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Econometrica, Vol. 53, No. 3 (May, 1985)

AN AXIOMATIZATION OF THE NON-TRANSFERABLE
UTILITY VALUE

By ROBERT J. AUMANN'

Shapley’s Non-transferable Utility Value correspondence is characterized by a set of
axioms, which combine the features of the axioms for the value of transferable utility
games, and those for Nash’s solution to the bargaining problem. The axioms refer to values
as payoff vectors only—the comparison weights associated with a value make no explicit
appearance. A key axiom is conditional additivity, which may be stated as follows: If the
same payoff vector is a value of each of two games, then it is also a value of the half-half
probability combination of these two games, unless it is Pareto-dominated there. For the
axioms to work, the boundary of the set of all feasible outcomes must be smooth.

1. INTRODUCTION

THE NTU (NON-TRANSFERABLE UTILITY) VALUE is a solution concept for
multi-person cooperative games in which utility is not “transferable” (games
“without side payments”). Introduced by Shapley in [12], it generalizes the
Shapley value [11] for TU (Transferable Utility) games.> Many economic contexts
are more naturally modelled by NTU than by TU games; and indeed, the NTU
value has been applied with some success to a variety of economic and economic-
political models.” Two well-known applications are Nash’s solution for the
bargaining problem [7] and for two-person cooperative games [8], both of which
are instances, of the NTU value.

The original definition [12] of the NTU value works roughly as follows: Given
an NTU game V and a vector A of “comparison weights” for the players, one
derives a TU game v,, and calculates its value ¢(v,); if this value is feasible in
the original NTU game V, then it is defined to be a value of V. A precise definition
is given in Section 4.

Technically, the definition is reminiscent of that of the competitive equilibrium,
with A playing the role of prices, and ¢(v,) the role of the demand. Historically,
it grew out of successive attacks by several investigators, notably J. Harsanyi
[4, 5], on the value problem for NTU games. The bare definition may perhaps
seem a little strange and unmotivated; but when one delves deeper [12, 1], one
finds that it is quite natural. Nevertheless, it has been the object of controversy
[9, 10,6, 2].

In this paper, we offer an axiomatization of the NTU value. Like any axiomatiza-
tion, it should enable us to understand the concept better, and hence to focus
discussion. One can now view the NTU value as defined by the axioms, with the
treatment in [12] serving as a formula or method of calculation. Thus the NTU
value joins the ranks of the TU value and Nash’s solution to the bargaining

! Research supported by a National Science Foundation Grant at the Institute for Mathematical
Studies in the Social Sciences, Stanford University. Important conversations with M. Maschler, B.
Peleg, and M. Perles are gratefully acknowledged.

21.e., games with side payments, representable by a coalitional worth (*characteristic”’) function.

3 See the references of [2].
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600 ROBERT J. AUMANN

problem, each of which is defined by axioms, but usually calculated by a
formula®*—a formula whose intuitive significance is not, on the face of it,
entirely clear.

This work is an outgrowth of ideas that have been “in the air” for many years.
The problem of axiomatizing the NTU value is a natural one; already in his
original paper [12, p. 260], Shapley discusses “properties of our...solution
that ... could be used in the derivation of our definition.” Our treatment owes
much to that discussion, and to subsequent oral discussions with Shapley.’

Worthy of particular note is that the axioms refer to values as payoff vectors
only—the comparison weights associated with a value make no explicit appear-
ance in the axioms. This is important because the question of the intuitive
significance of the comparison weights has often been raised in critical discussion.
By contrast, Shapley’s viewpoint is that his solution consists of both the payoft
vector and the comparison weights [12, p. 259, line 20 ff.; p. 261, line 1], with
the latter playing at least as important a role as the former.® Also worthy of note
is the smoothness condition (3.1), which is indispensable for our approach (see
Section 9).

The domain of the axioms—the family of games to which they apply—is
described in Section 3; the axioms themselves are presented and discussed in
Section 5. Section 6 is devoted to an alternative treatment, in which one of the
axioms (Independence of Irrelevant Alternatives) is dropped. Proofs are presented
in Sections 7 and 8. Section 10 discusses possible variations on the theme; it also
contains a discussion of the implications of the axioms for our understandmg of
the intuitive content of the value solution.

2. SOME NOTATION AND TERMINOLOGY

Denote the real numbers by R. If N is a finite set, denote by | N| the cardinality
of N, and by R" the set of all functions from N to R. We will think of members
x of RN as |N|-dimensional vectors whose coordinates are indexed by members
of N: thus when i e N, we will often write x' for x(i). If xe R" and S < N, write
x5 for the restriction of x to S, i.e., the member of R® whose ith coordinate is
x'. Write 15 for the indicator of S, i.e., the member of R™ whose ith coordinate
is 1 or 0 according as i is or is not in S. Call x positive if x'>0forall iin N. If
A and x are in R™, define Ax in R™ by (Ax)' = A’x’, and denote the scalar product
Y. cnX'y' by x-y. Write x=y if x'=y' for all i in N. Denote the origin of R"
(the vector all of whose coordinates are 0) by O.

Let A, Bc R™ and A, xe R™. Write A+ B={a+b:acA and be B}, AMA=
{Aa: ac A}, A+x=A+{x}, and 3A = {3x: x € A}. Denote the closure of A by A
its complement by ~A, and its frontier An (~A) by 3A. If A is convex, call 1t

“The random order expected contribution formula for the TU value, and the maximum product
formula for the Nash Bargaining Problem.

5 Specifically, the idea of adding the zero-game V?® (see Section 8) to a given NTU game in order
to obtain the induced transfer game is due to him.

¢ The importance that Shapley attaches to the endogeneous determination of comparison weights
is evident from the title of his paper, as well as from its introduction.
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smooth if it has a unique supporting hyperplane at each point of its frontier. Call
A comprehensive if xe A and x=y imply y € A.

3. NTU GAMES

Let N be a finite set, which will henceforth be fixed; set n = |N | The members
of N are called players, its non-empty subsets coalitions ; points in R™ are called
payoff vectors. An NTU game on N (or simply game) is a function V that assigns
to each coalition S a convex comprehensive non-empty proper subset V(S) of
R?®, such that

(3.1) V(N) is smooth;

(3.2) if x,yedV(N) and x = y, then x = y; and

(3.3) for each coalition S there is a payoff vector x such that
V(S) x{OM\}c V(N) +x.

Of these three conditions, only (3.1) is a substantive restriction from the intuitive
viewpoint; the others are technical in nature. Condition (3.2) says that 6 V(N)
has no “level” segments, i.e., segments parallel to a coordinate hyperplane; it is
a familiar regularity condition in game theory. Condition (3.3) says that if one
thinks of V(S) as embedded in R™ by assigning 0 to players outside S, then
V(S) is included in some translate of V(N); it can be thought of as an extremely
weak kind of monotonicity.

A TU game (on N) is a function v that assigns to each coalition S a real
number v(S). The NTU game V corresponding to a TU game v is given by

V(S)= {xe R%: ¥ x'< v(S)}.

ieS
If T is a coalition, define a TU game ur by

1 ifS>T,
0 otherwise.

(3.4) uT(S)={

The NTU game U; corresponding to ur is called the unanimity game on T.

Operations on games are defined like the corresponding operations on sets,
for each coalition separately. Thus (V+ W)(S)=V(S)+ W(S), (AV)(S)=
ASV(S), V(S)=V(S), and so on.

4. SHAPLEY VALUES OF NTU GAMES

Recall that the value of a TU game v is the vector ¢(v) in RN given by

(@.1) ¢‘(v)=ni,§[v(s?u{i}>—v<s:‘)],



602 ROBERT J. AUMANN

where R ranges over all n! orders on N, and S{ denotes the set of players
preceding i in the order R. The value is usually defined by a set of axioms, which
are then shown [11] to lead to (4.1).

Let V be a game. For each positive A in R, write

(4.2) v, (S) =sup {A%x: xe V(S§)}.

We say that the TU game v, is defined if the right side of (4.2) is finite for all
S. A Shapley value of V is a point y in V(N) such that for some positive A in
R™ the TU game v, is defined, and Ay = ¢(v,). The set of all Shapley values of
V is denoted A(V). The set of games V for which A(V)# (J—i.e., that possess
at least one Shapley value—is denoted I'™ or simply I. The correspondence
from I" to R" that associates the set A(V) to each game V is called the Shapley
Correspondence.

5. THE AXIOMS

A wvalue correspondence is a correspondence that associates with each game V
in I' a set @(V) of payofl vectors, satisfying the following axioms for all games
UV, Win I

AxioMm 0—Non-Emptiness: @(V) # ¢.

Axiom 1—Efficiency: @(V)c aV(N\).

Axiom 2—Conditional Additivity: If U = V+ W, then
DP(U)>(P(V)+DP(W))naU(N).

Axiom 3—Unanimity: If Uy is the unanimity game on a coalition T, then

@(Ur)={11/|Tl}.
Ax1oM 4—Closure Invariance: @(V)= @(V).
AxioMm 5—Scale Covariance: If A in R" is positive, then ®(AV)=AD(V).

Axiom 6—Independence of Irrelevant Alternatives: If V(N)<c W(N) and
V(S)= W(S) for S# N, then ®(V)> d(W)n V(N).

For a fixed value correspondence @, call x a value of V if xe ®(V). Efficiency
says that all values are Pareto optimal. Suppose next that y and z are values of
V and W respectively. We cannot in general expect y + z to be a value of V+ W,
because it need not be Pareto optimal there. Conditional additivity says that if
y+z does happen to be Pareto-optimal in V+ W, then it is a value of V+ W;
i.e., that additivity obtains whenever it does not contradict efficiency. Unanimity
says that the unanimity game on T has a unique value, which provides that the
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coalition T split the available amount equally. Closure invariance is a conceptually
harmless technical assumption; we simply do not distinguish between a convex
set and its closure. If the payoffs are in utilities, then scale invariance says that
representing the same real outcome by different utility functions does not affect
the value in real terms. Independence of irrelevant alternatives (11A) says that a
value y of a game W remains a value when one removes outcomes other than y
(““irrelevant alternatives™) from the wet W(N) of all feasible outcomes, without
changing W(S) for coalitions S other than the all player coalition. (For a thorough
discussion of this assumption, see the next section.)

These axioms are an amalgam of those that characterize the value for TU
games [11] and those that characterize Nash’s solution to the Bargaining Problem
[7]. Axioms 1, 2, and 3 are fairly straightforward analogues of the TU value
axioms, with the unanimity axiom combining the symmetry and dummy axioms.
As we have noted, Axiom 4 is purely technical; and Axioms 5 and 6 are essentially
the same as the corresponding axioms in Nash’s treatment.

THEOREM A: There is a unique value correspondence, and it is the Shapley
correspondence.

6. AN AXIOMATIC TREATMENT WITHOUT IIA

ITA is perhaps the best-known of the axioms in the preceding section. This is
partly due to its key role in Nash’s work, and partly to its having stirred some
controversy. In this section, after discussing the axiom, we offer an axiomatic
treatment that avoids using it. .

Whether or not IIA is reasonable depends on how we view the value. If we
view it as an expected or average outcome, then IIA is not very convincing. By
removing parts of the feasible set, we decrease the range of possible outcomes,
and so the average may change even if it itself remains feasible. But in NTU
games, viewing the value as an average is fraught with difficulty even without
IIA, because the convexity of V(N) implies that in general, an average will not
be Pareto optimal.

An alternative is to view the value as a group decision or arbitrated outcome;
i.e., a reasonable compromise’ in view of all the possible alternatives open to
the players. In that case IIA does sound quite convincing and even compelling.
An anecdote—it happens to be a true one—may serve to illustrate its force.
Several years ago I served on a committee that was to invite a speaker for a fairly
prestigious symposium. Three candidates were proposed; their names would be
familiar to many of our readers, but we will call them Alfred Adams, Barry
Brown, and Charles Clark. A long discussion ensued, and it was finally decided
to invite Adams. At that point I remembered that Brown had told me about a
family trip that he was planning for the period in question, and realized that he
would be unable to come. I mentioned this and suggested that we re-open the

7 We are purposely staying away from the word “fair”, in order to avoid ethical connotations.
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discussion. The other members looked at me as if I had taken leave of my senses.
‘“What difference does it make that Brown can’t come,” one said, “‘since in any
case we decided on Adams?’ I was amazed. All the members were eminent
theorists and mathematical economists, thoroughly familiar with the nuances of
the Nash model. Not long before, the very member who had spoken up had
roundly criticized ITA in the discussion period following a talk. I thought that
perhaps he had overlooked the connection, and said that I was glad that in the
interim, he had changed his mind about IIA. Everybody laughed appreciatively,
as if I had made a good joke, and we all went off to lunch. The subject was never
reopened, and Adams was invited.

Note that we are discussing a true game, not an individual decision problem.
The members had different interests, coalitions could be formed, etc. Occasionally
issues even came to a vote; and when they did not, the vote was definitely “‘there,”
in the background. If there ever was a situation in which IIA could be criticized,
this was it.

Yet I think that the members were right to laugh off my suggestion. No matter
how convincing such criticism may seem in the abstract, the concrete suggestion
to reconsider the choice of Adams because Brown could not come sounded—and
was—absurd. , :

Let us nevertheless examine the consequences of omitting this axiom. It turns
out that ITA is not nearly as central here as in the Nash theory; something is
lost, but less than might have been expected. The result is as follows:

THEOREM B: The Shapley correspondence is the maximal correspondence from
I to R" satisfying Axioms O through 5.

More explicitly:
(6.1) A satisfies Axioms 0 through 5.

(6.2) If @ satisfies Axioms 0 through 5, then @(V) < A(V)
for all games Vin I.

At issue, of course, is the categoricity of the axioms. There may® be many
correspondences @ satisfying Axioms 0 through 5. With Axiom 6, there is only
one; the system is fully determined. On a practical level, though, there isn’t much
difference. Many of the applications involve necessary conditions only: they
assert that every value has a particular form (e.g., competitive equilibrium). This
kind of result remains unchanged when Axiom 6 is omitted. The other kind of
result—every outcome of a particular form is a value—is weakened; but if we
interpret a ““value” of V to mean a member of @(V) for some @ (rather than
for a particular, fixed @) satisfying the axioms, then this kind of result also

8 A referee asked for an example to show that IIA is really needed; i.., for a correspondence
other than A satisfying Axioms 0 through 5. We don’t know of one. Thus at present, it is conceivable
that Axioms 0 through 5 are already categoric.
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remains true. Another kind of application in which dropping ITA changes nothing
is when there is only one Shapley value (|A(V)|=1); for example, this is the case
for 2-person superadditive games, and in [3].

7. PROOF THAT THE SHAPLEY VALUE SATISFIES THE AXIOMS

In the remainder of the paper, we abbreviate 9 V(NN) by 4 V. We call a member
A of RN normalized if max, [A'|=1.

Let V be a game, and let y €dV. Since V(N) is smooth (3.1), there is a unique
supporting hyperplane to V(N at y. That means that there is a unique normalized
A in R" such that A-x is maximized over V(N) at x = y. By comprehensiveness
and (3.2), this A is positive; denote it §(V, y).

LEmMMA 7.1: A(V)caV.

Proor: Follows from the efficiency of the TU value.

LemMA 7.2: Let ye A(V), and let A = 6(V, y). Then the TU game v, is defined,
and Ay = ¢(vy).

ProOOF: By the definition of the Shapley value (Section 4), there is a positive
w in RN, which we may assume normalized, such that v, is defined and uy=
¢(v,). By the efficiency of the TU value,

wy=Yu'y' =Y ¢'(v,)=v,(N)=sup {u-x: xe V(N)}.

Hence u - x is maximized over V(N) at x =y, i.e., u = 8(V, y) = A, and the proof
is complete.

PROPOSITION 7.3: The correspondence A from I to R satisfies Axioms 0 through
6.

Proor: Axiom 0 follows from the definition of I'. Axiom 1 is Lemma 7.1. To
verify Axiom 2,let ye A(V),ze A(W),y+zedU; we wishtoshow y+ze A(U).
Let A=8(U,y+z)=8(V+W,y+2z). Then A-x is maximized over V(N)+
W(N) at x=y+z and hence over V(N) at x=y; hence A =8(V,y). Since
ye A(V) it follows from Lemma 7.3 that the TU game v, is defined, and
Ay = ¢(v,). Similarly the TU game w, (the notations w, and u, are analogous
to v,) is defined, and Az=¢(w,). Hence the TU game u, is defined, and
u, = v, + w,. Hence by the additivity axiom for the TU value,

(7.4) A(y+z)=Aay+tAaz=0(0)+o(wy)=¢(v) +wy)=e(uw,).

But y+ze V(N)+ W(N)< U(N); together with (7.4), this shows that y+z is
a Shapley value of U, as was to be shown. The remaining axioms are straight-
forward, and so the proof of the proposition is complete.
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8. PROOFS OF THE THEOREMS
Throughout this section, @ is an arbitrary but fixed correspondence from I’
to R™ satisfying Axioms 0 through 5.
LEMMA 8.1: If Vis the game corresponding to a TU game v, then D(V)={e(v)}.

ProoF: Note first that I" contains all games corresponding to TU games, so
that we can apply our axioms to all these games at will.

Let V correspond to the TU game . For any real number a, let V* correspond
to the TU game av. Then V° corresponds to the TU game that is identically 0
(i.e., vanishes on all coalitions), and hence by Axioms 1, 2, and 3,

®(V°)+{lIn/n}=P(V°)+®(Uy) < @(V°+ Uy) = ®(Uy) ={1In/n}.
By Axiom O, it follows that
(8.2) @ (V°) ={0}.

Hence by Axioms 1 and 2, ®(V)+®(V )= @(V+ v =®(V°) ={0}. By
Axiom 0, it follows that each of (V) and &( V') consists of a single point, and

(8.3) (V)= -d(V).
If « is a positive scalar, then Axiom 5 with A =(e, ..., a) yields
(8.4) D(V)=a®(V).

Combining this with (8.2) and (8.3), we deduce (8.4) for all scalars a, no matter
what their sign is. From Axiom 3 and ¢(aur)=alr/ |T| we then deduce that

8.5  @(UT) ={e(aur)}

for all coalitions T and all real numbers a.

Now each TU game v may be expressed in the form v =Y raqur where the
ar are real. Hence for the corresponding game V we have V = YrUS. By (8.5),
and Axioms 1 and 2, it follows that

{¢(v)}=;{¢(arur)}=2; o(UT)= ‘P(; U‘;T) =@(V).

But we have already seen that ®(V) consists of a single point. Hence {p(v)}=
@(V), and the proof of the lemma is complete.

LemMA 8.6: @(V)< A(V) for each Vin I.

PROOF. Let ye @(V). By Axiom 1, y € 9V. Setting A = 8(V, y), we deduce from
(3.2) that A is positive. By Axiom 5 (scale covariance) applied both to @ and to
A, we may assume without loss of generality that A = (1,...,1).If V° corresponds
to the game that is identically 0, then by (3.3), V+ V° is a game;’ moreover,

9Condition (3.3) is needed to ensure that (V+ V°)(S) does not fill all of RS.



NTU VALUE AXIOMATIZATION 607

yea(V+V®, and V+ V° corresponds to the TU game v, (see (4.2)). Hence by
Lemma 8.1, Axioms 2 and 4, and again Lemma 8.1, we have

Ay=ye d(V)na(V+ V) =(®(V)+0))na(V+ \S)
=(D(V)+P(V))na(V+ V) d(V+ V) =d(V+ V) ={p(v)}

Hence Ay = ¢(v,), which means that y€ A(V). This completes the proof of
Lemma 8.6.

Theorem B follows from Proposition 7.3 and Lemma 8.6.
LEMMA 8.7: If ® is a value correspondence,'® then A(V)< &(V) forall VinTI.

ProoOF: Let y € A(V). Then y € V(N), and there is a comparison vector A such
that the TU game v, (see (4.2)) is defined, and

Ay =e(v)).
Let V, be the game corresponding to v,. Define a game W by

V,(N) when S=N,

W(S)={AV(S) when S#N.

Then Ay is a Shapley value of W, so We I, so @(W) is defined.

Let V° correspond to the TU game that vanishes on all coalitions. Then
V, = W+ V°and (W + V°) =9 W, and so by Lemma 8.1 and Axioms 4, 2, 1, and
0, we have

{o(v)}=P(V))=P(W+ V) =d(W+ V)
S(P(W)+D(V))na(W+ VO
—(B(W)+0)naW=D(W) % D.

Hence

D(W)={e(v)}t={ry}.

By definition, W(N) = V,(N) 2 AV(N),and W(S)=AV(S) for S # N. Moreover
ye V(N) yields Ay e AV(N). Hence by Axioms 6, 5 and 4, \y e @(AV) =A1D(V).

Hence y € &(V), as was to be proved.

Theorem A follows from Proposition 7.3 and Lemmas 8.6 and 8.7.

1% gatisfies Axiom 6 as well as 0 through 5.
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FIGURE 1.—V(N), W(N), and U(N) are, respectively, horizontally, vertically, and diagonally
hatched.

9. SMOOTHNESS

The smoothness condition (3.1) is of the essence; without it, the Shapley
correspondence fails to satisfy the conditional additivity axiom, and both our
theorems become irreparably false.

To see how smoothness works, let y be a Shapley value of V. The associated
“comparison vector” A always defines a supporting hyperplane to V(N) at y;
because of smoothness, it is the only supporting hyperplane. If now z is a Shapley
value of W, then y+z is efficient in V+ W if and only if the supporting
hyperplanes at y and z are parallel; therefore, y and z must be associated with
the same comparison vector, and then additivity follows from the addivity of the
TU value. .

Without smoothness, the reasoning breaks down. It is possible for V(N) and
W(N) to have parallel supporting hyperplanes at y and z, by dint of which y+z
is efficient in V+ W; but these need not be the hyperplanes defined by the
comparison vectors that make y and z Shapley values. For example, let N = {1, 2},
let V correspond to the TU game given by v(12) = v(1) =(2) =0, and define W by

W(1) = W(2) = (-0, 0],
W(12)={xe RY: x'+x*><6 and x'+2x*<8}

(see Figure 1); setting U = V+ W, we see that U corresponds to the TU game u
given by u(12)=6, u(1)=u(2)=0. Then A(V)={(0,0)}, A(W)={(4,2)}, and
A(U)={(3,3)}; (0,0)+(4,2) is efficient in U, but it is not a value. What is
happening is that V(N) and W(N) both have hyperplanes at the respective
Shapley values thaf are orthogonal to (1, 1); but the value (4, 2) of W is associated
with the comparison vector (1, 2), not with (1, 1).

Smoothness may be interpreted as local linearity, or, if one wishes, local TU;
but note that it is needed for the all-player coalition only. In the guise of
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differentiability, it has played a significant role in several of the applications; so
it is interesting that it makes an appearance on the foundational side as well.

10. DISCUSSION
A. Vanishing Comparison Weights and the Non-levelness Condition

Shapley’s treatment [12] permits some of the comparison weights A’ to vanish.
Ours does not. Vanishing comparison weights are undesirable for several reasons.
In the direct, non-axiomatic approach, their intuitive significance is murky; and
in the axiomatic approach, they greatly complicate matters. In the applications,''
vanishing A’ have played no significant role; in most specific cases it can be
shown that the A’ must be positive, though the definition allows them to vanish.

Our definition of “Shapley value” explicitly takes A positive; and the non-
levelness condition (3.2) assures that whatever emerges from the axioms will be
associated with a positive A. A verbal statement of (3.2) is that weak and strong
Pareto optimality are equivalent.

One can avoid the non-levelness condition by strengthening the efficiency
axiom to read as follows:

Axiom 1*—Strong Efficiency: If y e ®@(V), then {xcdV(N): x<y}={y}.

This is more than strong Pareto optimality; it says that y is in the relative (to
dV(N)) interior of the strongly Pareto optimal set, or equivalently that 8(V, y)
is positive.! If we replace Axiom 1 by Axiom 1*, then one can simply drop (3.2),
and our theorems remain true.

B. The Domain

The domain I" of the axioms is the set of all games that possess at least one
Shapley value. This might be considered an esthetic drawback, since in this way
the Shapley value enters into its own axiomatic characterization (albeit only via
the domain). If one wishes to avoid this, one can replace I" by any family A with
the following properties:

(10.1)  Every game in A has a Shapley value.
(10.2)  All games corresponding to TU games are in A.
(10.3) If Ve A and A is a positive vectorin R, then AV e A.

(10.4) The game obtained from any V in 4 by replacing V(N) by any one
of its supporting half-spaces is also in A.

(10.5) VeA if and only if Ve A.

' We are referring to the existing applications to economic and/or political models, not to isolated
numerical examples.

12 1n effect, (3.2) asserts that no part of the efficient surface is level, whereas 1* asserts this only
on a neighborhood of the value.
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For example, we may take A to be the family of all games V such that for all
coalitions S, the set of extreme points of V(S) is bounded (or equivalently, V(S)
is the sum of a compact set and a cone).

That this A satisfies (10.2) through (10.5) is easily verified. To see that it satisfies
(10.1), let Ve A. Let C be the set of all positive A in RN for which v, is defined
and ¥,cnyA'=1. Then C is convex and compact, and the mapping A - v,(S) is
continuous on C for each S; hence also A - ¢uv, is continuous on C. For each
A in C, define x, in R" by Ax, = ¢v, ; let y, be the point in V(N) closest to x, ;
and let A’ be the normal to the supporting hyperplane of V(N) at x,. By (3.3),
A'e C; hence A > A’ is a continuous mapping from C into itself, and so has a
fixed point A*. Then x,+, is a Shapley value of V.

Thus A does satisfy (10.1) through (10.5), and so can replace I" as the domain
of the value correspondence. We adopted I' as the domain because it is the
largest on which the axioms “work,”, and is thus the most useful from the point
of view of applications.

Note that the above existence proof may be modified so as to make no use of
smoothness.

Finally, we mention that (10.1) is not gratuitous; there are indeed games not
possessing any Shapley value. For example, let N ={1, 2}, and define V by

V(1) = V(2) = (-0, 0],

V(12)={(¢ n)e RN: 7 <0 and &< —1}.

If x=(& m) were a value, then the tangent to 6 V(N) at x would have a slope
equal in magnitude (but opposite in sign) to the slope of the line connecting x
with the origin; and this can never be, since the respective slopes are —n/2¢ and
1/ & The example is of course highly pathological, since each player can guarantee
0 to himself, but can never achieve this in V(N); but it does show that one
cannot simply take the domain to be the set of all games.

C. Conditional Additivity
The Conditional Additivity Axiom can be replaced by the following pair of
axioms:
Axiom 2*a—Conditional Sure-Thing: If U =4V +1W, then
P(U)>P(V)n P(W)ndU(N).

Ax10M 2*b—Translation Covariance: For all x in RN, ®(V+x)=®(V)+x.

In Section 6, we suggested that the value of a game may be viewed as a group
decision, compromise, or arbitrated outcome, that is reasonable in view of the
alternatives open to the players and coalitions (rather than an outcome that is
itself in some sense stable, such as a core point). In these terms, Axiom 2*a says
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the following: Suppose that y is a reasonable compromise both in the game V
and in the game W. Suppose further that one of the games V and W will be
played; at present it is not yet known which one, but it is common knowledge
that the probabilities are half-half. Then y is a reasonable compromise in this
situation as well,”> unless the players can use the uncertainty to their mutual
advantage.

D. Non-Uniqueness of the Value

Given the above view of the value as a reasonable compromise, some readers
may be disturbed by the fact that a given game V may have more than one
value.”* Non-uniqueness, they may say, is all very well for stability or equilibrium
concepts; but a theory of arbitration, of reaching reasonable compromises, should
“recommend” a single point.

On closer examination, there seems to be no particular reason to accept such
a view. Compromises may be based on many different kinds of principles and
criteria. Such criteria are usually overlapping, in the sense that a given one applies
to only a limited range of situations, and to a given situation several criteria may
apply. This results in a multi-valued function—a correspondence.

A good analogy is to law; in fact, one can view civil law as society’s way of
reaching ‘‘reasonable compromises.” Specific laws always have limited ranges;
these ranges often overlap and yield contradictory results. An important function
of a judge is to “‘resolve’ such contradictions in each specific case brought before
him, by selecting one of the applicable laws. It is no wonder that judgements are
often overturned on appeal, and that different jurisdictions reach different
opinions on identical cases. Law is multi-valued, not incoherent.

In much the same way, a value correspondence is a coherent system. Its
coherence is expressed by the axioms, by the way that they relate values of
different games to each other. The axioms say, if you can decide such-and-such
in case (a), then you can decide so-and-so in case (b). There is no reason to
expect such a system to be single valued.

The original definition of the NTU value is an instance of this kind of system.
Here a “‘criterion” is a vector A of comparison weights, which the players (or
the arbitrator) use to compare utilities. Given such a criterion, a “reasonable
compromise” is the TU value ¢(v,); and the criterion “‘applies” to the NTU
game V if ¢(v,) is feasible in V.

Our results say that every value system that is coherent, in the sense that it
satisfies the axioms, must be of this specific kind.

The Hebrew University of Jerusalem
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13 Compare [12, p. 261, IV].
141.e., that @(V) may contain several points. Of course, Theorem A guarantees that the correspon-
dence @ is unique.
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