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1 Introduction

In this paper, we introduce a new theory for n-person games. Like many

previous theories for n-person games, it is based on the search for a rea-

sonable ‘‘steady state’’ in the ‘‘supergame,’’1 i.e., the game each play of

which consists of a long sequence of plays of the original game. We use

two approaches: The usual approach, in which a single play is studied,

and an attempt is made to find an n-tuple of strategies that intuitively

speaking might be acceptable for a steady state in the supergame (Sec-

tions 4 and 5); and an approach based on a mathematical analysis of the

supergame itself (Sections 6 and 7). The results we obtain by the two

approaches turn out to be essentially equivalent (Sections 9 and 10).

We will consider here only cooperative games, i.e., games in which

coalitions are permitted; side payments will be forbidden.2 However, the

ideas introduced here also apply to non-cooperative games. Subsequent

papers will consider non-cooperative as well as cooperative games.

We will not explicitly consider games involving chance; however,

everything we say here carries over with no essential change to games

involving chance.

Section 2 describes the notation we will use throughout. The reader

may omit this section at first and use it only for reference. Section 8 is

devoted to the proof of lemmas needed in the subsequent sections; it

makes strong use of the approachability-excludability theory of Blackwell

[4]. Sections 11, 12, and 13 are devoted to some miscellaneous remarks

and counterexamples.

2 Notation

Throughout the paper, we will be concerned with an n-person game G. N

will denote the set of all players; the individual players will be denoted by

the positive integers 1; . . . ; n. If xi is an object defined for each i A N, and

if BHN, then xB will denote the set of xi where i A B; it will be called a

B-vector. When B ¼ N, we will often omit the superscript and the prefix;

that is, we will write x instead of xN , and will refer to x simply as a vector

rather than as an N-vector. If X is a set of vectors, we denote by XB the

This chapter orginally appeared in Contributions to the Theory of Games IV, Annals
of Mathematics Studies 40, edited by R. D. Luce and A. W. Tucker, pp. 287–324,
Princeton University Press, Princeton, 1959. Reprinted with permission.

1. The name is due to Luce and Rai¤a [6].

2. Of course it is known (see [1]) that the cooperative game with side payments is a special
case of the cooperative game without side payments.



set of all xB where x A X . When we speak of a subset B of N, i.e., of a

BHN, we will mean a non-null subset, unless we specifically include the

null subset. All B-vector equalities or inequalities will be taken to hold

term by term.

We will be concerned only with random variables taking a fixed finite

number of values, and possibly with infinite sequences of such random

variables. If x is a random variable ranging over a finite set Z, then the

probability distribution of x may be considered as a function y from Z to

the reals satisfying the relations:

yðzÞX 0; z A Z ð2:1Þ

andX
z A Z

yðzÞ ¼ 1: ð2:2Þ

We can then write

y ¼
X�
z A Z

yðzÞz ð2:3Þ

where the � indicates that the sum is merely symbolic and is not meant to

be an ordinary sum. yðzÞ is simply the probability that a random variable

distributed according to y will take the value z.

The set of all probability distributions on Z will be denoted by CðZÞ.
The set of all pure strategies pi for player i will be denoted by Pi. P is

then the space of pure strategy vectors p. CðPÞ is the space of correlated

strategy vectors. A correlated strategy vector is a probability distribution

on the set of all pure strategy vectors, just as a mixed strategy is a proba-

bility distribution on individual strategies. In general, to make use of a

correlated strategy vector, the players have to agree to consult the same

random device in choosing the pure strategies they will play. Correlated

strategy vectors are thus not usable in non-cooperative games. We will

usually abbreviate CðPÞ to C. The prefix c- in front of a word will stand

for ‘‘correlated.’’

Let XB be a space of B-vectors, and let B ¼ 6k

j¼1
Bj be a partition of B

into subsets. If for j ¼ 1; . . . ; k, we have

yBj A CðXBj Þ;

then (yB1 ; . . . ; yBk ) denotes the joint probability distribution of yB1 ; . . . ; yBk .

If Z1 and Z2 are finite sets and y A CðZ1 � Z2Þ, then yjZ1 (sometimes

also written yjCðZ1ÞÞ will be the distribution given by

yjZ1 ¼
X�

z1 A Z1

z1
X

z2 A Z2

yðz1; z2Þ:

Strategic Games: Repeated322



If B1 HB2 and yB2 A CðXB2Þ, then we will simply write yB1 instead of

yB2 jXB1 . This applies to all symbols except g. Thus gB1 is not the same as

gB2 jPB1 . (gB will be defined on CBðPÞ.)
Let Z1 and Z2 be finite sets, and suppose we have a function f that

takes Z1 into Z2. If nothing is said to the contrary, we will assume that

the definition of f is extended linearly; that is, f is a function from CðZ1Þ
to CðZ2Þ defined by

f ðyÞ ¼
X�

z1 A Z1

f ðz1Þyðz1Þ:

If for each i A N, we have a function f i defined on Xi, then we may

define a vector function f on X by means of

f ðxÞ ¼ ð f 1ðx1Þ; . . . ; f nðxnÞÞ ð2:4Þ

for all x A X . It is important to remember, though, that the inverse pro-

cess does not in general work. A vector function f defined on X does not

yield a unique definition of a function f i defined on Xi.

In general, when we have defined f i on Xi, we will use the function f

on X in the above sense.

For p A P, the payo¤ to the i th player will be denoted by EiðpÞ. If
c A C, HðcÞ will be the mean of the distribution EðcÞ. EðcÞ is called the

payo¤ distribution when c is played, HðcÞ the expected payo¤ when c is

played. If p A P, we have HðpÞ ¼ EðpÞ.
The null set will be denoted by q.

We will be concerned with partitions of N. Let PN denote the set of all

subsets of N. Formally, a partition of N is a vector d whose components

are members of PN , and which satisfies the condition

j A d i () d i ¼ d j; i; j A N:

The set of all partitions of N will be denoted by D. The constant partition

dN is defined by

d i
N ¼ N; i A N: ð2:5Þ

The identity partition de is defined by

d i
e ¼ fig; i A N:

Denote by R the set of all vectors r, each of whose components ri is a

member of PN containing i. Clearly DHR, and Di ¼ Ri. For a given

d, the number of distinct d i will be called nðd Þ. We choose a set of

representatives i1; . . . ; inðdÞ, one out of each distinct d i. If cB is a c-strategy

B-vector, define
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eðcBÞ ¼ B:

(The e stands for exponent; B is called the exponent of cB.) Denote by T

the set of all vectors t, each of whose components is some correlated

strategy B-vector (not necessarily the same B for each member of N), for

which

i A eðtiÞ; i A N:

Let

d iðtÞ ¼ f jjt j ¼ tig; i A N; t A T : ð2:6Þ

Then dðtÞ is a partition of N, and we have

d iðtÞH eðtiÞ; i A N:

Define

cðtÞ ¼ ððti1Þd
i1 ðtÞ; . . . ; ðtinðdðtÞÞ Þd

inðdðtÞÞ ðtÞÞ ð2:7Þ

where i1; . . . ; inðdðtÞÞ are a set of representatives for dðtÞ.
In discussing games in extensive form, we will call the vertices of the

game tree that are not moves by the name ‘‘terminal’’ rather than ‘‘play.’’

This is necessary to avoid confusion, as we will be dealing with repeated

plays of the same game, in the more common sense of the word.

As a final remark, we mention that everything we have stated proba-

bilistically can be restated, where necessary, in the language of measure

theory, and rigorously justified in that language. All sets we use can be

proved to be measurable.

3 General Cooperative Games

We use the word ‘‘general’’ in the title of the paper and of this section in

order to emphasize that, unlike the cooperative games of von Neumann–

Morgenstern, the games to be considered here exclude side payments.

On the other hand, full and free cooperation is permitted between the

players, in the sense that they may communicate with each other freely

prior to each play and form any coalitions they may consider convenient.

The agreements under which the coalitions are chosen are to be consid-

ered enforceable. (However, see Section 13 for further discussion of this

point.) We will usually omit the word ‘‘general’’ and refer simply to a

cooperative game. This is in accordance with the usage introduced by

Nash [1].
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In applications, the prohibition on side payments may be the result

either of a physical barrier to side payments (in economic applications

this might take the form of certain provisions in an anti-trust law) or of

the lack of a common unit of measurement for the payo¤. As has been

pointed out by Rai¤a [8], if there is a common unit of measurement for

the payo¤ but there exists some physical barrier to the making of side

payments, then the theory need only be invariant under linear trans-

formations of the payo¤ function that do not destroy the common unit of

measurement; i.e., under transformations of the form

H ! ¼ aH þ b ð3:1Þ

where both a and b are scalar multiples of the vector (1; . . . ; 1) (a by a

positive factor, b by an arbitrary factor). If, however, there is no common

unit of measurement for the payo¤, then the theory should be invariant

under independent linear transformations of the payo¤ function; i.e.,

under transformations of the form (3.1), where a is an arbitrary positive

vector and b is an arbitrary vector. In fact, the theory presented in this

paper is invariant under the wider class of transformations, so that the

results may be used in either kind of application.

Mathematically, the cooperative game is given by a vector payo¤

function that is assumed to be linear on the space C of correlated strategy

vectors. The cooperative game di¤ers from the non-cooperative game

only in that the use of correlated strategy vectors is permitted in the for-

mer, but not in the latter.

This points up a reason for studying cooperative games even if our a

priori interest lies in the field of non-cooperative games only. Consider a

long sequence of plays (we call this a superplay) of the game

1 2

1 (4, 0) (0, 0)

2 (0, 0) (0, 4) .

One of the most ‘‘natural’’ ways for the players to proceed in such a

superplay would be to alternate between playing (1, 1) and (2, 2). This

would tend to happen even in the non-cooperative case, by a sort of

‘‘silent gentlemen’s agreement.’’ However, the resulting payo¤, (2, 2), is

obtainable only by a correlated strategy vector, not by mixed strategies.

Thus if we wish to arrive at results that are valid for the supergame by

considering a single play, we must permit ourselves the use of correlated

strategy vectors. This amounts to considering cooperative games.
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4 Acceptable Points

Let c be a correlated strategy vector in G. Obviously, c will be a candi-

date for a possible steady state in the supergame unless some subset B of

the players can, by concerted action, increase their payo¤. Here it is not

su‰cient that the players of B be able to increase their payo¤s by chang-

ing their strategies while the players of N–B maintain their strategies as

they are. For the players of N–B will not in general maintain their strat-

egies fixed in the face of a change on the part of B, but will also change

their strategies in order to meet the new conditions; thus B’s glory would

be short-lived indeed. In order to rule out c as a candidate for a possible

steady state, we have to be sure that the players of N–B cannot prevent

the players of B from improving their payo¤ by concerted action. Of

course, we must require that all the members of B obtain more at the new

point than they do at c, for they must all have an incentive to cooperate

in the venture.

definition 4.1 Let c0 A C. c0 is said to be c-acceptable if there is no

BHN such that for each cN�B A CN�B, there is a cB A CB for which

HBðcB; cN�BÞ > HBðc0Þ:

We write ‘‘c-acceptable’’ instead of ‘‘acceptable’’ because in subsequent

papers of this series, we will be defining a slightly di¤erent kind of

acceptability, and we will use prefixes to distinguish them. When in heu-

ristic discussion in the sequel we use the word ‘‘acceptable’’ without a

prefix, then it is to be taken to mean ‘‘acceptable’’ with an arbitrary pre-

fix (but one that is fixed throughout the discussion). For the purposes of

this paper alone, ‘‘acceptable’’ can be taken to mean the same thing as

‘‘c-acceptable.’’

The set of all c-acceptable c-strategy vectors is denoted by Ac. Note

that the notion of acceptability is a ‘‘global’’ one. In other words,

whether or not a point is acceptable depends only on the payo¤ at that

point, not on the point itself. This is also easy to accept from the intuitive

standpoint; as long as he is getting the same payo¤, it makes little di¤er-

ence to a player which strategy he is playing.

definition 4.2 A payo¤ vector h is said to be c-acceptable, if for some

c A Ac, we have

HðcÞ ¼ h:

It will be convenient in the sequel to have available the following

trivial restatement of 4.2.
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lemma 4.3 A payo¤ vector h is c-acceptable if and only if for each

BHN, there is a cN�B A CN�B, such that for all cB A CB, there is an i A B

for which

HiðcB; cN�BÞX hi:

5 Two-Person, Zero-Sum Games

A sine qua non of theories of n-person games is that for two-person, zero-

sum games, they reduce to the von Neumann theory. Because of the

global nature of our theory, we can only expect that every acceptable

payo¤ vector yield to each player the value of the game to that player.

This is indeed the case.

theorem 1 In a two-person, zero-sum game G, a payo¤ vector h is c-

acceptable if and only if

h1 ¼ v; ð5:1Þ

where v is the value of G to player 1.

Proof Let h be c-acceptable. From Lemma 4.3 applied to B ¼ f1g, we
deduce that there is a c20 A C2, such that for all c1 A C1, we have

H1ðc1; c20ÞW h1:

Hence

max
c1 A C1

H1ðc1; c20ÞW h1:

Hence

min
c2 A C2

max
c1 A C1

H1ðc1; c2ÞW h1: ð5:2Þ

C1 and C2 are the mixed strategy spaces for players 1 and 2 respectively.

Hence the left side of (5.2) is v, and we deduce

vW h1: ð5:3Þ

The value of G to player 2 is �v. Proceeding as in the proof of (5.3), we

obtain

�vW h2: ð5:4Þ

But

h2 ¼ �h1: ð5:5Þ
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Combining (5.4) and (5.5), we obtain

vX h1: ð5:6Þ

Combining (5.3) and (5.6), we obtain (5.1).

Conversely, assume (5.1). Then (5.3) and (5.2) follow at once. But for

B ¼ f1g, (5.2) is precisely the condition for c-acceptability given by

Lemma 4.3. Similarly we establish the condition for B ¼ f2g. To estab-

lish it for B ¼ f1, 2g, note that for any (c1, c2), we have

H1ðc1; c2Þ þH 2ðc1; c2Þ ¼ 0 ¼ h1 þ h2;

whence we must have either

H1ðc1; c2ÞW h1

or

H2ðc1; c2ÞW h2:

Thus h is c-acceptable.

6 Strategies and Payo¤s in the Supergame

In the notion of supergame that will be used in this paper, each superplay

consists of an infinite number of plays of the original game G. On the face

of it, this would seem to be unrealistic, but actually it is more realistic

than the notion in which each superplay consists of a fixed finite (large)

number of plays of G. In the latter notion, the fact that the players know

when they have arrived at the last play becomes the decisive factor in the

analysis, overshadowing all other considerations.3 This is unnatural,

because in the usual case, the players can always anticipate that there will

still take place in the future an indefinite number of plays. This is espe-

cially true in political and economic applications, and even holds true for

the neighborhood poker ‘‘club.’’ Of course when looked at in the large,

nobody really expects an infinite number of plays to take place; on the

other hand, after each play we do expect that there will be more. A. W.

Tucker has pointed out that this condition is mathematically equivalent

to an infinite sequence of plays, so that is what our notion of supergame

will consist of.

Roughly speaking, we will be interested in ‘‘behavior’’ strategies in the

supergame; that is, we will be interested in strategy vectors that determine

3. See, for example, the excellent analysis of the supergame of the game known as the
‘‘Prisoner’s Dilemma’’ that appears in 5.5 of [6].
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the c-strategy vector to be played on each play as a function of the infor-

mation possessed by the players about the outcomes of the previous

plays. Before we pass to the formal definition of a supergame c-strategy

vector, let us examine in detail the procedure followed during the play of

a cooperative supergame. The first question to be answered is: What

information about the outcome of each previous play does each player i

actually possess? The most he can know is exactly what pure strategy

vector was actually played; the least he can be sure of knowing, in every

game, is the strategy he himself played and the payo¤ he himself

received. In between is a whole range of possibilities, depending on the

rules of G. The situation can be concisely described by means of a func-

tion ui that takes P onto some identification space of P. We define ui so

that for p1, p2 A P, uiðp1Þ ¼ uiðp2Þ if and only if player i cannot tell after

a play of G, whether the vector p1 or the vector p2 has been played. The

minimum knowledge that each player i has, in accordance with our

remarks above, insures us that if

uiðp1Þ ¼ uiðp2Þ;

then

pi1 ¼ pi2

and

Hiðp1Þ ¼ Hiðp2Þ:

Every game G has associated with it an information vector u satisfying

these conditions. In particular, these conditions assure us of the existence

of functions fi and ci which map uiðPÞ onto Pi and HiðPÞ respectively.
Some relations connecting the vector functions H, f, c, and u are the

following:

f � u ¼ identity

c � u ¼ H

c ¼ H � f:

The information vector just defined is not included in the classical for-

mulation of the extensive form of a game, as given, say, in [3]. That is

because the state of information at the end of a game has heretofore been

of little interest, as the payo¤ in no way depends on it. In a number of

consecutive plays of a game, however, it is seen to be of vital importance.

Incidentally, inclusion of this concept in the extensive structure of a game

necessitates a revision in the notion of equivalence as formulated in [5].
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We hope to treat the subject in more detail in a subsequent paper. For

the present, we content ourselves with the remark that the information

vector may be included in the extensive description of the game by asso-

ciating with each player i, an information partition on the set of all

terminals. In a game of perfect information, this partition would be

the identity partition for each i.

All that we have said in this section up to now is quite general, apply-

ing to the non-cooperative as well as to the cooperative case. In the latter

case, the information function does not exhaust the information that

a player has to work with. Prior to each play, consultation takes place

among the various players to determine the constitution of the coalitions

and the correlated strategy B-vector that each coalition B will use. For-

mally, each player designates the coalition B to which he wishes to

belong, and the correlated strategy B-vector he wishes B to play. Those

players who can agree among each other form coalitions and play the

agreed upon c-strategy B-vector.4

Naturally, although each player knows nothing about the coalitions in

which the other players participate, he does remember the coalition B of

which he himself was a member on previous plays.

The formal definition is as follows:

definition 6.1 A supergame c-strategy f i for player i is an infinite

sequence of functions

f i0 ; f
i
1 ; . . . ; f

i
k ; . . .

where f i
k is a function from

ððU i
1 � Ri

1Þ � � � � � ðU i
k � Ri

kÞÞ

to T i; here U i
j is a copy of uiðPÞ and Ri

j is a copy of Ri, for j ¼ 1; . . . ; k.

The vector f is called a supergame c-strategy vector.

In the sequel, we will denote Ui
j � Ri

j by J i
j . J

i
j represents the informa-

tion about the j th play available to player i.

To define the payo¤ to a supergame c-strategy vector, we must first

define the payo¤ to a given superplay, as a function of its individual con-

stituent plays. For this purpose, we use the arithmetic mean of the pay-

o¤s (in the limiting case, this amounts to the first Cesàro sum); Blackwell

[4] also used the arithmetic mean under similar circumstances. Heuristi-

cally, one can argue both for and against this method; in my mind the

heuristic advantages outweigh the disadvantages. Other methods have

been proposed (see [6]) for obtaining the superplay payo¤ from the pay-

4. If B1 HB2 and every member of B1 proposed (B2, c
B2 ) while the members of B2 � B1

proposed something else, then the members of B1 form a coalition and play cB1 .
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o¤s to its constituent plays; the most prominent seems to be the dis-

counting of future payo¤s back to the present, using a fixed rate of inter-

est. This has the disadvantage of putting an unnaturally heavy stress on

the beginning of the supergame. Nevertheless, it would be interesting to

see an analysis based on this payo¤ notion, especially for certain kinds of

economic applications.

A more perplexing problem in defining the payo¤ to a supergame

c-strategy vector f is that of somehow combining the various possible

superplays that might occur if f is played. The first impulse is to use some

notion of expected payo¤. We shall indeed define such a notion, but it is

not an appropriate criterion for the players in choosing their supergame

c-strategy. The chief reason for our being interested in expected payo¤s

for individual plays is that in a long sequence of plays, the law of large

numbers turns an expected payo¤ into an actual payo¤. A payo¤ for the

whole superplay that is only expected, but not eventually approached,

will not satisfy most players. Thus if a player has joined a coalition on

the strength of a high expectation and is being disappointed in this ex-

pectation, he will soon express his disappointment by resigning from the

coalition, regardless of his originally high expectation. For a clear exam-

ple of the pitfalls of expected payo¤s, see Section 12. What is required is

some kind of criterion based on a law of large numbers. We give a

restricted definition of this kind in this section, but reasoning of this type

in general will dominate the remainder of the paper.

Let us first return to the question of expected payo¤. For each t A T ,

define

sðtÞ ¼ ðuðcðtÞÞ; dðtÞÞ: ð6:2Þ

Let f be a supergame c-strategy vector. For each kX 1, we may define

a member zkð f Þ ¼ zk of CðJ1 � . . .� JkÞ recursively as follows:

z1 ¼ sð f0Þ ð6:3Þ

zk ¼
X�

y A J1�����Jk�1

zk�1ðyÞðy; sð fk�1ðyÞÞÞ; k > 1: ð6:4Þ

zk is the probability distribution of possible outcomes of plays up to

the kth. Define a member xkð f Þ ¼ xk of CðJkÞ as follows:

xk ¼ sð fk�1ðzk�1ÞÞ; kX 1: ð6:5Þ

xk is the probability distribution of outcomes of the kth play. Finally,

define Ek ¼ Ekð f Þ and Hk ¼ Hkð f Þ by

Ek ¼ Eðcð fk�1ðzk�1ÞÞÞ ð6:6Þ
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and

Hk ¼ Hðcð fk�1ðzk�1ÞÞÞ: ð6:7Þ

Ek represents the probability distribution of possible payo¤ vectors on

the kth play; Hk is the expected payo¤ for the k th play.

If

Hð f Þ ¼ lim
k!y

1

k

Xk
r¼1

Hrð f Þ ð6:8Þ

exists, then f is said to be summable in the mean.

Let v ¼ ðv1; . . . ; vk; . . .Þ be a sequence of random variables in which vk
is distributed according to the distribution xkð f Þ. These random variables

are not in general independent. Instead of saying that the random vari-

ables vk are distributed according to xkð f Þ, we will sometimes say that

the random variable v is distributed according to f. The probability of a

statement concerning a random variable v distributed according to f will

usually be denoted Probf .

definition 6.9 A supergame c-strategy vector f is said to be summable if

it is summable in the mean and if a sequence of random variables dis-

tributed according to Ekð f Þ obeys the strong law of large numbers.5

If v is an infinite sequence ðv1; . . . ; vk; . . .Þ where vk A Jk for all k, define

HkðvÞ ¼ cðvkjUkÞð¼ HðfðvkjUkÞÞÞ ð6:10Þ

and

SkðvÞ ¼
1

k

Xk
j¼1

HjðvÞ: ð6:11Þ

Note that if v is a random variable distributed according to f, then HkðvÞ
is a random variable distributed according to Ekð f Þ.

lemma 6.12 A necessary and su‰cient condition that a supergame c-

strategy vector f be summable is that there exist a vector Hð f Þ such that

for each vector e > 0, we have

lim
k!y

Probf ðjSrðvÞ �Hð f ÞjX e for some rX kÞ ¼ 0:

Furthermore, this Hð f Þ is then identical with the Hð f Þ defined by (6.8).

The proof, which is straightforward, will be omitted.

5. See [2], p. 207. The law is there stated for one dimensional random variables; the exten-
sion to n dimensions is straightforward.
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7 Strong Equilibrium Points

When we come to investigate what supergame c-strategy vectors f are

liable actually to occur, we are faced with a problem somewhat di¤erent

from the one we discussed in Section 4. There one could always look

forward to future plays in order to punish deviations by the other players.

In the supergame, however, there is only one superplay. Thus the players

will have to make sure the first time that deviations won’t pay. This

amounts to saying that no coalition B can increase the payo¤ of all its

members by substituting a di¤erent supergame c-strategy B-vector gB

while N � B maintains the supergame c-strategy ðN � BÞ-vector f N�B. It

is clear that such an f would be very strongly stable, since no coalition

could have any incentive to move away from it, especially if we demand

that B cannot even increase its payo¤ with positive probability, no matter

how small. This is a much stronger version of what corresponds in the

supergame to an ordinary equilibrium point.

The formal definition is as follows:

definition Let f be a summable supergame c-strategy vector. f is a

strong equilibrium c-point if there is no BHN for which there is a

supergame c-strategy vector g satisfying

gN�B ¼ f N�B ð7:1Þ

and

lim
k!y

ProbgðSB
r ðvÞXHBð f Þ þ eB for some rX kÞ > 0

ð7:2Þ
for some B-vector eB > 0:

(The limit exists because the sequence involved is monotone

decreasing.)

The set of all strong equilibrium c-points is denoted by Sc.

It is necessary to use the form SB
r ðvÞXHBð f Þ þ eB rather than

SB
r ðvÞ > HBð f Þ because substitution of the latter statement would make

condition 7.2 true even for f ¼ g. We wish to include only those cases in

which substitution of g for f will yield B an advantage that at least does

not tend to the vanishing point, doubtful and rare as it may be.

Condition 7.2 is very weak, which means that the concept of strong

equilibrium c-point is a very strong one (i.e., comparatively few super-

game c-strategy vectors are strong equilibrium c-points). On the other

end of the spectrum, we could replace 7.2 by
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lim
k!y

ProbgðSB
r ðvÞXHBð f Þ þ eB for all rX kÞ ¼ 1

for some B-vector eB > 0: ð7:3Þ

Denote by ~SSc the set of supergame c-strategy vectors obtained when

7.3 is substituted for 7.2 in the definition of strong equilibrium c-point.

It is easy to see that 7:3¼)7:2; whence it follows that

Sc H ~SSc

and

HðScÞHHð ~SScÞ: ð7:4Þ

We will demonstrate the opposite inequality as well. This shows that the

notion of strong equilibrium point does not really depend on the strength

of the condition 7.2.

8 Application of Approachability and Excludability Theory

For two-person, zero-sum games with vector payo¤s, Blackwell [4] has

defined the notion of ‘‘approachability’’ or ‘‘excludability’’ of a set in the

payo¤ space with a supergame strategy employed by one or the other of

the players. Blackwell does not use the information vector u which we

introduced in Section 6, but apart from that, our Definition 6.1 applied to

two-person, zero-sum games reduces to his definition of supergame strat-

egy (for games not involving chance). Most of his definitions and results

can be used here without any changes being necessary due to our use of

the information vector.

Let us consider the two-person, zero-sum game with vector payo¤s

that is obtained from our game G by considering the coalition B to be the

first player and the coalition N � B the second player, the payo¤ to the

first player being given by HB.

lemma 8.1 Let Lð f ; eBÞ denote the closed convex set consisting of all

B-vectors lB for which

lB XHBð f Þ þ eB:

Then if there is an eB > 0 such that Lð f ; eBÞ is approachable with gB,

then 7.3 holds.

Proof This lemma follows at once from the definition of approach-

ability; see Section 1 of [4]. Our games do not involve chance, so the ele-

ments of the game matrix should be considered as B-vectors rather

than probability distributions on B-vectors. We have abbreviated
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‘‘approachable in the game matrix’’ to ‘‘approachable’’; this will be done

throughout the sequel.

lemma 8.2 If there is an eB > 0 such that, for each cN�B A CN�B, there is

a cB A CB for which

HBðcB; cN�BÞXHBð f Þ þ eB;

then there is a gB for which 7.3 holds.

Proof The condition given in the lemma is equivalent to the statement

that for each cN�B A CN�B, HBðCB; cN�BÞ intersects Lð f ; eBÞ. In accor-

dance with Theorem 3 of [4], this in turn is equivalent to the statement

that there is a gB with which Lð f ; eBÞ is approachable. Applying 8.1, we

obtain the conclusion.

The information situation in [4] is slightly di¤erent from ours. In our

application, the requirements of [4] may be stated as follows: Both B and

N � B know the payo¤s to B on each previous play; nothing else is

known. In our situation, B knows its own previous payo¤s, but N � B

need not know what the payo¤s to B were; on the other hand, both B

and N � B may have information given by the information function, that

they do not have in [4]. An analysis of the proof of Theorem 3 of [4]

shows that these di¤erences do not a¤ect the truth of the theorem, so that

we may still apply it here.

To see this intuitively, note that the only di¤erence that could interfere

with the approachability of Lð f ; eBÞ with gB would be the additional

information that N � B has in our case that it does not have in [4].

Examination of the proof of Theorem 3 of [4] indicates that gBk depends

only on the previous payo¤s, and can be defined for any set of previous

payo¤s without a¤ecting the truth of the theorem; thus no amount of

additional information can possibly help N � B in preventing B from

approaching Lð f ; eBÞ with gB.

lemma 8.3 If there is a cN�B A CN�B (called gN�B) such that for each

cB A CB, there is an i A B for which

HiðcB; gN�BÞWHið f Þ;

then for every B-vector eB > 0, and every supergame c-strategy vector b

for which for all ðv1; . . . ; vkÞ, we have

bi
kðv1; . . . ; vkÞ ¼ gN�B; i A N � B; kX 0; ð8:4Þ

we have

lim
k!y

ProbbðSB
r ðvÞXHBð f Þ þ eB for some rX kÞ ¼ 0:
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Proof The hypothesis of the lemma is equivalent to the assertion that

for each eB > 0, Lð f ; eBÞ fails to intersect HðCB; gN�BÞ. Applying Theo-

rem 3 of [4], we conclude that for each eB > 0, Lð f ; eBÞ is excludable

with the supergame c-strategy ðN � BÞ-vector given by (8.4). From the

definition of excludability (Section 1 of [4]) it then follows that there is a

number d > 0 such that

limk!y Probb (For all rX k, there is an i A B such that

Si
rðvÞ < Hið f Þ þ ei � dÞ ¼ 1;

whence

lim
k!y

ProbbðSB
r ðvÞXHBð f Þ þ eB for some rX kÞ ¼ 0:

9 The Main Theorem: First Half

We will now show that our two approaches culminating in the definition

of c-acceptability (4.1) and strong equilibrium (7.1, 7.2, and 7.3) actually

yield results that are essentially the same. More precisely, for every

c-acceptable strategy vector c, there is a strong equilibrium c-point

(according to either 7.2 or 7.3) in supergame c-strategies that has the

same payo¤ as c; and conversely. Thus c-acceptable points for a single

play are seen to correspond exactly to strong equilibrium c-points in the

supergame. The main theorem can be concisely stated by means of the

equation

HðAcÞ ¼ HðScÞð¼ Hð ~SScÞÞ:

This section is devoted to the proof of the relation

Hð ~SScÞHHðAcÞ:

The proof rests heavily on Lemma 8.2. In addition to 8.2, the main fact

needed is that if B cannot be prevented from obtaining more than hB,

then they cannot be prevented from obtaining a fixed amount more than

hB either. This is shown in Lemma 9.1.

lemma 9.1 Let h be a vector and B be a subset of N. If for each

cN�B A CN�B, there is a cB A CB for which

HBðcB; cN�BÞ > hB;

then there is a positive B-vector eB such that for each cN�B A CN�B, there

is a cB A CB for which
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HBðcB; cN�BÞX hB þ eB:

Proof We first remark that if Gðx; yÞ is a continuous real-valued func-

tion of two variables x and y ranging over compact sets X and Y respec-

tively, then the function defined by

FðyÞ ¼ max
x A X

Gðx; yÞ

is continuous on Y.

Now define a function F on CN�B by

FðcN�BÞ ¼ max
cB A CB

min
i A B

ðHiðcB; cN�BÞ � hiÞ:

By the above remark, F is continuous. Since CN�B is compact, F takes on

its minimum at a point cN�B
0 in CN�B. By the hypothesis of the lemma,

FðcN�B
0 Þ > 0:

Setting

ei ¼ FðcN�B
0 Þ

for all i A B, we obtain the conclusion of the lemma.

theorem 2 Hð ~SScÞHHðAcÞ.

Proof Let f be a summable supergame c-strategy vector; set

h ¼ Hð f Þ:

Suppose

h B HðAcÞ; ð9:2Þ

i.e., suppose there is a B for which the hypothesis of Lemma 9.1 holds.

Then the conclusion of Lemma 9.1, which is the same as the hypothesis

of Lemma 8.2, holds. Hence we deduce the conclusion of Lemma 8.2,

i.e., there is a gB for which 7.3 holds. Setting

gN�B ¼ f N�B;

we obtain a B and a g obeying 7.1 and 7.3, whence

f B ~SSc: ð9:3Þ

As we can go through the same argument for any f satisfying h ¼ Hð f Þ,
we may deduce from (9.3) that

h B Hð ~SScÞ: ð9:4Þ
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We have shown that (9.2)¼) (9.4), whence we can deduce that

Hð ~SScÞHHðAcÞ;

which is what we set out to prove.

10 The Main Theorem: Second Half

This section is devoted to the proof of the relation

HðAcÞHHðScÞ;

together with Theorem 2, this yields the main theorem. The train of

thought of the proof is somewhat as follows:

Suppose h to be a c-acceptable payo¤. It is easy to set up a supergame

c-strategy vector f whose payo¤ is h. But we must also incorporate in f a

foolproof system for the punishment of any deviators; f must make sure

that crime does not pay. The machinery for accomplishing this is at hand;

by the definition of c-acceptability, for each B there is a c-strategy

(N � B)-vector gN�B whose use prevents B from obtaining more than hB.

It remains only to find the culprits. To do this, we note that any players

who at one time or another deviated from f were at the time of their

deviation certainly not included in the same coalition as the ‘‘orthodox’’

players. Since each player knows who was in his coalition on all previous

plays, the deviators are thus easily spotted. The set Bk of players who

deviated on some play up to the (k þ 1)st is monotone increasing with k.

Every time it grows, i.e., every time another player joins the ranks of the

deviators, the remaining players revise their strategy to punish at least

one of the new set of deviators. Since N is finite, there must be a set B

that includes all the deviators and that is actually attained by Bk after a

finite number of plays. The use of the strategy gN�B will then make cer-

tain that crime does not pay for at least one of the deviators. The proof

is complicated by the fact that Bk and B usually depend on which pure

strategies were chosen from among those considered by the correlated

strategy vectors used on previous plays.

The strong equilibrium point f just described is one of ‘‘unrelenting

ferocity’’6 against o¤enders. It exhibits a zeal for meting out justice that

is entirely oblivious to the sometimes dire consequences to oneself or to

the other faithful—i.e., those who have not deviated. There are other,

more reasonable strong equilibrium points, which give deviating players a

chance to return to the fold. These are important in connection with the

general non-cooperative game; I will return to them in a subsequent

6. The term is due to Luce and Rai¤a [6].
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paper on that topic. Here it is simpler and just as e‰cacious to use the

strong equilibrium point of unrelenting ferocity.

theorem 3 HðAcÞHHðScÞ.

Proof Let h A HðAcÞ, and suppose gN A Ac is such that

HðgNÞ ¼ h: ð10:1Þ

Then by 4.3, for each BHN there is a cN�B A CN�B, which we will call

gN�B, such that for each cB A CB, there is an i A B for which

HiðcB; gN�BÞW hi: ð10:2Þ

Now define a supergame c-strategy vector f as follows:

f io ¼ gN ; i A N

f i
k ðvi1; . . . ; vikÞ ¼ gv

i
k
jRi

; k > 0; i A N; vij A J i
j ; jW k:

ð10:3Þ

We must prove that the payo¤ to f is h and that f is a strong equilib-

rium c-point. It is convenient to break the proof into a number of lem-

mas. However, these lemmas will depend on previous assumptions and

formulae, and are valid only within the context of this proof. They will be

numbered like ordinary formulae used within the proof.

lemma 10.4 For k > 0 and i A N, we have

f ik ðzkÞ ¼ gN :

Proof The proof is by induction on k. For k ¼ 0, (10.4) follows at once

from (10.3). Assume (10.4) for a given k. Applying (2.6) and (2.7), we

obtain

cð fkðzkÞÞ ¼ gN

and

dð fkðzkÞÞ ¼ dN :

Hence, by (6.2),

sð fkðzkÞÞ ¼ ðuðgNÞ; dNÞ: ð10:5Þ

Now by (6.4) and the linearity of f i
k we have

f ikþ1ðzkþ1Þ ¼
X�

y A J1�...�Jk

zkðyÞ f i
kþ1ðy; sð fkðzkÞÞÞ

¼
X�

y A J1�...�Jk

zkðyÞ f ikþ1ðy; ðuðgNÞ; dNÞÞ ðby ð10:5ÞÞ
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¼
X�

y A J1�...�Jk

zkðyÞ f i
kþ1ðyi; ðuiðgNÞ;NÞÞ ðby ð2:4Þ and ð2:5ÞÞ

¼
X�

y A J1�...�Jk

zkðyÞgN ðby ð10:3ÞÞ

¼ gN
X

y A J1�...�Jk

zkðyÞ

¼ gN : ðby ð2:2ÞÞ

This completes the induction and the proof of the lemma.

lemma 10.6 For k, jX 0 and k0 j, cð f kðzkÞÞ is statistically independent

of cð f jðzjÞÞ.

Proof By (10.3), the choice of strategies after each play depends only on

the coalitions previously chosen. Thus the sequence of partitions of N

into coalitions is strictly determined. For a given play, the choice of c-

strategy B-vectors depends only on this sequence (which is, in fact, a

sequence of constant partitions), and not on the strategies previously

chosen. This completes the proof.

lemma 10.7 f is summable, and Hð f Þ ¼ h.

Proof Applying (2.7) to (10.4), we obtain

cð fkðzkÞÞ ¼ gN ;

whence by (6.6)

Ek ¼ Eðcð fkðzkÞÞÞ ¼ EðgNÞ: ð10:8Þ

By Lemma 10.6, the strong law of large numbers7 applies to each com-

ponent of cð fkðzkÞÞ, hence to cð fkðzkÞÞ itself, and hence also to Ek. By

(10.8) and (6.7), we have

Hk ¼ HðgNÞ

¼ h: ðby ð10:1ÞÞ

Hence

Hð f Þ ¼ lim
k!y

1

k

Xk
r¼1

Hr ðby ð6:8ÞÞ

¼ lim
k!y

1

k
kh

7. See [2], p. 207, The Kolmogoro¤ Criterion, or p. 208, the Theorem.
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¼ lim
k!y

h

¼ h:

By Definition 6.9, the proof is complete.

lemma 10.9 If vkjR is a partition and k > 0, then

j A eð f ikðv1; . . . ; vkÞÞ¼) f
j
kðv1; . . . ; vkÞ ¼ f ikðv1; . . . ; vkÞ:

Proof From (10.3) and the left side of the conclusion, we deduce that

j A vikjRi. Hence since vkjR is a partition, it follows that

vikjRi ¼ v
j
kjR

j;

and then the right side of the conclusion follows at once from (10.3).

In order to show that f is a strong equilibrium c-point, we will first

assume that it is not.

assumption 10.10 There is a BHN (which we will call B�) for which

there is a supergame c-strategy vector g for which

gN�B� ¼ f N�B� ð10:11Þ

and there is a B*-vector eB� > 0 for which

lim
k!y

ProbgðSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ > 0: ð10:12Þ

It will be our task to show that (10.10) leads to an absurdity.

Let v ¼ ðv1; . . . ; vk; . . .Þ be an arbitrary sequence for which vk A Jk,

kX 1. Let BðvÞ denote the set of i for which there is a ki X 0 such

that

gikiðv1; . . . ; vkiÞ0 f i
ki
ðv1; . . . ; vkiÞ: ð10:13Þ

It follows from (10.11) and (10.13) that

BðvÞHB�: ð10:14Þ

definition 10.18 For each v and for kX 0, let BkðvÞ denote the set of i

for which there is a ki such that

0W ki W k

and such that (10.13) holds. Define

B�1ðvÞ ¼ q: ð10:19Þ

For each v, there is clearly a kðvÞ such that
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BkðvÞ ¼ BðvÞ; kX kðvÞ: ð10:20Þ

Furthermore, it is not di‰cult to see that (10.21): For each v, BkðvÞ is

monotone increasing with k. We will in the sequel restrict use of the

symbol kðvÞ to the first kðvÞ satisfying (10.20).

definition 10.22 We say that v occurs with positive probability if for

each k > 0,

zkðgÞðv1; . . . ; vkÞ > 0;

that is, if for each k > 0, and under the assumption that the supergame

c-strategy vector g is played, (v1; . . . ; vk) occurs with positive probability.

lemma 10.23 If v occurs with positive probability, then for each k > 0,

vkjR is a partition.

Proof By (6.4) and (10.22), (v1; . . . ; vk) occurs with positive coe‰cient in

ðv1; . . . ; vk�1; sðgk�1ðv1; . . . ; vk�1ÞÞÞ:

Hence vk occurs with positive coe‰cient in sðgk�1ðv1; . . . ; vk�1ÞÞ. Apply-

ing (6.2), we conclude that vkjR occurs with positive coe‰cient in

dðgk�1ðv1; . . . ; vk�1ÞÞ. Since by definition, dðgk�1ðv1; . . . ; vk�1ÞÞ is a prob-

ability combination of a number of partitions of N, it follows that vkjR
must be a partition, which completes the proof.

lemma 10.24 Let v occur with positive probability, and assume that

(10.10) holds. For kX 0 and i A N � BkðvÞ, we have

gikðv1; . . . ; vkÞ ¼ gN�Bk�1ðvÞ:

Proof We will write B instead of BðvÞ, and for each k, Bk instead of

BkðvÞ. The proof is by induction on k. First let k ¼ 0. If i A N � B0, then

it follows from Definition 10.18 that there is no ki satisfying ki ¼ 0 and

(10.13). In other words, for i A N � B0, we have

gi0 ¼ f i0 :

Hence by (10.3), we have for i A N � B0,

gi0 ¼ gN

¼ gN�B�1 ðby ð10:19ÞÞ;

which establishes (10.24) for k ¼ 0.

Next, suppose we have established (10.24) for some kX 0 and all pre-

ceding k. For i A Bk � Bk�1 ¼ ðN � Bk�1ÞXBk, we must have, by Defi-
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nition 10.18, that (10.13) holds for ki ¼ k. Hence

gikðv1; . . . ; vkÞ0 f ik ðv1; . . . ; vkÞ; i A Bk � Bk�1: ð10:25Þ

Now if k ¼ 0, it follows from (10.19), (10.25), and (10.3) that

gi0 0 gN�B�1 ; i A B0 � B�1: ð10:26Þ

If k > 0, we have for j A Bk � Bk�1 that

j A N � Bk�1 ¼ eðgikðv1; . . . ; vkÞÞ; i A N � Bk ðby induction hypothesisÞ

¼ eð f ikðv1; . . . ; vkÞÞ; i A N � Bk ðby ð10:18ÞÞ:

Applying Lemma 10.9 and Lemma 10.23, we obtain

f ik ðv1; . . . ; vkÞ ¼ f
j
k ðv1; . . . ; vkÞ; k > 0; i A N � Bk; j A Bk � Bk�1:

ð10:27Þ

From (10.18) and the induction hypothesis, we obtain

f ik ðv1; . . . ; vkÞ ¼ gikðv1; . . . ; vkÞ ¼ gN�Bk�1 ; i A N � Bk; k > 0:

Combining this with (10.27), we obtain

f
j
k ðv1; . . . ; vkÞ ¼ gN�Bk�1 ; j A Bk � Bk�1; k > 0;

i.e.,

f ik ðv1; . . . ; vkÞ ¼ gN�Bk�1 ; i A Bk � Bk�1; k > 0:

From this and (10.25) we deduce, for k > 0, that

gikðv1; . . . ; vkÞ0 gN�Bk�1 ; i A Bk � Bk�1; ð10:28Þ

the same result for k ¼ 0 is given by (10.26). Hence (10.28) holds for

kX 0.

We certainly have

gikðv1; . . . ; vkÞ0 gN�Bk�1 ; i A Bk�1;

for otherwise i B eðgikðv1; . . . ; vkÞÞ, contradicting the membership of gik
in T i. Combining this with the induction hypothesis and (10.28), we

obtain

gikðv1; . . . ; vkÞ
¼ gN�Bk�1 ; i A N � Bk

0 gN�Bk�1 ; i A Bk.

�

It follows that

d iðgkðv1; . . . ; vkÞÞ ¼ N � Bk; i A N � Bk;
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and in particular, since N � Bkþ1 HN � Bk, we have

d iðgkðv1; . . . ; vkÞÞ ¼ N � Bk; i A N � Bkþ1: ð10:29Þ

Now for i A N � Bkþ1, we have by Definition 10.18 that

gikþ1ðv1; . . . ; vkþ1Þ ¼ f ikþ1ðv1; . . . ; vkþ1Þ ¼ gv
i
kþ1

jRi

: ð10:30Þ

By reasoning similar to that used in the proof of (10.23), we obtain that

vikþ1jRi occurs with positive coe‰cient in d iðgkðv1; . . . ; vkÞÞ. Combining

this with (10.29) and (10.30), we obtain that for i A N � Bkþ1

gikþ1ðv1; . . . ; vkþ1Þ ¼ gN�Bk :

This completes the induction and establishes (10.24).

From (10.24) and (10.20) we deduce that if v occurs with positive

probability, then

gikðv1; . . . ; vkÞ ¼ gN�BðvÞ; i A N � BðvÞ; k > kðvÞ;

whence

cðgkðv1; . . . ; vkÞÞ ¼ ðgN�BðvÞ; cBðvÞðgkðv1; . . . ; vkÞÞÞ; k > kðvÞ:

Setting

cBðgkðv1; . . . ; vkÞÞ ¼ gBk ; BHN; k > kðvÞ;

we obtain

cðgkðv1; . . . ; vkÞÞ ¼ ðgBðvÞk ; gN�BðvÞÞ; k > kðvÞ: ð10:31Þ

lemma 10.32 For each mX 0, there is a positive integer k, such that for

all v, r, and h1; . . . ; hm for which

rX k ð10:33Þ

and

hj A HðPÞ; j ¼ 1; . . . ;m; ð10:34Þ

and

SB�
r ðvÞXHB�ð f Þ þ eB� ð10:35Þ

we have

r > m ð10:36Þ

and
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1

r

�Xm
j¼1

hB�j þ
Xr

j¼mþ1

HB�
j ðvÞ

�
XHB�ð f Þ þ 1

3
eB�: ð10:37Þ

Proof First of all, we may choose

k > m;

so that (10.36) is satisfied. Next, choose

kX max
i A B�

3m

ei
max
p A P

HiðpÞ: ð10:38Þ

We then have����SB�
r ðvÞ � 1

r

Xm
j¼1

hB�j þ
Xr

j¼mþ1

HB�
j ðvÞ

 !����
¼
���� 1r

Xr
j¼1

HB�
j ðvÞ

 !
� 1

r

Xm
j¼1

hB�j þ
Xr

j¼mþ1

HB�
j ðvÞ

 !���� ðby ð6:11ÞÞ

¼ 1

r

����Xm
j¼1

ðHB�
j ðvÞ � hB�j Þ

����
W

1

k

Xm
j¼1

����HB�
j ðvÞ � hB�j

���� ðby ð10:33ÞÞ

W
1

k

Xm
j¼1

2 max
p A P

HB�ðpÞ ðby ð10:34ÞÞ

¼ 2m

k
max
p A P

HB�ðpÞ

W
2

3
eB� ðby ð10:38ÞÞ

Combining this with (10.35), we obtain (10.37). This completes the proof.

corollary 10.39 For each mX 0, the following holds:

For all su‰ciently large k, we have that for all v, r, and h1; . . . ; hm for

which (10.33), (10.34), and (10.35) hold, (10.36) and (10.37) follow.

Proof Because if (10.32) is true for a given k, it is certainly true for all

larger k.

lemma 10.40 For each mX 0 and BHN, including the null set, we have

lim
k!y

ProbgððSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ

and kðvÞ ¼ m and BðvÞ ¼ BÞ ¼ 0:
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Proof First let B ¼ q. Then for the v we are considering (inside Probg),

we have

BðvÞ ¼ q: ð10:41Þ

Since BkðvÞ is monotone increasing with k and always contained in BðvÞ,
it follows from (10.41) that for all k,

BkðvÞ ¼ q:

Applying (10.24), we obtain for kX 0 and i A N,

gikðv1; . . . ; vkÞ ¼ gN : ð10:42Þ

Let y be a supergame c-strategy vector given for all v by

yikðv1; . . . ; vkÞ ¼ gN ; kX 0; i A N: ð10:43Þ

From (10.42) and (10.43), we obtain

lim
k!y

ProbgððSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ

and kðvÞ ¼ m

and BðvÞ ¼ BÞ:

¼ lim
k!y

ProbyððSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ

and kðvÞ ¼ m

and BðvÞ ¼ BÞ

W lim
k!y

ProbyðSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ

W lim
k!y

ProbyðSi
rðvÞXHið f Þ þ ei for some rX kÞ

¼ lim
k!y

ð1� ProbyðSi
rðvÞ < Hið f Þ þ ei for all rX kÞÞ

¼ 1� lim
k!y

ProbyðSi
rðvÞ < Hið f Þ þ ei for all rX kÞ

W 1� lim
k!y

ProbyðjSi
rðvÞ �Hið f Þj < ei for all rX kÞ; ð10:44Þ

where i is an arbitrary member of B�.
Now when v is distributed according to y, we deduce from (10.43) and

(6.10) that the Hi
j ðvÞ are independent random variables whose mean is

HiðgNÞ. Applying (6.11), (10.1), (10.7), and the strong law of large num-

bers, we obtain that the second term of the right side of (10.44) is 1,
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whence we deduce that the left side vanishes. This completes the proof in

the case B ¼ q.

Next, suppose B0q. From (10.14) we obtain that BðvÞHB�. Thus if
B 6� B�, then ProbgðBðvÞ ¼ BÞ ¼ 0, and our lemma is already proved.

Thus we may assume without loss of generality that

BHB�: ð10:45Þ

For j ¼ 1; . . . ;m, suppose the random variable wB
j to be distributed

according to an arbitrary but fixed member of CBðJB
j Þ, which we will call

gBj , while w
N�B
j is distributed according to gN�B. Set

hj ¼ HðwjÞ; j ¼ 1; . . . ;m: ð10:46Þ

Applying Corollary 10.39, we obtain

lim
k!y

ProbgððSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ

and kðvÞ ¼ m

and BðvÞ ¼ BÞ

W lim
k!y

Prob

��
1

r

Xm
j¼1

hB�j þ
Xr

j¼mþ1

HB�
j ðvÞ

 !
XHB�ð f Þ þ 1

3
eB�

for some rX kÞ

and kðvÞ ¼ m

and BðvÞ ¼ BÞ; ð10:47Þ

where vmþ1; . . . ; vr are distributed according to xmþ1ðgÞ; . . . ; xrðgÞ, while
hj is given by (10.46). If for j ¼ k þ 1; . . . ; r, we will let wj be a random

variable whose distribution is (gBj , g
N�B), where the wB

j may be dependent

on wl with l < j but the wN�B
j must be independent of all wl with l0 j,

then we may conclude from (10.31) and (6.10) that the right side of

(10.47) is

W lim
k!y

Prob
1

r

Xr
j¼1

HB�ðwjÞXHB�ð f Þ þ 1

3
eB� for some rX k

 !

W lim
k!y

Prob
1

r

Xr
j¼1

HBðwjÞXHBð f Þ þ 1

3
eB for some rX k

 !

ð10:48Þ

by (10.45). Now there is certainly a supergame c-strategy vector b for which

cðbj�1ðzj�1ðbÞÞÞ ¼ ðgBj ; gN�BÞ; jX 1;
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whence the right side of (10.48)

¼ lim
k!y

ProbbðSB
r ðvÞXHBð f Þ þ 1

3 e
B for some rX kÞ: ð10:49Þ

Applying (10.2), (10.7) and Lemma 8.3, we obtain that the right side of

(10.49) vanishes. Combining this with (10.48) and (10.47), we obtain the

lemma.

lemma 10.50

lim
k!y

ProbgðSB�
r ðvÞXHB�ð f Þ þ eB� for some rX kÞ ¼ 0:

Proof Letting 6 stand for mutually exclusive disjunction, we have

1 ¼ Probg

�
6
y

m¼o

kðvÞ ¼ m

�

¼
Xy
m¼o

ProbgðkðvÞ ¼ mÞ

¼
Xy
m¼o

Probg

�
kðvÞ ¼ m and 6

BHN

ðBðvÞ ¼ BÞ
�

¼
Xy
m¼o

X
BHN

ProbgðkðvÞ ¼ m and BðvÞ ¼ BÞ: ð10:51Þ

Let Qðv; kÞ stand for the expression

SB�
r ðvÞXHB�ð f Þ þ eB� for some rX k:

Then

lim
k!y

ProbgðQðv; kÞÞ

¼ lim
k!y

ProbgðQðv; kÞ and 6
y

m¼o

ðkðvÞ ¼ mÞ and 6
BHN

ðBðvÞ ¼ BÞÞ

¼ lim
k!y

Xy
m¼o

X
BHN

ProbgðQðv; kÞ and kðvÞ ¼ m and BðvÞ ¼ BÞ

¼
Xy
m¼o

X
BHN

lim
k!y

ProbgðQðv; kÞ and kðvÞ ¼ m and BðvÞ ¼ BÞ

(since the series is dominated by the series on the right side of (10.51))

¼
Xy
m¼o

X
BHN

0 ðby Lemma 10:40Þ

¼ 0:

This completes the proof of Lemma 10.50.
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Lemma 10.50 contradicts (10.12) and thus establishes the truth of

Theorem 3.

corollary 4 HðAcÞ ¼ HðScÞ ¼ Hð ~SScÞ.

Proof Combine (7.4), Theorem 2 and Theorem 3.

11 Existence of Acceptable Points

All two-person games, zero-sum or not, have acceptable points. The

proof, which is not di‰cult, will be given in a subsequent paper of this

series devoted exclusively to the application of this theory to two-person

games. Unfortunately, though, when we go beyond two-person games,

we find games in which there are no acceptable points. It is instructive to

examine an example of such a game.

G is a three-person, zero-sum game. The three persons form a commu-

nity and at regular intervals hold elections for mayor and vice-mayor.

The mayor draws a salary of 2; the vice-mayor draws a salary of 1; the

remaining player pays the salaries.

Let h be an arbitrary payo¤ vector. Since G is zero-sum, not all the

players can have a positive payo¤. Without loss of generality, let

h1 W 0: ð11:1Þ

Now the minimum payo¤ to 1, even in pure strategies, is �3; hence since

G is zero-sum, it follows that

h2 þ h3 W 3: ð11:2Þ

From (11.2) it follows that at least one of 2 and 3 gets at most 11
2; so we

may write without loss of generality

h2 W 1 1
2 : ð11:3Þ

Now by agreeing to vote for 2 for mayor and for 1 for vice-mayor, 1 and

2 can both increase their payo¤s; and there is nothing that 3 can do to

prevent this.

Actually, the game G just described does not deserve an accept-

able point. In a long sequence of plays of G, a steady state will never

be reached; no sooner do we start settling down to one, than two

of the players will see that it is relatively disadvantageous for them,

and will certainly not be willing to agree to it for the remainder of

the superplay. The game is inherently unstable. The same argument

holds for all games not possessing acceptable points. Thus in seeking a

steady state for the supergame, it would seem that we may restrict our-
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selves to games possessing acceptable points. These are called stable

games.

12 The Expected Payo¤

In order to see why the notion defined by (6.8) is essentially misleading,

let us consider the three-person game G of perfect information which is

given in extensive form in Figure 1.

The payo¤ vector at each terminal gives the payo¤ to players 1, 2, and

3 in that order.

Player 1 has three strategies, l1, c1, and r1 (left, center, and right). The

other players have two strategies each; they will be denoted by l j and r j,

where j ¼ 0, 2, and 3. Chance8 is denoted by 0.

The point (l1, l2, l3), yielding a payo¤ of (1, 1, 1), is acceptable. No

player or group of players can obtain a higher payo¤. However, if 1 plays

the supergame c-strategy given by (10.3), there is a supergame c-strategy

(2,3)-vector that will yield an expected payo¤ of (0, 2, 2) rather than

Figure 1
The payo¤ vector at each terminal gives the payo¤ to players 1, 2, and 3 in that order.

8. It may be objected that we have excluded chance from consideration in this paper.
Actually, chance is used in this example only to provide, as conveniently and cheaply as
possible, a random device on which players 2 and 3 will be able to peg their choices. We
could eliminate chance at the cost of complicating the example considerably. In order to
exhibit the principle involved as clearly as possible, we have retained chance; but it is im-
portant to remember that it does not form an essential part of the example.
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(1, 1, 1). This supergame c-strategy (2,3)-vector, which we will call

the ‘‘plan,’’ may be described as follows: On the first play, both players

make the ‘‘orthodox’’ choice, i.e., they concur with player 1 in choosing

(l1, l2, l3). On all subsequent plays, we distinguish two cases:

1. If chance played lo on the first play, then player 2 makes the

‘‘orthodox’’ choice, i.e., that given by (10.3), while player 3 plays r3.

2. If chance played ro on the first play, then player 3 makes the ‘‘ortho-

dox’’ choice, while player 2 plays r2.

According to (10.3), player 1 will respond to this treachery with a

wounded roar and proceed to wreak dire vengeance. In case 1 he will

finish o¤ player 3 by playing r1; in case 2 he will play c1, thus avenging

himself on the treacherous player 2. In each case, he is convinced that the

orthodox player has been loyal all along, and therefore will not feel too

unhappy about his getting 4 while player 1 himself gets nothing. The

expected payo¤ is (0, 2, 2), an improvement for both 2 and 3. For 2 and 3,

this sounds like a good set-up, at least on paper. Who wouldn’t want an

expected payo¤ of 2 instead of 1? Let’s see how it works out in practice.

Imagine that chance has played lo on the first play. For the second

play, player 1, all unsuspecting, suggests (l1, l2, l3), and player 2 con-

curs, according to plan. Player 3 is now faced with the choice of going

along with the plan and playing r3, thus bringing down upon himself the

eternal wrath of player 1, or of concurring in the choice of (l1, l2, l3),

thus possibly making player 2 angry at him, but still assuring himself of a

steady income of 1. It won’t take him long to make his choice. He has

nothing to gain and everything to lose by going along with the plan; he

will get nothing but 0 for the rest of eternity for his pains, while player 2

enjoys a steady payo¤ of 4. Player 3 will not now be consoled by the fact

that if chance had played the other way, he would have been getting 4

while player 2 would have been getting 0; in no sense does this constitute

an incentive for him to follow the plan as things stand now. The point

is that in a single play of a game, it may be worthwhile for each of the

parties to plan to co-operate, even if it hurts, because in future plays, he

may be the beneficiary. But in a superplay, there are no future super-

plays; this is it; by going along with the plan, player 3 will be ruining

himself not just for one play, but for always. It just isn’t worthwhile, and

no player would do it. Similar remarks apply to player 2. The plan does

yield a higher expected payo¤, but will never be carried out.

It is possible to define strong equilibrium c-points using an appropriate

formula involving expected payo¤s in place of 7.2. If this is done, the first

half of the main theorem, the analogue of Theorem 2, remains true.
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However, the second half, the analogue of Theorem 3, fails. The game G

that we have been discussing provides the counterexample. If we start out

with h ¼ ð1; 1; 1Þ, then not only does the f given by (10.3) fail, as we have

shown, but it can be shown that there is then no strong equilibrium c-

point (in the sense of expected payo¤s) whose payo¤ is h.

13 Enforceability of Agreements

There are two kinds of agreements involved in a cooperative supergame.

One is the formal agreement that is contracted prior to a given play by

the members of a coalition B, who agree to play a certain correlated

strategy B-vector on that play. This agreement expires immediately after

the play in question is completed; its validity does not extend to any sub-

sequent plays. The other is the informal ‘‘gentlemen’s agreement’’ in

which the players undertake informally to make certain choices or join

certain coalitions on each of a number of plays, or even for the entire

superplay; they do not form a part of the formal mathematical structure

introduced in Section 6. These are the agreements that are involved in the

supergame strategy vectors that we have used in our proofs. When in

heuristic discussions above we referred to ‘‘orthodoxy’’ or ‘‘deviation-

ism,’’ it was the second kind of agreement to which we were referring. To

distinguish between the two kinds of agreements, we will call the first

formal, the second informal.

As mentioned in Section 3, together with the formal agreement there

comes a formal enforcement mechanism. Put completely precisely, if for

the k th play the players choose the vector t A T , then each i A N must

become a member of d iðtÞ, and the coalition d iðtÞ must then play ðtiÞd
iðtÞ.

If the reader wishes, he may consider that once the choice of t has been

made, the remainder of the play is no longer in the hands of the individ-

ual players, but in the hands of an umpire. Such an extreme inter-

pretation is unnecessary for practical purposes; we refer to it only to

make clear the intuitive meaning of formal enforcement.

On the other hand, the informal agreement can be enforced in no such

formal way. Violation of such an agreement can be ‘‘prevented’’ only by

the threat or implied threat of retaliation on subsequent plays. The exact

nature of this ‘‘pseudo-enforceability’’ is of course the crux of what we

have been investigating in the foregoing sections.

In the light of these remarks, it is an interesting fact that if in the

supergame we abandon formal enforceability for the formal agreements,

the main theorem remains true. The possibility of retaliation is su‰cient

to enforce even the formal agreements, without any necessity for formal
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enforcement apparatus. We have not proved this statement in the fore-

going; the structure introduced in Section 6 was constructed with formal

enforceability of formal agreements in mind. A structure permitting the

violation of formal agreements would be somewhat more complicated.9

However, upon a little reflection, the reader will be able to convince

himself of the truth of the statement, at least intuitively.

Of course, when considering just a single play rather than the super-

game, as in the definition of acceptability, then there are only formal

agreements and these are formally enforceable.
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