ANOTHER^{*} CORRIGENDUM TO "UTILITY THEORY WITHOUT THE COMPLETENESS AXIOM"

R. J. AUMANN

Department of Mathematics and Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem

LET \succeq be a transitive partial preference-or-indifference order on \mathbb{R}^n that is *additive homogeneous* (if $x \succeq y$, then $x + z \succeq y + z$ and $\alpha x \succeq \alpha y$ for all z and all positive α) and *archimedean* (if $x \succ \alpha y$ for all positive α , then $y \not\succeq 0$). A *utility* for \succeq is a linear function u on \mathbb{R}^n such that u(x) > u(y) when $x \succ y$ and u(x) = u(y) when $x \sim y$. The set of x in \mathbb{R}^n with $x \succ 0$ is a convex cone T whose dual¹ T^* is the set of all utilities for \succeq . Aumann (1962, Section 7) asserts that if the dual T^{**} of T^* coincides with T, then "we can recover the order from the set of all utilities." That is incorrect; we can indeed recover the strict preferences, but not the indifferences. For example, on \mathbb{R}^2 we may define two orders, one by $x \succeq y$ iff $x_1 > y_1$, another by $x \succeq y$ iff $x_1 \ge y_1$. In both cases, T is the open right halfplane, and $T^{**} = T$; but the orders are different: Two points on the same vertical line are incomparable in the first, indifferent in the second.

We are grateful to Pierre Gazzano for bringing this error to our attention.

REFERENCES

AUMANN, R. J. (1962): "Utility Theory Without the Completeness Axiom," *Econometrica*, 30, 445–462. (1964): "Utility Theory Without the Completeness Axiom: A Correction," *Econometrica*, 32, 210–212.

Co-editor Joel Sobel handled this manuscript.

Manuscript received 26 March, 2019; final version accepted 1 April, 2019.

R. J. Aumann: raumann@math.huji.ac.il

^{*}See Aumann (1964).

¹The set of all u in \mathbb{R}^n with ux > 0 for all x in T.