. Then atoms of the Ii are Fs-measurable.

Proof: Each atom of Ii is of the form Ii�o� for some o, and Ii�o� �
7

ki f Ao
Eki f . 9

Call a sequence E1;E2; . . . of events monotone if E1 HE2 H � � � or E1 IE2 I
� � � ; set limn!yEn :�6

n�1En in the ®rst case and :�7
n�1En in the second.

Call a family g monotone if limn!yEn A g whenever E1;E2; . . . is a monotone
sequence in g.

Lemma 19.8 Fs is the smallest monotone family that includes the ®eld F of all
the E f .

Proof: This holds for all s-®elds Fs generated by a ®eld F [Halmos 1950,
p. 27, Theorem B]. 9

Proposition 19.9. pi�E; o� is Fs-measurable in o for each ®xed E in Fs.

Proof: We must show

fo : pi�E; o�V ag A Fs for each rational a: �19:91�

Now fo : pi�E; o�V ag � Pa
i E. So when E � Ef , applying 19.4 yields fo :

pi�E; o�V ag � Ep a
i

f , which has the form Eg and so is indeed in Fs. Thus the
family g of events satisfying 14.91 includes F. It is therefore su½cient, by
19.8, to show that it is a monotone family. So let E1;E2; . . . be a monotone
sequence in g with limit E. If the sequence is non-decreasing, then

fo : pi�E; o�V ag � fo : �Em��bn��pi�En; o�V aÿ �1=m�g

� 7
y

m�1
6
y

n�1
fo : pi�En; o�V aÿ �1=m�g A Fs;

since En A g. If the sequence is non-increasing, then

fo : pi�E; o�V ag � fo : �En��pi�En; o�V ag

� 7
y

n�1
fo : pi�En; o�V ag A Fs;

since En A g. So E A g in both cases, so g is indeed monotone. 9
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20. Discussion

(a) The meaning of the knowledge operators Ki

As in the case of knowledge, the correct interpretation of the event KiE is that
``E follows logically from the syntactic events6 that i knows.'' This follows
from 8.51, which continues to hold ± with much the same proof as before ± in
the context of this paper.

However, the analogue of 10.1 ± that knowledge of an in®nite disjunction
is equivalent to knowledge of some ®nite subdisjunction ± is not correct here.
For example,

Ki�Ep
1=2
j

x
WE

p
1=3
j

x
WE

p
1=4
j

x
W � � ��0Ki�Ep

1=2
j

x
�WKi�Ep

1=3
j

x
�WKi�Ep

1=4
j

x
�W � � � ;

the left side equals Ki�E: p0
j
x� ± i.e., it says that i knows that j 's probability for

x is positive ± whereas the right side says that for some a that is positive, i
knows that j 's probability for x is at least a ± a much stronger statement.
Unlike that of 8.51, the proof of 10.1 involves compactness arguments, which,
because of the in®nitary nature of the logic, do not apply here.

(b) An alternative interpretation of the letters of the alphabet

The discussion at 10(b) continues to apply here, with little or no change.

(c) Knowledge-belief hierarchies

In 10(c) we saw that the hierarchy approach to knowledge, though more cum-
bersome and complicated than the syntactic approach, amounts to the same
thing. The situation is similar with regard to knowledge-belief hierarchies.

Historically, the hierarchy approach originated with probability systems;
see Armbruster and BoÈge (1979), BoÈge and Eisele (1979) and Mertens and
Zamir (1985). These systems are pure probability systems; knowledge does not
enter. For simplicity, we con®ne attention to the case of two players. Like at
10(c), we start with a set H of mutually exclusive and exhaustive ``states of
nature,'' which describe some aspect of reality (like tomorrow's temperature
in Jerusalem) in terms not involving probability or knowledge. Then the hi-
erarchy of a player i consists of the beliefs (probabilities) of i about the states
of nature, i 's probability distribution over the beliefs of the other player j
about the states of nature, i 's probability distribution over j 's probability
distributions over i 's beliefs about the state of nature, and so on. Certain
consistency conditions must be met. Moreover, j 's probability distribution
over i 's beliefs about the states of nature may well be continuous; thus the
next level of the hierarchy consists of a probability distribution over proba-
bility distributions, which requires selecting a topology on the space of prob-
ability distributions. So even without knowledge, matters quickly get rather
complicated.

6 Events of the form Ef .
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But knowledge is an intrinsic part of the picture, and should not be ig-
nored. For example, a player necessarily knows his own probabilities, in the
sense of absolute knowledge, not only in the sense of probability 1. The ap-
propriate object to examine is a knowledge-belief hierarchy. In the case of two
players, a pair of hierarchies (one for each player) looks roughly as follows: At
the ®rst level, each player i has a knowledge-belief pro®le over the set H of
states of nature; that is, he knows that the true state of nature is in a certain
subset hi of H, and he has a probability distribution on hi. The knowledge of
the two players must be consistent; one player cannot know something that
the other knows to be false. At the second level of the hierarchy, each player
has some knowledge and beliefs about pairs consisting of elements of H and
the other player's ®rst-level knowledge and beliefs; these second-level knowl-
edge-belief pro®les of the two players must be consistent with each other in a
sense like that described for the ®rst level, and each player's second stage
pro®le must also be consistent with his ®rst level pro®le (e.g., the ®rst level
must be the marginal of the second level when projected onto the ®rst level).
And so on, ad in®nitum. A more precise description, in the spirit of 10(c),
would of course be far more complicated.

All this is accomplished much more brie¯y and elegantly by the syntactic
approach. If o is a state of the world in the canonical knowledge-belief system
P, then ki�o� contains precisely the same information as i 's hierarchy in the
hierarchy approach. Just list all the formulas that i knows to be true ± which
of course include all his probability assessments, all his probability assess-
ments about others' probability assessments, and so on. No complicated con-
sistency conditions, no topologies. Just a list of the formulas he knows, in no
particular order.

As at 10(c), note that two states of the world o and o 0 are in the same
element of i 's partition of P if and only if they correspond to the same
knowledge-belief hierarchy of i. Thus i 's knowledge-belief hierarchies corre-
spond precisely to the atoms of his information partition; each can be read o¨
from the other. In particular, it follows that the knowledge-belief hierarchy of
any one player determines precisely the common knowledge component of the
true state of the world.
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