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1 Introduction

Randomized strategies play a significant role in the theory of games, but

have limited appeal in many practical situations. Practical situations,

however, often possess enough exogenous uncertainty to render explicit

randomization intuitively unnecessary. In this paper we bring these obser-

vations together by describing conditions under which randomized strat-

egies can be replaced by ‘‘approximately equivalent’’ pure strategies.

Suppose that n persons play a game in which each makes an observa-

tion (which may be related to the payo¤ ) before play begins. While the

observations need not be independent, suppose that even after making

their observations and pooling the information so obtained, players

2; . . . ; n still cannot ascribe positive probability to any particular possible

observation of Player 1. Then we will show that any mixed strategy of

Player 1 can be e-purified, i.e., replaced by a pure strategy that yields all

players approximately the same payo¤ as the original mixed strategy, no

matter what strategies Players 2; . . . ; n use.

The two-person case of this result is proved in §4. The underlying idea

of the proof is described in §3. In §6 we present two alternative proofs,

which use Fourier analysis to construct e-purifications somewhat more

explicitly. The general, n-person case follows easily from the two-person

case (§2).

Next, suppose only that from his own observation, no individual

player can ascribe positive probability to any particular observation of

any other player. Then in general, mixed strategies cannot be e-purified

(§7). But we will show that every Nash equilibrium point in mixed strat-

egies can be replaced by an n-tuple of pure strategies that is an approx-

imate equilibrium (no player can gain much by deviating), and yields all

players approximately the same payo¤ as the original equilibrium point

(§5).
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In §2 we spell out definitions and notations, and state our results pre-

cisely. §8 discusses the literature.

2 Definitions and Results

The two-player game is described as follows. Player 1 makes an observa-

tion from a set X, then selects an action from a finite set K. Player 2

makes an observation from a set Y, then selects an action from a finite set

L. The set X together with a s-field X of subsets is a measurable space,

assumed isomorphic to the unit interval of the real line together with its

Borel s-field.1 The same is true of Y together with a s-field Y. A measure

m on the product s-field XnY, called the prior, describes the common

information of the players before the observations. Denote by mY the

marginal probability measure on Y induced by m (i.e., if W A Y then

mY ðWÞ ¼ mðX �WÞÞ and by mð�jyÞ any regular version of the conditional

probability measure on X given y. Call m conditionally atomless for Player

1 if mð�jyÞ is atomless,2 mY -almost everywhere (mY -a.e.). The (generalized)

payo¤ function is u, which takes K � L� X � Y into n-dimensional

Euclidean space.3 We assume that uðk; l; �; �Þ is m-integrable. (From now

on we will usually omit the adjective ‘‘measurable’’ before the nouns

‘‘set,’’ ‘‘function,’’ and ‘‘partition.’’ No confusion should result.)

Let DK be the unit simplex in the finite-dimensional Euclidean space

EK , each coordinate of which corresponds to a distinct element of K.

Then every point in DK corresponds to a mixed action for Player 1. A

strategy4 for Player 1 is a function f from X to DK . It is pure if its values

are vertices of DK , mX -a.e. The definitions for Player 2 are obvious ana-

logues. If f and g are strategies for Players 1 and 2 respectively, the

1. Two measurable spaces are isomorphic if there is a one-to-one function between them
that is measurable in both directions. This assumption enables us to avoid certain technical
di‰culties in defining conditional probability (see, e.g., Breiman [1968]). It is weaker than it
looks; any Borel subset of any Euclidean space, and indeed of any complete separable metric
space, satisfies it.

2. A measure is atomless if every set having positive measure contains a subset having
strictly smaller but positive measure. If a measurable space is isomorphic to the unit interval
with its Borel sets, then a measure is atomless if and only if every singleton has measure
zero. It is this form of atomlessness which we use; see Lemma 1.

3. By presenting our basic result for vector-valued payo¤ functions, we are able to generate
the n-person purification results as consequences of the basic result. The extra generality
produces no extra di‰culty in the proof. In an even more general setup the payo¤s might
depend on random elements not observed by any player. By taking u to be the conditional
expected payo¤ vector given all observations, our formulation is seen to be no less general in
fact.

4. More traditionally, a ‘‘behavior strategy.’’ Mixed and behavior strategies are equivalent
in the context of this paper; see Aumann [1964].
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expected payo¤ is

Uð f ; gÞ ¼
ð
X�Y

X
ðk;lÞ AK�L

fkðxÞglðyÞuðk; l; x; yÞmðdx� dyÞ:

Given e > 0, two strategies f and f 0 are e-equivalent for Player 1 if for all

i A f1; . . . ; ng and all strategies g of Player 2,

jUið f ; gÞ �Uið f 0; gÞj < e;

where Ui denotes the ith component of U, i ¼ 1; . . . ; n. An e-purification

of a strategy is a pure strategy e-equivalent to it.

theorem Suppose that m is conditionally atomless for Player 1. Then for

every e > 0, every strategy of Player 1 has an e-purification.

The proof is found in §4.

We next extend the discussion to n-person games. There are n players

ði ¼ 1; . . . ; nÞ; n observation spaces ðXi;XiÞ, each isomorphic to the real

unit interval with its Borel s-field; and n action sets Ki, each finite.

The probability measure m is now defined on the product s-field X ¼
X1 n � � � nXn. For each k A K ¼ K1 � � � � � Kn, x A X ¼ X1 � � � � � Xn,

and i A f1; . . . ; ng, uiðk; xÞ denotes the (scalar) payo¤ to Player i from the

joint move k when the joint observation is x. The joint payo¤ function is

u ¼ ðu1; . . . ; unÞ. For each k A K , uðk; �Þ is assumed m-integrable.

The mixed action set for i is DK , the unit simplex in the Euclidean

space indexed by the elements of Ki. A strategy for Player i is a function

f i from Xi to DKi . It is pure if its values are vertices of DKi , mXi
-a.e. The

expected payo¤ to an n-tuple of strategies f ¼ ð f 1; . . . ; f nÞ is

Uð f Þ ¼
ð
X

X
k

f 1k1ðx1Þ � � � f
n
kn
ðxnÞuðk; xÞmðdxÞ;

where k ¼ ðk1; . . . ; knÞ and x ¼ ðx1; . . . ; xnÞ.
Given e > 0, two strategies f j and f 0j of player j are e-equivalent if for

each strategy ðn� 1Þ-tuple g�j of the players other than j and for each

player i A f1; . . . ; ng,

jUið f j; g�jÞ �Uið f 0j; g�jÞj < e;

where ð f j; g�jÞ denotes the strategy combination ðg1; . . . ; gj�1; f j;

gjþ1; . . . ; gnÞ. As before, an e-purification of a strategy is a pure strategy

e-equivalent to it.

The measure m is conditionally atomless for i if for (almost) every

ðn� 1Þ-tuple of observations y of the players other than i, the conditional

probability measure mð�jyÞ on Xi is atomless.
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corollary A Suppose that m is conditionally atomless for i. Then for

every e > 0, every strategy of i has an e-purification.

Proof Follows from the Theorem by taking X in the Theorem to be Xi

here and Y in the Theorem to be the product of all Xj other than Xi here.

An e-equilibrium point is an n-tuple f of strategies such that for each

player i and each strategy gi of i,

Uiðgi; f �iÞWUið f Þ þ e:

An equilibrium point is a 0-equilibrium point. An e-purification of an

equilibrium point f is an n-tuple f 0 of pure strategies such that every n-

tuple f 00 obtained from f by replacing some of the f j by f 0j (including, of

course, f 0 itself ) is an e-equilibrium point and satisfies

jUið f 00Þ �Uið f Þj < e

for all i. In words, any group of players can switch to pure strategies

without appreciably a¤ecting the payo¤ to anybody and while maintain-

ing approximate equilibrium.

Let mij denote the marginal probability measure on Xi � Xj induced by

m. The measure m is weakly conditionally atomless for i if for every j other

than i and (almost) every observation yj of j, the conditional probability

measure mijð�jyjÞ on Xi is atomless. In words, after making his own

observation, every player other than i perceives an atomless distribution

for i ’s observations.

corollary B Suppose that m is weakly conditionally atomless for all

players. Then for every e > 0, every equilibrium point has an e-purification.

Corollary B is proved in §5. In §7 we show that weak conditional

atomlessness is not su‰cient for the e-purification of strategies.

3 Discussion

Consider the case in which there are just two players, with two possible

actions each. Take the observation sets X and Y of both players to be the

unit interval ½0; 1�, and suppose the payo¤s are independent of the obser-

vations, but depend nontrivially on Player 1’s action. Even in this simple

case it is not always possible to purify mixed strategies exactly. For

a counterexample, taken from Radner and Rosenthal [1982], let m be

twice Lebesgue measure on the right triangle above the diagonal, i.e.,

fðx; yÞ : yX xg, and 0 elsewhere. Then mð�jyÞ is 1=y times Lebesgue mea-

sure on the interval ½0; y�, and 0 elsewhere. If it were possible for Player 1
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to purify (exactly) the mixed strategy in which he plays 1=2–1=2 inde-

pendent of his observation, then there would exist a subset S of X with

mðS jyÞ ¼ 1=2 for almost all y, i.e., a set that intersects each interval in

exactly half its Lebesgue measure; and it is known that there is no such

set.

Now while Player 1 cannot purify exactly, he can purify approx-

imately. Indeed, setting

Sm ¼ 0;
1

2m

� �
W

2

2m
;
3

2m

� �
W � � � W 2m� 2

2m
;
2m� 1

2m

� �

(the set consisting of alternate intervals of length 1=2m), we find

mðSm jyÞ ! 1
2 ðas m !yÞ

for almost every y. This implies that for each e > 0, for su‰ciently large

m the pure strategy corresponding in the obvious way to Sm is an

e-purification of the 1=2–1=2 strategy. The same is true whenever the

measures mð�jyÞ are absolutely continuous, i.e., whenever m is absolutely

continuous with respect to Lebesgue measure on the square X � Y .

Unfortunately, without the absolute continuity it need not be true that,

a.e., mðSm jyÞ ! 1=2. For example, let T be the set of all x in X with a

dyadic representation
Py

i¼1 xi=2
i in which xi ¼ 1 whenever i is odd. Then

T is in a natural one-one correspondence with ½0; 1�, and so there is an

atomless measure on T corresponding to Lebesgue measure on ½0; 1�;
equivalently, there is an atomless measure z on X with support T. Define

m on X � Y by mð�jyÞ ¼ z for all y. Now T XS2 j

is empty for even j,

hence zðS2 j Þ ¼ 0, and hence mðSm jyÞ cannot converge to 1/2.

In this particular case the proof can be rescued by using the fact that z,

like any atomless measure on ½0; 1�, transforms into Lebesgue measure

under an appropriate measurable automorphism of ½0; 1�. But it is possi-
ble to choose m so that all the mð�jyÞ are mutually singular to each other

and to Lebesgue measure, or have mutually singular components; and

then no single transformation can simultaneously transform them all to

absolutely continuous measures.5

To overcome this problem we proceed, as before, to cut up Player 1’s

observation space X into 2m intervals of equal length; but rather than

choosing alternate intervals with certainty, we choose each interval with

5. Let mð�jyÞ be the measure on ½0; 1� induced by Bernoulli trials with probability y, i.e., the
measure of a dyadic interval ½ j=2i ; ð j þ 1Þ=2i� is ytð1� yÞi�t where t is the number of 1’s in
the dyadic representation of j. When y ¼ 1=2 this is Lebesgue measure, but otherwise it is
singular to Lebesgue measure; moreover, all the mð�jyÞ are mutually singular. Note that
mðS2 j jyÞ ¼ y for all j, so that mðSm jyÞ almost never converges to 1/2.
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probability 1/2, independently. Denoting the random union of intervals so

chosen by Sm, we conclude as in the law of large numbers that for almost

all y—indeed, whenever mð�jyÞ is atomless—almost surely mðSm jyÞ ! 1=2.

By Fubini’s theorem we can reverse these ‘‘almost universal’’ quantifiers

and conclude that the probability is 1 that for almost all y, mðSm jyÞ !
1=2. But since this has probability 1, it holds for at least one specific

realization fS1;S2; . . .g of the random sequence fS1;S2; . . .g. That is,

mðSm jyÞ ! 1=2 for almost all y, which is what we need.

Note that we have not actually constructed a ‘‘purifying sequence’’

fS1;S2; . . .g—one such that mðSm jyÞ ! 1=2 for almost all y. In §6 we

present two alternative approaches. First, we show that the sequence

fSmg, whose members consist of alternate intervals of length 1=2m, has a

purifying subsequence; in fact, one with asymptotic density 1. Second,

multiplying each Sm by the same positive constant b (i.e., considering

alternate intervals of length b=2m rather than 1=2m), we then use the

same basic idea as above (Fubini’s theorem) to show that fbSmg is itself

purifying for almost all b. While these ‘‘constructions’’ are not entirely

explicit either, they do give us a better idea of how e-purifications might

look.6

For a ‘‘practical’’ example in which m does not satisfy the absolute con-

tinuity condition, consider a 3-person game in which Player 1 observes g2
and g3, Player 2 observes g1 and g3, and Player 3 observes g1 and g2, each

gi being uniformly and independently distributed on ½0; 1�. Since m is

supported on the possible triples of observations and these form a 3-

dimensional subset of the 6-dimensional product of the observation

spaces, it cannot be absolutely continuous. Here m is not conditionally

atomless for any player, but it is weakly conditionally atomless for all

players; hence Corollary B applies, and thus all equilibria can be

e-purified.

6. Our methods do enable the actual construction, in the sense of Turing, of a purifying
sequence. For example, since fSmg has a purifying subsequence, for each k there is an mk

such that jmðSmk jyÞ � 1=2j < 1=k except possibly for a set of y of measure 1=2k at most.
Assuming that the mðSm jyÞ are explicitly given and calculable in the appropriate sense, we
can just try one m after another until we reach an appropriate mk . Similarly the first proof
can be adapted to construct a purifying sequence, since each Sm has only finitely many
realizations.
Note that a sequence can only be purifying ‘‘relative to m’’ (i.e., to the family fmð�jyÞg);

there can be no ‘‘absolutely purifying’’ sequence fSmg, i.e., one such that zðSmÞ ! 1=2 for
all atomless probability measures z. This follows from a theorem of Erdos, Kestelman, and
Rogers [1963], according to which every sequence fSmg of sets (in the unit interval) whose
Lebesgue measure lðSmÞ is bounded away from zero has a subsequence whose intersection
contains a perfect set P. An absolutely purifying sequence fSmg would have to satisfy the
hypothesis, since lðSmÞ ! 1=2 (if necessary we could discard a finite number of Sm). Hence
the conclusion is satisfied; if, then, z is an atomless probability measure with support P, then
zðSmÞ ¼ 1 for infinitely many m, and so zðSmÞn 1=2.
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4 Proof of the Theorem

Without loss of generality (w.l.o.g.) we take ðX ;XÞ to be the unit inter-

val with its Borel sets. In the lemmas, n is an arbitrary but fixed proba-

bility measure on X � Y , with the property that nð�jyÞ is atomless, ng-a.e.;

and throughout this section, e is an arbitrary but fixed positive real

number.

lemma 1 Let T A X. Then there exists a partition HM ¼ fH1
M ; . . . ;HM

M g
of T such thatð
Y

max
1WjWM

nðHj
M jyÞ

� �
nY ðdyÞ < e2:

Proof For m ¼ 1; 2; . . . ; let the partition Hm be composed of the

elements

H1
m ¼ T X 0;

1

m

� �
; H2

m ¼ T X
1

m
;
2

m

� �
; . . . ; Hm

m ¼ T X 1� 1

m
; 1

� �
:

Since nð�jyÞ is atomless, the cumulative distribution function nð½0; x�jyÞ is
continuous, and so uniformly continuous, in x. Hence

lim
m!y

max
1WjWm

nðHj
m jyÞ

� �
¼ 0:

From Lebesgue’s dominated convergence theorem,

lim
m!y

ð
Y

max
1WjWm

nðHj
m jyÞ

� �
nY ðdyÞ ¼ 0;

and the required inequality follows.

Denote the ordinary Euclidean norm by k k.

lemma 2 Let s be any vector in DK . Then for every T A X there is a

function b from T to the vertices V of DK such thatð
Y

����s�
ð
T

bðxÞnðdxjyÞ
����nY ðdyÞ < e:

Proof Let Hm be as in the proof of Lemma 1 for m ¼ 1; 2 . . . : Consider

an auxiliary probability space ðW;F;PÞ and a sequence Z1;Z2; . . . of

independent random variables on this space taking values in V with

EðZ jÞ ¼ s for j ¼ 1; 2; . . .

Approximate Purification of Mixed Strategies539



(where E denotes expectation with respect to P). Next, define a function

bm on T by

bmðxÞ ¼ Z j if x A H j
m:

Thus bm takes values in a space of random variables on ðW;FÞ. For
every y,ð
T

bmðxÞnðdxjyÞ ¼
Xm
j¼1

nðH j
m jyÞZ j:

Hence, for all y

E

ð
T

bmðxÞnðdxjyÞ
� �

¼ s:

Similarly, for all y (and denoting by Z
j
k the kth coordinate of Z j),

E

����s�
ð
T

bmðxÞnðdxjyÞ
����
2

 !
¼ E

����s�X
j

nðH j
m jyÞZ j

����
2

 !

¼
X
k

Var
X
j

nðH j
m jyÞZ

j
k

" #

¼
X
j

nðH j
m jyÞ

2
X
k

VarðZ j
kÞ:

But, since Z j takes on values in DK ,
P

k VarðZ
j
kÞW 1; hence

E

����s�
ð
T

bmðxÞnðdxjyÞ
����
2

 !
W max

j
nðH j

m jyÞ

for every y, and so by Lemma 1 and Fubini’s theorem,

e2 >

ð
y

E

����s�
ð
T

bMðxÞnðdxjyÞ
����
2

 !
nY ðdyÞ

¼ E

ð
Y

����s�
ð
T

bMðxÞnðdxjyÞ
����
2

nY ðdyÞ
" #

:

Hence there is a realization b of bM such that

e2 >

ð
Y

����s�
ð
T

bðxÞnðdxjyÞ
����
2

nY ðdyÞ>
ð
Y

����s�
ð
T

bðxÞnðdxjyÞ
����nY ðdyÞ

� �2
;

by the Cauchy-Schwarz inequality. The desired conclusion follows.
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Define a seminorm7 on the functions f from X to EK by

k f kn ¼
ð
Y

����
ð
X

f ðxÞnðdxjyÞ
����nY ðdyÞ:

lemma 3 For any strategy f of Player 1, there is a pure strategy f 0 with

k f � f 0kn < e.

Proof If f has only one value s, this is Lemma 2 with T ¼ X . If f is

simple (i.e., takes on only finitely many values in DK ), denote by Q the

number of distinct values taken on by f, replace e in Lemma 2 by e=Q,

and partition X into the Q sets over which f is constant. The pure strategy

f 0 is then pieced together from the Q functions constructed in Lemma 2.

Finally, if f is any strategy, there is a simple strategy d such that

supx k f ðxÞ � dðxÞk < e, and hence k f � dkn < e. Thus in the k kn-
seminorm, f is approximable by simple strategies. Since in the previous

paragraph we showed that simple strategies are approximable by pure

strategies, our conclusion follows.

Proof of Theorem Assume first that uiðk; l; x; yÞ is always nonnegative. IfX
i;k;l

ð
X�Y

uiðk; l; x; yÞmðdx� dyÞ ¼ 0;

then all the Ui vanish identically, and there is nothing to prove. Other-

wise, let Y 0 be the space Y � f1; . . . ; ng � K � L, with generic element

y0 ¼ ðy; i; k; lÞ, and define a probability measure n on X � Y 0 by

nðdx� dy0Þ ¼ nðdx� dy� fði; k; lÞgÞ ¼ cuiðk; l; x; yÞmðdx� dyÞ;

where the positive constant c is chosen to make n a probability measure.

Since m is conditionally atomless for Player 1, so is n. Replacing Y by Y 0

in Lemma 3 and in the definition of the seminorm k kn, we conclude that

for every strategy f of Player 1 there is a pure strategy f 0 such that

k f � f 0kn < e. Then for all strategies g of Player 2,

Xn
i¼1

jUið f ; gÞ �Uið f 0; gÞj

¼
Xn
i¼1

����X
k;l

ð
X�Y

glðyÞð fkðxÞ � f 0kðxÞÞuiðk; l; x; yÞmðdx� dyÞ
����

W
1

c

ð
Y 0
glðyÞ

����
ð
X

ð fkðxÞ � f 0kðxÞÞnðdxjy0Þ
����nY 0 ðdy0Þ

W
1

c
k f � f 0kn <

e

c
;

7. Functional with all the defining properties of a norm except kxk ¼ 0 ) x ¼ 0.
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and the theorem follows. If uiðk; l; x; yÞ has negative values, set u ¼
uþ � u�, where uþ and u� are nonnegative and integrable. Applying the

‘‘nonnegative theorem’’ just proven to the 2n-dimensional payo¤

ðuþ; u�Þ, we obtain the desired theorem for the original vector payo¤ u.

5 Proof of Corollary B

lemma 4 Let G1; . . . ;Gm be m di¤erent 2-person games, in each of which

Player 1 has the same observation set X0 and the same action set K0. Sup-

pose that each m j is conditionally atomless for Player 1, where m j is the

probability measure on pairs of observations in the jth game G j. Then for

every e > 0 and every strategy f of Player 1, there is a pure strategy f 0 that

is e-equivalent to f simultaneously in all the games G1; . . . ;Gm.

Proof We may assume w.l.o.g. that in each G j the payo¤ u j is one-

dimensional; for if it is n j-dimensional, we can replace Gj by n j games

di¤ering only in their payo¤s.

Let G be the 2-person game in which chance first chooses one of the

games G j with probability 1=m; Player 2, but not Player 1, is informed of

chance’s choice; and the chosen game is then played. The payo¤ in G is

the m-dimensional vector whose jth component is 0 unless G j was the

game chosen by chance; and, in that case, the payo¤ in G is the payo¤

in G j.

Formally, denote the action and observation sets of Player 2 in G j

by L j and Yj, respectively, and the payo¤ function by u j. W.l.o.g. let

the Yj be pairwise disjoint; and define Y ¼ Y 1 W � � � WYm and L ¼
L1 � � � � � Lm (with generic element l ¼ ðl1; . . . ; lmÞÞ. In G, the action sets

for Players 1 and 2 are K0 and L, respectively; the observation sets are X0

and Y, respectively; the probability measure m on X0 � Y is given by

mðdx� dyÞ ¼ 1

m
m jðdx� dyÞ when dyHYj ;

and the payo¤ is the m-vector u, the jth component of which is defined by

ujðk0; l; x0; yÞ ¼ u jðk0; l j; x0; yÞ when y A Yj ,

0 otherwise.

�

Now let f be a strategy of Player 1, and let e > 0. By the Theorem,

there is a pure strategy f 0 that is ðe=mÞ-equivalent to f in G. Let g1; . . . ; gm

be any strategies for Player 2 in G1; . . . ;Gm, respectively. Define a strat-

egy g for Player 2 in G by GðyÞ ¼ gjðyÞ if y A Yj. Then for every j,
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e

m
> jUjð f ; gÞ �Ujð f 0; gÞj ¼

1

m
jUjð f ; gjÞ �Ujð f 0; gjÞj;

so the proof of Lemma 4 is complete.

Proof of Corollary B The pure strategies f 0i are defined by an induction

on the index i. Suppose that f 0i has been defined for all i < m, where

1WmW n. Let Hm be the set of all strategy n-tuples h that are obtained

from f by replacing some subset (possibly empty) of the first m� 1 strat-

egies f i in the n-tuple f by the corresponding f 0i. For each h in Hm and

each j other than m, define a 2-person game Gmjh between m and j (in the

roles of Players 1 and 2, respectively) by fixing the strategies of the

players i other than m and j to be hi, and letting m and j play as in the

original game. The payo¤ in Gmjh is the n-dimensional vector resulting

from the original game. Formally, in Gmjh the observation sets of m and j

are Xm and Xj ; the action sets are Km and Kj; the probability measure on

Xm � Xj is the marginal probability measure mmj induced by m; and the

payo¤ umjhðkm; kj ; xm; xjÞ is the expectation of uðk; xÞ when the xi other

than xm and xj are jointly distributed according to the conditional prob-

ability measure mð�jxm; xjÞ on �i0m; jXi, and the distribution of the ki
other than km and kj is determined by the strategies hi. Applying Lemma

4 to the ð2n�m� 1Þ2m�2 games Gmjh (remember that m is fixed in each

single step of the induction), we deduce that there is a strategy f 0m such

that for all h in Hm, all j0m, all strategies gj of j, and all i

jUmjh
i ð f m; gjÞ �U

mjh
i ð f 0m; gjÞjW e

2n�mþ2
: ð5Þ

It is this f 0m that is used for the mth step of the inductive definition of f 0.

Note that since f 0m is now defined for all m, including m ¼ n, the defi-

nition of Hm extends to m ¼ nþ 1 as well.

We now prove by induction on m that for m ¼ 1; . . . ; nþ 1, each h in

Hm is an ðe=2n�mþ2Þ-equilibrium point and satisfies

jUiðhÞ �Uið f Þj <
e

2n�mþ2
: ð6Þ

For m ¼ 1 this follows from the fact that in that case h ¼ f and f is a

0-equilibrium point. Suppose it is true for m (with mW n); we will show it

for mþ 1. Suppose h0 A Hmþ1. If h0m ¼ f m, then h0 A Hm, and then our

contention follows from the inductive hypothesis. Otherwise, h0m ¼ f 0m.

Let h in Hm be obtained from h0 by replacing f 0m by f m. Then for each

j0m and each strategy of gj of j, we have

Umjhð f m; gjÞ ¼ Uðgj; h�jÞ;

Umjhð f 0m; gjÞ ¼ Uðgj; h0�jÞ:
ð7Þ
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From the definition of f 0m and the fact that h is an ðe=2n�mþ2Þ-equilibrium
point, we deduce that h0 is an ðe=2n�ðmþ1Þþ2Þ-equilibrium point; from (5),

(7), and (6) we obtain

jUiðh0Þ �Uið f Þj <
e

2n�ðmþ1Þþ2

for all i; so our induction is complete.

The end of the induction—i.e., the case m ¼ nþ 1—asserts precisely

that f 0 is an e-purification of the equilibrium point f, so the proof of

Corollary B is complete.

6 The Fourier Approach

In this section we indicate two alternative constructions of e-purifications

of strategies that assign the same mixed action to each observation—the

situation addressed in Lemma 2. From this, the proof of the Theorem

can be completed as in §4. For simplicity and transparency, we confine

ourselves in this section to the case in which Player 1 has just two actions,

the strategy to be e-purified is his 1=2–1=2 strategy, and X ¼ ½0; 1�.
As indicated in §3, constructing e-purifications of this strategy for arbi-

trarily small e is equivalent to constructing purifying sequences of subsets

of X, i.e., sequences fS1;S2; . . .g such that mðSm jyÞ ! 1=2 for mY -almost

all y (henceforth simply almost all y). Note that a sequence that is puri-

fying for one m may not be purifying for another m; and, indeed, our

constructions will depend on m.

The starting point is again the sequence fS1;S2; . . .g defined in §3. If

we subtract 1/2 from the indicator function of Sm, we get a function f m

whose graph looks like a squared-o¤ sine wave. Let f be the periodic

function on the real line that has period 1 and equals f 1 on ½0; 1Þ; then
f mðxÞ ¼ f ðmxÞ for x A ½0; 1�, and the sequence fSmg is purifying if and

only if for almost all y,ð1
0

f ðmxÞmyðdxÞ ! 0 as m !y; ð8Þ

where my ¼ mð�jyÞ. If we replace f in (8) by an (appropriately normalized)

sine or cosine, the integral becomes a Fourier-Stieltjes (henceforth simply

Fourier) coe‰cient of my, and thus (8) becomes the statement that the

Fourier coe‰cients of the measures my approach 0.

It has long been known that there are atomless measures whose Fourier

coe‰cients do not tend to zero (Zygmund [1955, §§2.213, 5.714, 11.52]);

and this jibes well with the discussion in §3, where we showed that there
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are m for which fSmg is not purifying. On the other hand, by a theorem

of Wiener (Katznelson [1976, p. 42]), the squared absolute values of the

Fourier coe‰cients of atomless measures z do tend to 0 in Cesaro mean

(i.C.m.), i.e.,

1

2M þ 1

XM
�M

jẑzðmÞj2 ! 0 as M !y; ð9Þ

where ẑzðmÞ is the Fourier coe‰cient8

ẑzðmÞ ¼
ð1
0

e�2pimxzðdxÞ:

This implies that an appropriate subsequence of the ẑzðmÞ tends to 0.

Moreover, we can find such a subsequence that will work simultaneously

for almost all the my. Indeed, the jm̂myðmÞj are bounded by 1; hence apply-

ing Lebesgue’s dominated convergence theorem to (9), we find

1

2M þ 1

XM
�M

ð
Y

jm̂myðmÞj2mY ðdyÞ ! 0 as M !y:

Hence for some sequence of integers fmjg,ð
Y

½jm̂myðmjÞj2 þ jm̂myð�mjÞj2�mY ðdyÞ ! 0 as j !y:

Again applying Lebesgue’s theorem, we deduce that for almost all y,

jm̂myðmjÞj ! 0 and jm̂myð�mjÞj ! 0 as j !y, which in turn implies that for

almost all y, the mjth sine and cosine coe‰cients of mj tend to 0.

To finish our argument, it remains only to replace the true Fourier

coe‰cients by the ‘‘squared-o¤ ’’ Fourier coe‰cients appearing in (8). We

proceed by establishing Wiener’s theorem for these squared-o¤ coef-

ficients. Let f e and f �e be the continuous periodic functions pictured in

Figure 1. Let ge and g�e be trigonometric polynomials,9 also with period

1, that uniformly approximate f e and f �e respectively to within e, and let

aGe
0 be their constant terms. Integrating gGe over ½0; 1� w.r.t. Lebesgue

measure, we find jaGe
0 jW 2e.

For a fixed atomless measure z on ½0; 1�, set

cm ¼
ð1
0

f ðmxÞzðdxÞ;

8. The complex form, from which the real sine and cosine coe‰cients are easily derived.

9. Finite sums of the form
P

m ame
2pimx. We use the Weierstrass approximation theorem

(e.g., Katznelson [1976, p. 15]).
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cGe
m ¼

ð1
0

fGeðmxÞzðdxÞ;

dGe
m ¼

ð1
0

gGeðmxÞzðdxÞ:

The Cauchy-Schwarz inequality and (9) yield jẑzðmÞj ! 0 i.C.m., hence

jdGe
m � aGe

0 j ! 0 i.C.m., and hence

lim sup
M!y

1

2M þ 1

XM
�M

jcGe
m jW jaGe

0 j þ eW 3e: ð10Þ

From f e X f X f �e we deduce cem X cm X c�e
m , and hence jcmjW jcemj þ

jc�e
m j. Hence by (10),

lim sup
M!y

1

2M þ 1

XM
�M

jcmjW 6e;

since the left side does not depend on e, it follows that jcmj ! 0, i.C.m.,

which is the ‘‘squared-o¤ ’’ Wiener theorem we were seeking. Using

Lebesgue’s dominated convergence theorem as before, we deduce that (8)

holds if m !y through an appropriate sequence of integers, i.e.,

proposition 11 For each m, there is a purifying subsequence fSmjg of

fSmg.

From the above proof one can actually get somewhat more. The sub-

sequence fmjg is not sparse; on the contrary, one can find a purifying

subsequence with density 1. In other words, for given large m the chances

are very good that Sm yields an e-purifying strategy; the inappropriate,

Figure 1

f has the solid graph, f e the dashed graph, and f �e the dotted graph. Where they are not
seen, the dashed and dotted lines coincide with the solid line. The abscissas of some points
are indicated; their ordinates are G 1

2.
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‘‘bad’’ Sm are few and far between. This jibes well with the counter-

example in §3, where the ‘‘bad’’ m are the even powers of 2.

For the second construction we require an extension of the Wiener

theorem in several directions. We have already noted that by the Cauchy-

Schwarz inequality, jẑzðmÞj2 in (9) can be replaced by jẑzðmÞj. Next, the

interval of summation in (9) can be replaced by any interval of the same

length, with a starting point that may depend arbitrarily on M; this is

proved in the same way as (9). Third, Wiener’s theorem may be extended

to the continuous (Fourier transform) case (Katznelson [1976, p. 138]).

Putting all this together yields

1

T

ðT0þT

T0

jẑzðxÞj dx ! 0 as T !y; uniformly in T0;

for atomless measures z, where ẑzðxÞ is the Fourier transform

ẑzðxÞ ¼
ð1
0

e�ixxzðdxÞ:

Proceeding as above, we can again replace ẑzðxÞ by the ‘‘squared-o¤ ’’

Fourier transform

cðxÞ ¼
ð1
0

f ðxxÞzðdxÞ;

and conclude that

1

T

ðT0þT

T0

jcðxÞj dx ! 0 as T !y; uniformly in T0: ð12Þ

For each a in ½1; 2�, define Sm
a as the union of alternate intervals of

length 1=2ma in ½0; 1�, starting with ð0; 1=2maÞ; the last interval may be

cut o¤ in the middle.10 Let f m
a be the indicator function of Sm

a , less 1/2.

Thenð1
0

f ma ðxÞmyðdxÞ ¼
ð1
0

f ðamxÞmyðdxÞ ¼ cyðamÞ; ð13Þ

where

cyðxÞ ¼
ð1
0

f ðxxÞmyðdxÞ:

Integrating (13) over a and using (12), we find

10. bSm in §3 is Sm
a here, with a ¼ 1=b.
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ð2
1

����
ð1
0

f ma ðxÞmyðdxÞ
���� da¼

ð2
1

jcyðamÞj da¼ 1

m

ð2m
m

jcyðxÞj dx! 0 as m!y:

Integrating over y and using Lebesgue’s theorem, we findð
Y

ð2
1

����
ð1
0

f ma ðxÞmyðdxÞ
���� da mY ðdyÞ ! 0:

Using Fubini’s theorem to interchange the integrations over a and y, we

deduce that for almost all a, for almost all y,ð1
0

f ma ðxÞmyðdxÞ ! 0:

The same proof works if a varies over any interval with positive

endpoints. Thus we have

proposition 14 For each m, for almost all a, the sequence fSm
a g is

purifying.

7 A Counterexample

In Corollary A, conditional atomlessness cannot be replaced by weak

conditional atomlessness. Explicitly, we exhibit a 3-person game in which

the prior measure m is weakly conditionally atomless for one of the

players, but there is an e > 0 and a strategy of that player that has no

e-purification. The game may easily be modified so that m is weakly con-

ditionally atomless for all players and still the same conclusion holds.

In this game, Player 1 observes both y and z, Player 2 observes only y,

and Player 3 observes only z; here ðy; zÞ is distributed over the unit square

in accordance with a probability measure y with almost all the condi-

tional measures yð�jyÞ and yð�jzÞ atomless. The observation spaces Y and

Z of Players 2 and 3 respectively both are the unit interval, whereas

Player 1’s observation space Y � Z is the unit square. The prior measure

m is formally defined on the four-dimensional cube ðY � ZÞ � Y � Z, but

is actually supported on the two-dimensional ‘‘diagonal’’ of this cube. If

we identify this diagonal with Y � Z, then when restricted to the diago-

nal, m becomes y; thus the atomlessness of the yð�jyÞ and yð�jzÞ implies

that m is weakly conditionally atomless for Player 1. On the other hand, m

is not conditionally atomless for Player 1, since by pooling their infor-

mation, Players 2 and 3 get to know the precise observation of Player 1.

Let all three players have the two-point action set f0; 1g, and define the

(one-dimensional) payo¤ to be 1 if all players choose the same action,
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0 otherwise. Consider the strategy for Player 1 in which he chooses

1=2–1=2 no matter what his observation is. If this strategy can be

approximately purified, then for every e > 0 there exists a subset A of

Y � Z that comes within e of cutting each rectangle11 in Y � Z in half

w.r.t. y, i.e.,

for each BHY and CHZ; jyðAX ðB� CÞÞ � 1
2 yðB� CÞj < e:

ð15Þ

We will construct a y for which this is false.

For given m, let Qm denote the field of sets in the unit interval gen-

erated by the quartic intervals ði=4m; ði þ 1Þ=4m�. A subset of the unit

square Y � Z is called quartic if, for some m, it is in the product field

Q2
m ¼ Qm nQm (i.e., if it is a finite union of squares whose sides are

quartic intervals). The quartic subsets of Y � Z can be listed in a

sequence fA0;A1;A2; . . .g, such that Am A Q2
m for all m.

We will define y gradually, starting with Q2
0 and extending the defi-

nition one step at a time, from Q2
m to Q2

mþ1, until it is defined for all

quartic sets. Caratheodory’s theorem is then used to extend y to all Borel

sets. The idea is to construct the extension from Q2
m to Q2

mþ1 so that (15)

fails for A ¼ Am when e ¼ 0.1. Thus when y is completely defined, (15)

fails for all quartic A when e ¼ 0.1. Finally, an approximation is used to

conclude that (15) fails for all A when e ¼ 0.05.

Specifically, start by defining yðY � ZÞ ¼ 1; this defines y on Q2
0. Next,

suppose y is defined on Q2
m. Since Am HQ2

m, each atom12 of Q2
m must be

included either in Am or in its complement �Am. Divide each such atom

S into a 4� 4 checkerboard, with a black or white square in the bottom

left corner according as SHAm or SH�Am. Define y to be yðSÞ=8 on

the resulting black squares, 0 on the white squares. This completes the

inductive definition of y on all quartic sets.

Note that if B is in some Ql , and Q is an atom of Qm, then

yðB�QÞW 2mlðBÞlðQÞ ¼ lðBÞ
ffiffiffiffiffiffiffiffiffiffi
lðQÞ

p
; ð16Þ

where l is Lebesgue measure. To apply Caratheodory’s theorem, let

fDkg be a nondecreasing sequence of quartic sets whose union is a

quartic set D; we must show that

yðDkÞ ! yðDÞ: ð17Þ

11. Rectangles in Y � Z correspond to pairs of pure strategies of Players 2 and 3.

12. Nonempty member of Q2
m not containing any other nonempty member, i.e., a square of

the form ði=4m; ði þ 1Þ=4m� � ð j=4m; ð j þ 1Þ=4m�.
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W.l.o.g. let D ¼ P�Q, where P and Q are atoms of a Qm. Given d > 0,

use (16)—and the corresponding inequality for yðP� CÞ—to find a

quartic neighborhood W of the boundary of D with yðWÞ < d. Then

DnDk HW ð18Þ

for su‰ciently large k; for if not, then the sets DnDk would have a point

in common in the interior of D, contrary to 6
k
Dk ¼ D. But (18) implies

that yðDÞ � yðDkÞ < yðWÞW d, and so proves (17). Thus y is defined for

all AHY � Z.

To show that almost all the conditionals yð�jyÞ and yð�jzÞ are atomless,

use an approximation argument to show that (16) continues to hold when

B is an arbitrary subset of Y. Hence for each atom Q of any Qm, for

almost all y in Y, we have yðQjyÞW
ffiffiffiffiffiffiffiffiffiffi
lðQÞ

p
. Since there are only denu-

merably many atoms Q in all the Qm put together, we may interchange

quantifiers and conclude that for almost all y, for all quartic intervals Q

(i.e., atoms of any Qm), we have yðQjyÞW
ffiffiffiffiffiffiffiffiffiffi
lðQÞ

p
. But this implies that

yð�jyÞ is atomless, and similarly almost all the yð�jzÞ are atomless. Of

course, it follows that y itself is atomless, though this can also be shown

directly.

Suppose that one of the Am satisfies (15) with e ¼ 0.1. By taking B ¼ Y

and C ¼ Z, we find yðAmÞ > 0.4. Next, take both B and C to consist of

alternate intervals of length 1=4mþ1, starting with the second and ending

with the last such interval. By the construction of y, we have, for each

atom S of Q2
m,

yðSX ðB� CÞÞ ¼ yðSÞ=2; if SHAm,

0; if SNAm.

�

Hence

yðAm X ðB� CÞÞ ¼ 1
2 yðAmÞ;

yðð�AmÞX ðB� CÞÞ ¼ 0;

and so

yðAm X ðB� CÞÞ � 1
2 yðB� CÞ ¼ 1

2 yðAm X ðB� CÞÞ > 0:1;

contradicting (15) with e ¼ 0.1.

Finally, if A is an arbitrary Borel set, there is a quartic set Am with

yðAmDAÞ < 0.05, where D denotes the symmetric di¤erence. Then (15)

fails for A when e ¼ 0.05.

To construct an example in which m is weakly conditionally atomless

for all players, let w be a random variable that is uniformly distributed

over ½0; 1�, is independent of ðy; zÞ and is observed by Players 2 and 3 but
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not by Player 1; the action sets and payo¤s remain as before (w does not

a¤ect the payo¤s). This is similar to the situation in the last paragraph of

§3. In particular, the prior measure is weakly conditionally atomless for

all players; but the strategy of Player 1 discussed above still cannot be

(0.05)-purified.

8 The Literature

Both approximate and exact purification appear in the literature. The

underlying ideas are usually quite di¤erent; approximate theorems only

require some form of continuity (the weakest being the atomlessness

assumed here), whereas exact theorems usually assume, in addition, a

combination of independence and finiteness.

Bellman and Blackwell [1949] and Dvoretzky, Wald, and Wolfowitz

[1951] pioneered the area. Both treated two-person games in which only

Player 1’s observations and actions are explicit, Player 2 being repre-

sented directly by his strategies (compare Aumann [1964], which also

treats games that are ‘‘extensive’’ for one player, ‘‘normal’’ for all others).

Bellman and Blackwell use the alternate-interval idea described at the

beginning of §3 to purify 1’s strategies approximately when the payo¤

satisfies certain continuity conditions.13 Dvoretzky, Wald, and Wolfowitz

use Lyapunov’s theorem on the range of a vector measure to purify 1’s

strategies exactly when 2 has only finitely many strategies; in the opposite

case, they adduce an example showing that exact purification is in general

impossible. Dvoretzky, Wald, and Wolfowitz also prove an approximate

purification theorem when 2’s strategy space is conditionally compact14

in a metric based on the payo¤s; the proof uses the conditional compact-

ness to approximate 2’s strategy space by a finite space, and then applies

the exact purification theorem quoted above.

In the more recent literature, as in this paper, all players’ observations

and actions are explicit. Radner and Rosenthal [1982] purify equilibria

exactly when the observations have independent, atomless distributions,

and each player’s payo¤ depends only on his own observation15; whereas

Milgrom and Weber show that equilibria can still be exactly purified

when there is a finite family of mutually exclusive and exhaustive events,

conditional on each of which the condition of Radner and Rosenthal

13. Piecewise continuity in 1’s observations (using the metric of the unit interval), uniform
over 1’s actions and 2’s strategies.

14. Every sequence has a Cauchy subsequence.

15. Radner and Rosenthal also obtain a somewhat more general theorem on exact purifica-
tion, which is still not as general as that of Milgrom and Weber.
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holds. Milgrom and Weber also purify strategies approximately when the

joint distribution m of observations is absolutely continuous with respect

to the product of the marginals (i.e., the distributions of individual

observations), each of which they assume atomless. Here again the

alternate-interval idea works; thus by transforming the marginals to

Lebesgue measure, one can assume that m is absolutely continuous w.r.t.

Lebesgue measure, and then the Sm form a purifying sequence (cf. §3).

While determining the precise relationships between all these results is

not always a straightforward matter, it may be seen that our results are

not subsumed under any of them. In the other direction, it should be

noted that Milgrom and Weber work with compact action spaces, rather

than the finite action spaces we assumed; but for finite action spaces, our

Corollary A implies the approximate purification theorem of Milgrom

and Weber. Finally, both the papers of Milgrom and Weber and of

Radner and Rosenthal discuss topics unrelated to purification, including

conditions for the existence of (approximate or exact) equilibria.
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