
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 159 (2015) 443–464

www.elsevier.com/locate/jet

The logic of backward induction ✩

Itai Arieli a, Robert J. Aumann b,∗,1

a Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Israel
b Department of Mathematics and Federmann Center for the Study of Rationality, the Hebrew University of Jerusalem, 

Israel

Received 24 October 2013; final version received 30 June 2015; accepted 1 July 2015

Available online 13 July 2015

Dedicated to Moshe Arieli on the occasion of his 70th birthday

Abstract

Call a perfect information (PI) game simple if each player moves just once. Call a player rational if he 
never takes an action while believing, with probability 1, that a different action would yield him a higher 
payoff. Using syntactic logic, we show that an outcome of a simple PI game is consistent with common 
strong belief of rationality iff it is a backward induction outcome. The result also applies to general PI 
games in which a player’s agents act independently, rendering forward inferences invalid.
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1. Introduction

The backward induction (BI) algorithm for perfect information (PI) games is based on the 
following reasoning: The last player, who must choose between outcomes of the game, chooses 
an action that maximizes his payoff; taking this as given, the previous player maximizes his
payoff; and so on, until the beginning of the game is reached.

Though on its face convincing enough, this reasoning has for the past quarter century been 
discussed, scrutinized, analyzed intensely, and even rejected. Our goal here is to clarify the as-
sumptions on the players’ knowledge and rationality on which it rests.

Two preliminary observations: First, the above reasoning, and indeed the BI algorithm, is 
unchanged if each player i is split into several independent “agents,” one for each of i’s decision 
nodes, each with the same payoff as i. So2 we restrict attention to simple PI games—those in 
which each player moves at just one node. Call a player rational if he has no action that he 
believes (with probability 1) yields him a higher payoff than the action he took.

Second, for the reasoning to work, more than just rationality is needed; roughly, the players 
must also ascribe rationality to each other. More precisely, we may take the players’ rational-
ity (r) to be common knowledge (ck); i.e., all players know that all are rational, all know that all 
know it, all know that, and so on. This implies that players at preterminal nodes3 choose ratio-
nally; knowing that, players at prepreterminal4 nodes choose rationally—i.e., the BI action; and 
so on. Formally, that ckr entails BI follows from a theorem of Aumann (1995).

Aumann’s work was criticized because ckr involves a conceptual conundrum. A player i on 
the BI path must either continue on the BI path or go off. If he goes off, the player j who is 
reached is unreachable under ckr; and j knows this, as commonly known propositions are a 
fortiori known by all players. Since j bases his choice on what he thinks subsequent players 
will do, and his “knowledge” has been contradicted, it is not clear what he (j) will do. But i
must base his choice on what he thinks j will do, so it is not clear what i should do, either. 
Specifically, it is not clear that the BI action is indeed rational for i—that he could not do better 
by leaving the BI path.

To avoid grappling with this conundrum,5 we replace “knowledge” by “strong belief”, where 
a player strongly believes a proposition p if he believes it unless it is logically inconsistent with 
his node being reached. Common strong belief of p signifies that p holds, all players strongly 
believe p, all strongly believe the foregoing, all strongly believe the foregoing, and so on. We 
then have our

Main Theorem. An outcome of a simple PI game is consistent with common strong belief of 
rationality (csbr) iff it is a BI outcome.

With csbr, the conundrum disappears. As before, suppose a player i on the BI path considers 
going off, say to j . When ckr obtains, j knows that he cannot be reached, as he knows ckr; so 
if he is reached, then his knowledge is contradicted, and we get the conundrum. Also when csbr
obtains, j cannot be reached, by our theorem. But j does not know that he cannot be reached, 

2 Please see Section 9.1 for an explanation of this point.
3 Those all of whose sons are outcomes.
4 Those all of whose sons are terminal or preterminal.
5 As have Binmore (1996) and Aumann (1996), inter alia.
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as he does not know6 csbr. He knows only those components of csbr that pertain to his beliefs 
and actions if reached,7 and these are consistent.8 Also i has beliefs about the actions of other 
players, including j ; our theorem implies that with these beliefs, it is rational for him to stay on 
the BI path.

The theorem has both substantive and methodological interest. Substantively, it characterizes 
the BI outcome in simple PI games by csbr, which means that in general PI games, BI is char-
acterized by common strong belief (csb) of the rationality of the agents. Previously, Battigalli 
and Siniscalchi (2002) (henceforth BS), who introduced the fundamental notion of strong belief, 
had characterized the BI outcome by csb of the rationality of the players. Ascribing rationality to 
players renders forward inferences relevant (Section 9.1.1). Thus what BS show is that reasoning 
with forward as well as backward inferences leads to the BI outcome; whereas we show that the 
BI outcome results when reasoning with backward inferences only (Section 9.1.2)—a task that, 
while not straightforward, is intrinsically simpler than BS’s.

Methodologically, the theorem is formulated and proved in syntactic rather than semantic 
terms (Section 5). The notion of strong belief depends on that of logical impossibility. In the 
more widely used semantic methodology, formulating the notion of logical impossibility involves 
defining and constructing “complete” state spaces (Section 9.2). In the syntactic methodology, 
“logical impossibility” has its ordinary, everyday meaning.9

Several other features of our treatment are worth noting:
(1) Belief: Rather than expected payoff maximization, we use probability 1 belief only; easily 
formulated properties of this concept suffice, obviating the need for the logical apparatus required 
by numerical probabilities.
(2) Genericity: Much of the BI literature makes essential use of various genericity conditions 
(Section 10.3). Our treatment, too, is more transparent with genericity, but the result holds for all 
PI games, generic or not.
(3) Strategies: In simple PI games, csbr is always consistent not only with the BI outcome, 
but also with the BI strategies. There may also be other strategies with which it is consistent 
(Section 10.2).

The plan of the paper is as follows: Section 2 formulates the result, and Section 3 demon-
strates it, carefully but still informally, assuming genericity; this may already satisfy some 
readers, who may skip any or all of the remainder. Section 4 removes the genericity condi-
tion. Sections 5–8 comprise the formal development: Section 5 discusses syntactic and semantic 
formalisms, the advantages of each, and the reasons for choosing the syntactic one here; Sec-
tion 6 lays out the basic logical apparatus, which is used in Section 7 to formulate the result 
precisely, and in Section 8 to prove it rigorously. Section 9 is devoted to discussion: Section 9.1, 
of substance, and Section 9.2, of methodology. Finally, Section 10 reviews some of the liter-
ature, concentrating on BS. Appendix A proves a needed technical result outside the paper’s 
mainstream.

6 We (the analysts) know csbr; the players do not.
7 Spelled out in Remark 2.1. We don’t mean that j doesn’t know anything else, but only that csbr does not call for him 

to know anything else.
8 As csbr is consistent, which follows from our theorem.
9 That is, a “logically impossible” proposition is one that involves a logical contradiction.
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2. Informal formulation

A simple PI game is defined by a rooted tree T . Terminal nodes are called outcomes, non-
terminal nodes—players. Each player h chooses (or plays) an action ah—an edge at h that does 
not lead back to the root. At each outcome, each player has a payoff.

Parts of this and the next section10 assume genericity—that each player has different payoffs 
at different outcomes; this renders the treatment significantly more transparent. In particular, 
BI then determines a unique outcome. The genericity assumption is removed in Section 4.

2.1. Actions, beliefs, rationality, and csbr

Assume that each player has beliefs concerning actions played, and beliefs held, by other 
players. Call an action ah of player h belief-dominated if he has an action a′

h that he believes 
yields him a higher payoff than ah. Call it rational if it is not belief-dominated. Say that csbr
obtains if

r : only rational actions are played,11

and
r1: each player believes r , unless it precludes reaching him,

and
r2: each player believes the foregoing, unless it12 precludes reaching him,

and
...

and
rn: each player believes the foregoing,13 unless it precludes reaching him,

and so on ad infinitum.
In terms of the actions and beliefs of the individual players, we have

Remark 2.1. csbr obtains iff each player plays a rational action, and for each n, believes14

r ∧ r1 ∧ . . . ∧ rn when it does not preclude reaching him.

2.2. Backward induction (generic)

Label the nodes of the game tree T as follows: Label each outcome z by z. Proceeding by 
(backward) induction, label each player h by that one of his sons’ labels that yields him the 
most. Denote the root’s label by BI(T ), and call it the BI outcome.

2.3. The Main Theorem (generic)

Say that a node v is reachable under an assertion f if reaching v is consistent with f .

10 Specifically, Sections 2.2, 2.3, and 3.2.
11 The play and beliefs of a player are those that apply if he is reached.
12 The foregoing.
13 All the foregoing; i.e., r and r1 and r2 and ... and rn−1.
14 ∧ means “and.”
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Generic Main Theorem. An outcome of a generic simple PI game is reachable under csbr iff it 
is the BI outcome.

3. Informal demonstration

The demonstration has two parts. The first describes a process of successively “pruning” 
branches of the game tree, and shows that only the BI outcome survives that process. The second 
identifies csbr with the pruning process.

3.1. The pruning process

Say that action a′
h (strictly) dominates action ah if a′

h yields a higher payoff to h, no matter 
what is done by subsequent players. The pruning process (PP) proceeds by eliminating each 
dominated action of each player, and the entire subsequent branch, and then iterating until no 
dominated actions remain.

3.2. Pruning process → BI outcome (generic)

Lemma 3.1. Pruning a dominated action ah does not change h’s label.

Proof. 15Label each action by the label of the node to which it leads. The label of an action 
depends only on the labels of nodes after that action, so the labels of actions other than ah do 
not change when ah is pruned. Since ah is dominated, h’s label is one of those other labels, so it 
does not change. �
Corollary 3.2. Simultaneously pruning several dominated actions does not change the remaining 
players’ labels.

Theorem A. Generically, BI(T ) is the unique outcome of the fully pruned tree TP .

Proof. Repeated use of Corollary 3.2 shows that BI(T ) is an outcome of TP . If TP had more 
outcomes, one could first eliminate players who have only one action, then prune some action of 
a preterminal player. �
3.3. Pruning process ↔ csbr

This part does not assume genericity; it is completely general.

Theorem B. For all n, a node survives stage n + 1 of the pruning process if and only if it is 
reachable under r ∧ r1 ∧ . . . ∧ rn.

Demonstration. 16Formally, this is proved in Section 8. Informally, denote the result of stage n
of the PP by T n. Note first that r excludes precisely the dominated actions, no more and no less. 

15 The argument here is fully rigorous, so the word “proof” (rather than “demonstration”) is in place.
16 This is not an outline of the formal proof in Section 8, but a relatively brief argument showing informally “why” the 
theorem holds.
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“No less” follows from a dominated action being a fortiori belief-dominated; “no more,” from 
r allowing a player to believe that all players subsequent to his action could be reached. So T 1

comprises precisely what is reachable under r . This is case n = 0 of the theorem.
Next, we examine reachability under r ∧ r1. As we have seen, r implies that only nodes in 

T 1 can be reached. So by r1, all players in T 1 believe that only nodes in T 1 can be reached. 
Since by r , all players are also rational, it follows that actions in T 1 that are dominated in T 1

are excluded by r ∧ r1. So r ∧ r1 implies that only nodes in T 2 are reached. But under r , every 
node in T 1 is possible; so under r1, each player h in T 1 may consider all subsequent nodes in 
T 1 possible. So r ∧ r1 excludes only actions at nodes in T 1 that are dominated in T 1; so in T 1, 
that leaves precisely the nodes in T 2. The nodes outside of T 1 are already excluded by r , so T 2

is precisely what is reachable under r ∧ r1. This is case n = 1 of the theorem.
For general n, we proceed by induction. Assume that the result T n of stage n of the PP 

comprises precisely what is reachable under r ∧ r1 ∧ . . . ∧ rn−1; we examine what is reachable 
under r ∧ r1 ∧ . . . ∧ rn. By rn, every player believes r ∧ r1 ∧ . . . ∧ rn−1, unless it precludes 
reaching him; by the induction hypothesis, this means that every player in T n believes that only 
players in T n—and all17 such players—can be reached. So as with n = 1, but with T n instead 
of T 1, we conclude that the result T n+1 of stage n + 1 of the PP comprises precisely what is 
reachable under r ∧ r1 ∧ . . . ∧ rn, as asserted. �
Corollary 3.3. An outcome survives the PP iff it is reachable under csbr.

Demonstration. By Theorem B, an outcome is consistent with r ∧ r1 ∧ . . . ∧ rn iff it survives 
stage n + 1 of the PP. So it is consistent with r and all the rn—i.e., with csbr—iff it survives all
stages of the PP. �
Demonstration of the Generic Main Theorem. Combine Corollary 3.3 with Theorem A. �
4. Dispensing with genericity

Without the genericity restriction, the BI process—as specified above (Section 2.2)—does not 
apply, since a player may have several sons whose labels are best for him. We here generalize 
the definition of BI to the unrestricted case (Section 4.1), show that BI and the PP still have 
the same result (Section 4.2), and finally, state and demonstrate the unrestricted Main Theorem 
(Section 4.3).

4.1. Backward induction

As in the generic case, we use an inductive labeling process, but now each node h of the tree 
T is labeled with a set Zh of outcomes.18 Among the outcomes in Zh, denote the maximum and 
minimum payoffs to h’s father by maxh and minh respectively. Call a node h inferior if it has a 
brother h′ with minh′ > maxh.

17 Justifying the word “all” is the main burden of the rigorous proof (Section 8).
18 The idea is that if h is reached, any outcome in Zh may occur.
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Start the process by labeling each outcome z by {z}. Then, inductively label each player by 
the union of the labels of his non-inferior sons. Denote the root’s label by BI(T ), and call its 
members BI outcomes.19

The idea is that if all the sons of a player h are outcomes, then he chooses an action that 
maximizes his payoff; the resulting outcomes constitute the set Zh. If h’s father ĥ chooses h, 
then ̂h can count on h choosing some member of Zh, but not which one. So if h is inferior—has a 
brother who is necessarily better for ̂h than h—then ̂h would certainly rather choose the brother, 
so his choosing h may be excluded. But ̂h might well choose any non-inferior son; this defines 
the label Zĥ. The process continues similarly to ̂h’s ancestors, until the root is reached.

4.2. Backward induction ↔ pruning process

Theorem C. BI(T ) is the set of outcomes of the fully pruned tree TP .

Proof. Let O(TP ) be the set of outcomes of TP . That BI(T ) ⊂ O(TP ) follows as in Theorem A. 
Suppose BI(T ) � O(TP ). Let T ′ be a minimal subtree of T with BI(T ′) � O(TP ); i.e., O(T ′′

P ) =
BI(T ′′) for any proper subtree T ′′ of T ′. Let z ∈ O(T ′

P )\BI(T ′), let h′ be the root of T ′, let ah′
be the action leading to z, and let h′′ be the son of h′ to which ah′ leads. Since z is not in BI(T ′), 
it is eliminated by the BI process at h′; so h′′ is inferior. So letting T ′′ be the tree with root h′′, we 
conclude from O(T ′′

P ) = BI(T ′′) that ah′ is dominated in T ′
P , which contradicts T ′

P being fully 
pruned. �
4.3. The Main Theorem

Main Theorem. 20An outcome of a PI game is reachable under csbr iff it is a BI outcome.

Demonstration. Like that of the Generic Main Theorem, with Theorem C instead of Theo-
rem A. �
5. Syntax and semantics

The Main Theorem belongs to an area of mathematical game theory called interactive epis-
temology. There are two parallel kinds of formalism in that area: the semantic and the syntactic.
Semantic formalisms employ state spaces; each such space consists of a set of states of the world
(or simply states), together with a structure representing the players’ knowledge and beliefs (par-
titions, probability distributions, and the like). A particular state space represents a particular 
realization of epistemic principles, just as a particular group represents a particular realization 
of the axioms of group theory. To use the semantic formalism to prove a general assertion, one 
establishes the assertion at each state in an arbitrary state space.

Syntactic formalisms are different; they work directly with sentences, rather than with states. 
There is a formal language, and there are axioms, inference rules, and formal proofs using the 
axioms and rules. In many contexts (see Chellas, 1980, Chapter 1), a sentence “holds” at each 

19 In generic games, this process reduces to that of Section 2.2, except that there BI(T ) is the unique BI outcome, and 
here it is the singleton consisting of that outcome.
20 This differs from the Generic Main Theorem (Section 2.3) only in that the word “generic” is removed, and “a BI 
outcome” replaces “the BI outcome.”
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state in an arbitrary state space iff in the corresponding syntactic formalism, it is a tautology,21

by which we mean that it follows logically from the axioms and inference rules.
Each kind of formalism has advantages. The main advantages of semantic formalisms are 

practical: they are easier to fathom, and easier to work with. They are also more widely used, 
especially in the economic literature, and so are more familiar. The main advantage of a syntactic 
formalism is conceptual: basically it says in plain words what it is that one wants to prove, and 
then proves it, logically, from explicit assumptions. To prove something in a semantic formalism, 
one must first restate it in the language of sets, and then establish it in an arbitrary state space. As 
Professor Dov Samet has put it (private communication), if you want to explain it to your barber, 
say it syntactically; there’s no way he’ll understand the semantic formulation.

There is, however, one important respect in which semantic formalisms are superior—one 
kind of task they can perform, that most syntactic formalisms cannot. Namely, they can prove 
consistency. In most22 syntactic formalisms, one cannot show directly from the axioms that 
a sentence is consistent—that its negation is not a tautology. For that, one needs a model of 
the sentence—a state in a semantic state space at which the sentence in question “holds.” In-
deed, throughout mathematics, consistency proofs have traditionally used models, starting with 
the Bolyai–Lobachevsky proof that Euclid’s parallel postulate does not follow from his other 
axioms—i.e., that its negation is consistent with those axioms.

In particular, the proof of our main theorem—that csbr is consistent and entails a BI 
outcome—intertwines syntactic with semantic methods. But, whereas the proof uses seman-
tics, the formulation is purely syntactic. Indeed, the consistency of an assertion is intrinsically a 
syntactic notion: it means that the negation of the assertion is not a tautology.

In the present context, there is an additional aspect of the syntactic formalism that bears men-
tioning. This concerns the fundamental notion of “strong belief,” which calls for the notion of 
“tautology” to play an important formal role within the statement of the result. Of course this 
paper, like all others in mathematics, is about tautologies; all theorems are tautologies—what 
mathematics does is to establish tautologies. But usually, the notion of “tautology” is not part of 
the statement of the result; the result is stated without involving the notion of tautology, and then 
one simply asserts and proves the statement.

Here the situation is different. Assertions that some specific statements are or are not tautolo-
gies are elements in more complex assertions; these, in turn, are elements in still more complex 
assertions, and so on. Specifically, strong belief of a statement means that it is believed unless 
it is logically impossible; i.e., unless its negation is a tautology. Common strong belief iterates 
this assertion, indeed unboundedly often. Thus, in addition to the usual logical operators and 
connectives like “not,” “or,” and “and,” we use an additional operator, t , which signifies that the 
sentence following it is a tautology; and whereas this operator is familiar in the metalanguage 
of logic, it is unusual23 that it becomes part of the object language—the formal syntax—from 
which new assertions can be formed.

21 In formal logic, this is usually called a “theorem;” the word “tautology” is reserved for theorems of the proposi-
tional calculus. We prefer to reserve the term “theorem” for the more usual kind of theorem—the kind that appears in 
mathematical papers like this.
22 See the next footnote.
23 Halpern and Lakemeyer (2001) have published a model of this kind; they use an operator called Val, which is t in 
our language. With this operator and a few more axioms, they construct a formalism in which consistency can be proved 
syntactically.



I. Arieli, R.J. Aumann / Journal of Economic Theory 159 (2015) 443–464 451
With additional machinery, the tautology operator can be treated also within the semantic 
formalism, as we shall see in Section 9.2 below.

6. Framework

6.1. Syntax

Given a finite PI game, we construct a formal language. The building blocks are as follows:

• Atomic sentences. These have the form “player h chooses action ah,” denoted simply ah.
• Left parentheses and right parentheses.
• Connectives and operators of the propositional calculus. As is known, it is sufficient to take 

“or” (∨) and “not” (¬) as primitives, and in terms of them to define “and” (∧) and “implies” 
(→).

• Belief modalities. For each player h, there is a belief modality bh. Informally, if g is a sen-
tence (see below), then bh(g) means that if reached, h ascribes probability 1 to g. Verbally, 
we say “h believes g.”

• A tautology modality, denoted t . Informally, if f is a sentence, t (f ) signifies that f is a 
tautology.

Define a sentence24 as a finite string obtained by applying the following two rules, in some 
order, finitely often:

• Every atomic sentence is a sentence.
• If f and g are sentences, so are (f ) ∨ (g), ¬(f ), t (f ), and bh(f ), for every player h.

Henceforth, we may omit parentheses when the intended meaning is clear.
The set of all sentences for the game under consideration is called the syntax of that game, 

denoted χ ′. Call a sentence f in χ ′ basic if it does not involve the modality t . The set of all basic 
sentences is called the basic syntax, denoted χ .

If h is a player and g a node, then g 
 h (or h ≺ g) means that g follows h in the game tree. 
The sentence “h is reached” is denoted simply h; i.e., h := ∧

g ah
g , where the conjunction is over 

all players g that precede h, and ah
g is the action at g that leads to h. The set of all actions of h is 

denoted Ah, and the set of all players H .

6.2. Basic logic

We now present the axioms and inference rules that govern the internal logic of our language. 
The axioms are as follows:

(1) The axioms of the propositional calculus.

And, for all sentences f and g, and all players h,

24 A.k.a. “formula” in the logic literature. The term “sentence,” which, too, is used in the logic literature, seems con-
ceptually more apt and indicative of this object’s role.
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(2)
∨

ah, the disjunction being over all actions ah at h.
(3) ¬(ah ∧ a′

h), where ah and a′
h are different actions at h.

(4) bh(f → g) → (bhf → bhg).
(5) bhf → ¬bh¬f .
(6) ¬bhf → bh¬bhf .
(7) ah ↔ bhah for all actions ah at h.
(8) bhh.

Axioms (2) and (3) say that each player chooses exactly one action. (4) and (5) represent classical 
modal belief axioms (see, e.g., Chellas, 1980), with clear conceptual content. (6) is “negative 
introspection:” that if you do not believe something, then you believe that you do not believe it; 
it is known to entail “positive introspection,” that if you believe something, then you believe that 
you believe it. (7) and (8) say that h believes that he chooses the action that he indeed chooses, 
and that he is reached.

A list L is a set of sentences in χ ′. It is logically closed if it satisfies modus ponens:

(9) f ∈ L and f → g ∈ L implies g ∈ L;

epistemically closed if it satisfies generalization:

(10) f ∈ L implies bhf ∈ L for all players h;

tautologically closed if

(11) f ∈ L implies tf ∈ L;

closed if it satisfies (9) and (10); and strongly closed if it satisfies (9), (10) and (11). The (strong) 
closure of L is the smallest (strongly) closed list that includes L. Conditions (9–11) are often 
called inference rules.

A sentence f is called a basic tautology if it is in the closure of the list of all basic sentences 
having one of the forms (1–8). The set of all basic tautologies is denoted B.

6.3. The logic of tautologies

In ordinary usage, a “tautology” is a statement that is necessarily true—simply by the laws of 
logic and grammar—and does not make a substantive assertion about the real world. A tautology 
in the syntax χ—i.e., a basic tautology—is a basic sentence that follows from the axioms: i.e., 
holds no matter what the players actually do and believe. Similarly in the full syntax χ ′, tau-
tologies should hold no matter what the players actually do and believe. Formally, we define a 
tautology as a sentence in the strong closure of the following list:

(1) Axioms25 (6.2.1)–(6.2.8);
(2) ¬tf , when f is a basic sentence that is not a basic tautology;
(3) t (f → g) → (tf → tg), for all sentences f and g.

25 (6.2.1) stands for Axiom 1 in Section 6.2. A similar convention is used throughout, also for numbered formulas, 
definitions and assertions.
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Denote the set of all tautologies by T. Write � f if f ∈ T. Call a list L coherent if there is no 
f for which both f and ¬f are in L.

Theorem D.

(4) T is coherent,
(5) a basic sentence is a tautology iff it is a basic tautology; and
(6) for every sentence f there is a basic sentence f ′ with � f ↔ f ′;

Proof. See Appendix A. �
There is an important conceptual difference between tautologies, as just defined, and basic 

tautologies, defined in Section 6.2. A basic tautology f is provable from the axioms: it is possible 
to write a finite string of sentences ending with f , in which each sentence is either an axiom or 
follows from the previous sentences using the rules of modus ponens (9) and generalization (10). 
In contrast, a tautology as just defined need not be provable in this sense. The reason lies in (2) 
above, which says that if a basic sentence f is not a tautology, then it is a tautology that it is not 
a tautology. But proving ¬tf would seem to require examining all the basic tautologies to see 
that f is not among them; and that is not a finite process. So while our concept of tautology is 
perfectly well-defined, it is not equivalent to provability.

We end this section by setting forth some terminology. A sentence f is inconsistent if its 
negation is a tautology; otherwise it is consistent. It entails g if f → g is a tautology. It is con-
sistent with g if f ∧ g is consistent. The sentences f1, f2, . . . are inconsistent if the conjunction 
of some finite subset of them is inconsistent; otherwise they are consistent. They entail g if the 
conjunction of some finite subset of them entails g.

6.4. Semantics

The notion of strong belief, which plays a central role in our theorem, depends crucially on 
that of consistency. Proving consistency of a sentence f —i.e., proving ¬t (¬f )—is a tricky 
matter. As noted above, it would seem to require writing down all tautologies and checking that 
¬f is not among them—which seems impossible. To cope with this difficulty, we construct a 
semantic formalism for our syntax.

For each player h, denote by A�h the set of profiles of actions of players other than h and 

not preceding him. Define a simple model26 of the syntax χ as a mapping C that assigns to each 
action ah of each player h, a non-empty subset C(ah) of A�h.

Conceptually, a profile a : = (ah)h∈H of actions constitutes a state of the world; the set 
A :=×h∈H

Ah of all such profiles is the state space, and subsets of A are events. A player h play-
ing an action ah has beliefs about the possible states. In each state b that he considers possible, the 
action bh must be ah, since he knows what he plays; moreover, the action bg of each player g pre-
ceding h must be the action ah

g leading to h. There are no other a priori restrictions on h’s beliefs; 

26 We use the term “simple model” because in the literature, the term “model” has a wider meaning, of which our simple 
models constitute instances. See Footnote 28.
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so we may describe them as a subset C(ah) × D(ah) of A, where D(ah) := {ah} ××g:g≺h
{ah

g }, 
and C(ah) is a non-empty subset27 of A�h.

Example 6.1. C(ah) := ×g:g�h
Ag . Here each player believes only that he has been reached; 

for players off the path to him, he considers any action possible.
Given a model C and a sentence f , denote by ‖f ‖ the realization of f in the model C, i.e., 

the event that f holds. Formally, when f is basic, define ‖f ‖ inductively by:

(1) ‖ah‖ := {b ∈ A : bh = ah},
(2) ‖¬f ‖ := A\‖f ‖,
(3) ‖f ∨ g‖ := ‖f ‖ ∪ ‖g‖, and
(4) ‖bh(f )‖ := {a ∈ A : C(ah) × D(ah) ⊂ ‖f ‖};

it follows from Lemma 6.2 below that

(5) ‖f ‖ = ‖g‖ whenever f ↔ g is a basic tautology.

When f is not basic, define

(6) ‖f ‖ := ‖f ′‖, where f ′ is a basic sentence with � f ↔ f ′

(see (6.3.6)); by (5) and (6.3.5), ‖f ‖ does not depend on the choice of f ′.

Lemma 6.2. Every basic tautology holds in every state of every simple model.

Proof. It suffices to show that each of the axioms (6.2.1–8) holds in every state of every simple 
model, and that the list of sentences holding in a given state of a given simple model is closed. 
These checks are standard. �
Corollary 6.3. Every sentence that holds in some state of some simple model is consistent.28

7. The Main Theorem: formal formulation

7.1. Rationality

Call an action of a player rational if he has no action that he believes would yield him a higher 
payoff. In symbols, if ah and a′

h are actions, denote by p(a′
h, ah) the statement that it is better29

for h to play a′
h than ah. Define

27 Though h believes that only nodes following ah are possible, we must nevertheless consider beliefs regarding actions 
at nodes that follow other actions, in order to assess the rationality of choosing ah . As for actions at nodes that do not 
follow h, these really play no substantive role; they are there for notational convenience only.
28 In the language of formal logic, Corollary 6.3 says that the class of simple models is sound. We do not assert that it is 
complete, which is the converse of soundness—that every consistent sentence holds in some state of some simple model. 
Indeed, we don’t need completeness, as what interests us is proving consistency. So to keep our formalism as simple as 
possible, we use a restricted class of models (see Footnote 26).
29 I.e., better for h, given the actions of players after h.
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(1) r(ah) := ∧
a′
h∈Ah

¬bhp(a′
h, ah);

r(ah) says that the action ah is rational. Next, define

(2) rh := ∧
ah∈Ah

(ah → r(ah));

rh says that h is rational—that he plays only rational actions. Finally, define

(3) r := ∧
h∈H rh;

r says that action rationality obtains—i.e., that all players are rational.
On its face, it is not clear that p(a′

h, ah) is a sentence in the syntax. To see that it is, let 
a
h be a profile of actions of players after h, and a∧
h their conjunction. Together with an 
action a′

h, the profile a
h determines an outcome z(a
h, a′
h), and so a payoff uh(z(a
h, a′

h))

to h. Then p(a′
h, ah) is the disjunction of all those conjunctions a∧
h for which uh(z(a
h, a′

h)) >
uh(z(a
h, ah)); so it is indeed in the syntax, so rh and r are also in the syntax.

7.2. Common strong belief and the Main Theorem

Say that a sentence g is strongly believed (written sbg) if each player h believes g whenever 
g is consistent with h being reached; i.e.,

(1) sbg := ∧
h∈H [bhg ∨ t¬(h ∧ g)].

Mutual strong belief of g of order n ≥ 0 (written sbng) is defined inductively by

(2) sbng := g0 ∧ g1 ∧ . . . ∧ gn,

where g0 := g and30 gm+1 = sb(g0 ∧ g1 ∧ . . . ∧ gm) for all m. So, for n ≥ 1,

(3) sbng = sbn−1g ∧ sb(sbn−1g);

thus each iteration provides for the previous iteration and strong belief thereof. Common strong 
belief of g (written31 csbg) comprises all32 sbng for all n.

The Main Theorem is stated in Section 1, and restated in Section 4.2.

8. The Main Theorem: formal proof

One part of the demonstration of the Main Theorem—that the Pruning Process (PP) yields 
the BI outcomes (Theorem C)—is rigorous. But the other, which identifies stages of the PP 
with iterated strong belief of rationality (Theorem B), while sounding convincing, is not entirely 
rigorous. We now complete the proof of the Main Theorem by proving Theorem B rigorously.

30 So sbng = sbn−1g ∧ sb(g ∧ sbn−1g) for n > 1, which in turn yields, by induction, that all sbng are consistent with 
all h. For n = 1, if g is consistent with h, then so is bhg.
31 csbg is not a sentence, but an infinite conjunction of sentences.
32 Note that csbg asserts, inter alia, that g itself is actually true.
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Let T be the tree of an unrestricted33 PI game, T n the subtree34 that survives stage n of 
the PP. By (7.2.2), r ∧ r1 ∧ . . . ∧ rn = sbnr ; thus Theorem B asserts that a node h is in T n+1 iff 
it is reachable under sbnr—i.e., iff the sentence h ∧ sbnr is consistent. Consistency proofs use 
semantic models (Section 6.4). So, we define a simple model C of the syntax χ ; in it, a player h
playing an action ah believes in the maximum degree of iterated elimination of dominated actions 
(of all players) that allows h and for which ah is rational. We will show that in this model, the 
nodes that may be reached when sbnr holds are precisely those in T n+1.

Let T ′ be a subtree of T ; think of it as comprising actions as well as nodes. Say that an action 
ah in T ′ is dominated in T ′ if there is an action a′

h in T ′ that is better for h than ah no matter 
what is done subsequently, as long as all subsequent actions are in T ′. For each positive integer n

and player h, let m be the largest integer ≤ n − 1 with h ∈ T m, and let An
h be the set of all actions 

of player h in T m that are undominated in T m. Then define

An :=×
h∈H

An
h;

note that the An are nested. For each undominated action ah, let n(ah) be the greatest35 m for 
which ah is in T m and is undominated in T m. Define a simple model C by

C(ah) :=×
g�h

An(ah)
g .

Given an action ah and a profile a
h of actions after h, say that h, when playing ah, believes 
in C that a
h is possible, if a
h is the restriction to the players after h of a profile a�h in C(ah). 

Call ah belief-dominated in C if h has an action a′
h that yields him a better payoff36 than ah, for 

all a
h that he believes in C are possible when playing ah. Denote by ‖f ‖ the realization of f
in the model C. It may be verified that

Remark 8.1. A state a in the model C is in ‖r‖ iff no action ah is belief-dominated in C.

Lemma 8.2. No action is belief-dominated in C, unless it is dominated in T .

Proof. For brevity and clarity, in this proof the term “belief” will mean “belief in C.”
Let ah be undominated in T . Thus the first line in the definition of n(ah) applies; so setting 

n := n(ah), we have (i) ah is in T n and is undominated in T n, and (ii) C(ah) :=×g�h
An

g . So 

if h plays ah, he believes that players g after h play actions in An
g . We shall show (iii) ah is not 

belief-dominated by any action bh at h in T .
First we show (iv) ah is not belief-dominated by any action bh in T n. Suppose it is. Then the 

player g immediately following bh is also in T n. Player h believes that if he would play bh, then 
g would37 play an action bg in An

g , i.e., one that is undominated in T n−1. So since g ∈ T n, also 
bg ∈ T n. Applying the same argument repeatedly, we conclude that h believes that bh would lead 

33 Not necessarily generic.
34 A subtree T ′ of a tree T is obtained from T by eliminating one or more branches. Thus T and T ′ have the same root.
35 There always is a greatest such m, since there are only finitely many T n, as the PP is a finite process.
36 I.e., uh(z(a
h, a′

h
)) > uh(z(a
h, ah)).

37 Please see Footnote 27.
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to an outcome in T n. Conversely, it may be seen that if h would play bh, then he believes that 
any outcome in T n after bh would be possible.

Since ah is in T n, it may be seen similarly that h believes that an outcome following ah is 
possible iff it is in T n. So by (i), bh cannot belief-dominate ah.

Next, we show that (v) ah is not belief-dominated by any action bh in T m, for any m ≤ n; 
this yields (iii). The proof is by (backward) induction on m. For m = n, we have just proved it. 
Assume it true for a given m, and let bh be in T m−1. If bh is in T m, then (v) is the induction 
hypothesis. So let bh be in T m−1\T m. Since bh /∈ T m, it is dominated in T m−1, say by ch. 
If ch /∈ T m, then it is dominated in T m−1 by an action c′

h; by the transitivity of domination, 
c′
h dominates bh in T m−1. Continuing in this way, we eventually reach an action dh in T m that 

dominates bh in T m−1. But h believes that players after bh play actions in T m−1; so since dh

dominates bh in T m−1, and bh belief-dominates ah, it follows that dh belief-dominates ah. But 
by (iv), that cannot be. �

If a ∈ A, denote by a∧ the conjunction 
∧

h∈H ah of the actions in a.

Proposition 8.3. For each n ≥ 0,

(1n) If a∧ is consistent with sbnr , then a ∈ An+1; and
(2n) An+1=∥∥sbnr

∥∥.

Together, (1n) and (2n) yield

(3n) a player is in T n+1 iff reaching that player is consistent with sbnr .

Remark 8.4. That (3n) obtains for all n is precisely Theorem B, which is what is needed to 
complete the proof of the Main Theorem.

Proof. We first show that (1n) and (2n) yield (3n). To show “if,” let h be consistent38 with sbnr . 
Then there is a profile a in A, with the actions ag of players g before h leading to h, such that 
a∧ is consistent with sbnr . So from (1n) we get a ∈ An+1, and it follows that h ∈ T n+1.

To show “only if,” let h ∈ T n+1. Define a profile a in A by letting ag lead to h for players g
before h; and for other players g, letting ag be an arbitrary member of An+1

g . Then a ∈ An+1, so 
(2n) yields a ∈∥∥sbnr

∥∥. So a∧ ∧ sbnr holds in state a of the model C, so is consistent. But a∧
entails h, so also h ∧ sbnr is consistent. �

We prove (1n) and (2n)—and so also (3n)—by induction on n.

(10). Let c /∈ A1; we prove that c∧ is inconsistent with sb0r . Since c /∈ A1, there is an h
for which ch /∈ A1

h. So ch is dominated, say by dh. So uh(z(a
h, dh)) > uh(z(a
h, ch)) for 
all a
h, so p(dh, ch) is a tautology. So by generalization (6.2.10), bhp(dh, ch) is a tautology. So ∧

a′
h∈Ah

¬bhp(a′
h, ch) is inconsistent. Now rh entails ch → (

∧
a′
h∈Ah

¬bhp(a′
h, ch)), so ch ∧ rh

entails 
∧

a′
h∈Ah

¬bhp(a′
h, ch). So ch ∧ rh is inconsistent. But c∧ entails ch, so c∧ ∧ r entails 

ch ∧ rh, which is inconsistent. So c∧ ∧ sb0r = c∧ ∧ r is inconsistent. �
38 Recall that in the syntax, h means that the player h is reached (Section 6.1).
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(20). Let a ∈ A1; thus no ah is dominated in T . So by Lemma 8.2, no ah is belief-dominated 
in C. So by Remark 8.1, a is in ‖r‖, which by (7.2.2), = ∥∥sb0r

∥∥. So A1 ⊂ ∥∥sb0r
∥∥. For the 

opposite inclusion, let a ∈∥∥sb0r
∥∥ = ‖r‖. Then a∧∧sb0r holds in the model C, so is consistent; 

so 10 yields a ∈ A1. �
Now let n > 0, and assume (1n−1) and (2n−1) (and so also (3n−1)).

(1n). Let c /∈ An+1; we will prove that c∧ is inconsistent with sbnr . If c /∈ An, then by (1n−1), 
c∧ is inconsistent with sbn−1r , so a fortiori with sbnr , which by definition entails sbn−1r . So 
we may assume c ∈ An\An+1. So ch ∈ An

h\An+1
h for some h in T n. So some action dh in T n

dominates ch in T n; that is, dh is better than ch, no matter what the subsequent actions are, as 
long as they are in T n. So

(4) � ∨
T n a∧
h → p(dh, ch),

the disjunction being over all profiles a
h of actions after h all of which are in T n. By (3n−1), 
reaching a player h is consistent with sbn−1r iff h is in T n. So by (7.2.1),

(5) sb(sbn−1r) = ∧
h∈T n bh(sbn−1r).

So by (7.2.3), � sbnr → bh(sbn−1r) for all h in T n. By (1n−1), � sbn−1r → ∨
a∈An a∧
h; so by 

generalization (6.2.10) and (6.2.4),

(6) � sbnr → bh(
∨

a∈An a∧).

It may be seen that � (bhf ∧ bhg) → bh(f ∧ g); so by (6), (4), and (6.2.4),

� sbnr → bh(
∨

T n a∧
h) → bhp(dh, ch).

But by (7.2.2) and (7.1.1–3), � sbnr ∧ c → r ∧ ch → ¬bhp(dh, ch), so sbnr ∧ ch entails a con-
tradiction; i.e., c is inconsistent with sbnr . �
(2n). Let c ∈ An+1. By (7.2.3) and (5), � sbn−1r ∧ ∧

h∈T n bh(sbn−1r) ↔ sbnr ; so by (2n−1),

(7) An ∩ ⋂
h∈T n

∥∥(bh(sbn−1r))
∥∥ = ∥∥sbn(r)

∥∥.

First note that since An+1 ⊂ An, it follows that

(8) c ∈ An.

Next, let h ∈ T n. From c ∈ An+1 we get ch ∈ An+1
h , so ch is in T n and is undominated in T n. 

So n(ch) ≥ n. So C(ch) ⊂×g�h
An

g , since the An are nested. Next, we show that D(ch), which 

:= {ch} ××g:g≺h
{ch

g}, is included in ×g�h
An

g . The action ch itself is in An
h; indeed it is in 

An+1
h , which An

h includes. When g precedes h, the action ch
g leading to h is in T n, and leads to a 

player in T n; so ch
g ∈ An

g . So indeed, D(ch) ⊂×g�h
An

g . So C(ah) × D(ah) ⊂×g∈H
An

g = An. 
So (2n−1) and (6.4.4) yield

c ∈ {a ∈ A : C(ah) × D(ah) ⊂ An}
= {a ∈ A : C(ah) × D(ah) ⊂ ‖sbn−1r‖} =

∥∥∥bh(sbn−1r)

∥∥∥ ;

together with (7) and (8), this yields c ∈∥∥sbn(r)
∥∥. So An+1 ⊂ ∥∥sbnr

∥∥.
For the opposite inclusion, let a ∈∥∥sbnr

∥∥. Then a∧∧sbnr holds in the model C, so is consis-
tent; so 1n yields a ∈ An+1. �
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Fig. 1. Reny’s game.

9. Discussion

9.1. Players and agents

9.1.1. Forward inferences
To understand the substantive contribution of this work, it is useful to relate it to the seminal 

work of BS (Battigalli and Siniscalchi, 2002). Like us, BS show that common strong belief (csb)

of rationality yields the BI outcome.39 Unlike us, they refer to general PI games, in which players 
may have several decision nodes; whereas we refer to simple PI games, in which each player has 
just one node. Equivalently, one may say that both BS and we consider general PI games G; but 
we assume csb of the agents’ rationality,40 whereas BS assume csb of the players’ rationality.41

The game G of Fig. 1 (Reny, 1992) illustrates the distinction. First assume csb of the agents’ 
rationality (r). By Remark 2.1, Bob1 is rational and believes that all agents—in particular 
Ann1—are rational; there are no further restrictions on his beliefs.42 So he may well believe 
that Ann2 exits, in which case he, too, should exit.

Now assume csb of the players’ rationality. If Bob’s first node is reached, he can impute 
rationality to Ann; but only if he believes that she believes that he will stay at his second node. 
In that case, his only rational strategy is to stay at his first node and exit at his second. Thus, if 
he is rational and imputes rationality to Ann, he should stay at his first node.43

That is a forward inference. At his first node, Bob asks, what can I infer from the past about 
the future? What did Ann think when she did what she did, and what can I infer about what 
she will do? So we’re presuming that the player Ann chooses a strategy that dictates what both 
her agents do. Forward inferences depend on players choosing strategies rationally; they are 
impossible in simple games, where each player has just one node.

Note that csb of player rationality uses backward as well as forward inferences. After using 
a forward inference to decide what Ann2 will do, Bob1 reasons backward from Ann2’s inferred 
action to decide what he should do. Non-simple games involve both kinds of inference.

9.1.2. Backward inferences
Recall the BI reasoning, as set forth at the start of the paper: The last player, who must choose 

between outcomes, chooses an action that maximizes his payoff; taking this as given, the previous 
player maximizes his payoff; and so on, until the beginning of the game is reached.

39 We do not formulate their definition or result precisely here.
40 I.e., csbr in the simple game G′ that is like G, except that the players in G′ are the agents in G.
41 Their definition of rationality is based on utility maximization rather than probability 1 belief.
42 He can’t believe r ∧ r1, as Ann1’s rationality and her belief in Bob2’s rationality would require her to exit, which 
would precludes reaching him.
43 We are reasoning here with pure strategies. Similar, but more complicated, considerations apply to mixed strategies.
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These are backward inferences. Starting from the outcomes, we infer back to the actions of 
preterminal players; then back to prepreterminal players; and so on. No forward inferences are 
involved; indeed, the concept of “player” plays no role in BI—the agents act independently, as if 
the game were simple and they the players. Nothing in the BI reasoning connects the agents of a 
player to each other; strategies—as opposed to actions—play no role.

Basically, therefore, the BI reasoning applies only to simple games. By extension, it applies 
also to general PI games G in which the agents act independently. So to clarify the epistemic 
assumptions underlying BI, one replaces G by a simple game G′ whose players are the agents 
in G; this rules out forward inferences. And then, csbr yields the BI outcome.

9.2. Consistency and completeness

To understand the methodological contribution of this work, it is, as with its substantive con-
tribution, useful to relate it to BS (Battigalli and Siniscalchi, 2002).

Our result is formulated syntactically; BS’s, semantically. In most applications, semantic re-
sults may also be formulated syntactically, and vice versa. In the present application, the matter 
is less straightforward.

To explain, we start by describing the usual relationship between semantic and syntactic for-
malisms more carefully. Each sentence in a syntactic formalism corresponds to a set in each 
semantic state space—conceptually, the set of states in that space at which that sentence “holds.” 
Moreover, each logical operator corresponds to a set operation: “and” to intersection, “or” to 
union, and “not” to complementation (w.r.t. that particular space); and a tautology in the syntax 
corresponds to the entire state space, since it must hold at each state. Conversely, if a sentence in 
the syntax corresponds in each arbitrary state space to the entire state space, then it is a tautology.

All that is well and good as long as the tautology operator t (Section 5) is not in the formal 
object language, but only in the metalanguage. As soon as t becomes part of the object language, 
the elegant one–one correspondence between syntax and semantics breaks down. Indeed, the 
operator t does not correspond to any set operation within a particular state space, since it refers 
simultaneously to all state spaces. For a sentence to be a tautology means that in each state space, 
the sentence corresponds to the entire space; and there is no way of saying that within a particular 
space.

BS work with semantics, so that is an obstacle for them. They overcome it by working not with 
arbitrary state spaces, as is usual in the semantic approach, but with one particular one, called 
the complete type space; this has the property that if in the complete type space, a sentence 
corresponds to the entire space, then in every semantic state space, that sentence corresponds to 
the entire space. Constructing the complete type space, and proving that it has the basic property 
just enunciated, is not elementary; see Battigalli and Siniscalchi (1999). But such an object does 
exist; indeed, has by now become familiar in epistemic game theory.

Now, this complete type space enables a valid semantic representation of sentences involving 
the tautology operator t . Namely, the tautology operator corresponds to a set operator that takes 
the entire complete type space to itself, and all its proper subsets to the empty set. Formally, then, 
BS prove that the BI outcome is reached at any element of the complete type space at which there 
is csb of player rationality.44

44 See Footnote 41.
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A reader has remarked that completeness of the type space requires all possible types to 
be present; this, he says, is an assumption on the players’ reasoning that the syntactic analy-
sis “hides,” and that should be made explicit. But that is precisely the beauty of the syntactic 
analysis! With it, completeness shows up as nothing but plain logical reasoning. On the contrary, 
it is incomplete type spaces that make hidden implicit assumptions—namely, that certain types 
are absent—that go beyond plain logical reasoning.

10. Literature

10.1. Battigalli–Siniscalchi and related literature

The literature on the foundations of BI is far too large to survey here, so we will review only 
the most directly relevant work. Foremost is BS (Battigalli and Siniscalchi, 2002). Though in 
substance, their result is utterly different from ours—theirs deals with forward and backward 
inferences, ours with backward inferences only—there are interesting parallels in form. For one 
thing, the notion of strong belief, originated by BS, plays a central role also in our theorem. For 
another, the formulations of the results are roughly parallel: Our result characterizes csb of the 
agents’ rationality (r); theirs, of the players’ rationality45 (pr). Finally, the proofs are analogous 
in grand structure, though BS’s proof lies far deeper than ours—as indeed the result itself does.

Like ours, BS’s proof has two parts. In one—analogous to our Theorem B—they show that 
csbpr is equivalent to extensive form rationalizability (EFR) a la Pearce (1984) or Battigalli
(1997). In the other—analogous to our Theorem A—they recall that EFR entails the BI outcome, 
as proved by Reny (1992), who used tools from algebraic topology developed by Kohlberg and 
Mertens (1986) (see also Battigalli, 1997).46 An “elementary” proof47 of this result is obtained 
by applying to PI games a theorem of Chen and Micali (2013) about general extensive games. 
Looking at PI games only, Heifetz and Perea (2015) obtained an alternative elementary proof 
that EFR entails the BI outcome.

Battigalli and Friedenberg (2012) show that completeness is indispensable for the BS result. 
As already mentioned, completeness is implicit in the syntactic approach.

10.2. Other literature

Perhaps the first to provide an epistemic foundation for BI based on action rationality was 
Stalnaker (1998). Like us, he treats simple games only. But unlike our players, whose beliefs are 
predicated on being reached, his players have prior beliefs at the beginning of play, which are 
updated as play proceeds. He assumes common prior belief of rationality (cbr), and that the prior 
beliefs of each player about other players are in a sense independent. This implies that at each 
node v, there is cbr among the players at and after v; together with rationality, this yields BI.

In broad outline, our paper is conceptually similar. One would like to assume cbr; like 
with ckr, this leads to difficulties off the BI path. So at off-path nodes, one somehow weakens cbr. 
Stalnaker’s players do so by saying, well, I see that the players before me did not conform to cbr. 
But by independence, that says nothing about the players after me; so among them, I retain cbr. 

45 See Footnote 41.
46 Professor Marciano Siniscalchi has pointed out that in simple PI games, EFR is in fact equivalent to the Pruning 
Process. The proof is not entirely straightforward.
47 One not using algebraic topology.
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Our players say, for me, any deviation from cbr by some players indicates that others may be 
similar.48 So I abandon cbr, maintaining only as much mutual belief of rationality as is possible 
at my node.

Note that Stalnaker gets not only the BI outcome, but also the BI strategies, and them only.
In contrast, csbr allows the BI strategies, but not only them.49 And csbpr may exclude the BI 
strategies altogether (Section 9.1.1).

Other approaches that determine the BI strategies include Aumann (1995), Asheim and Perea
(2005), and Perea (2008).

Halpern and Pass (2009) define a semantic operator � that may be interpreted as consistency 
w.r.t. a given class of models; from it, one may derive a tautology operator w.r.t. that class. 
Though it is not a priori clear, it might be possible to base a semantic treatment parallel to our 
syntactic treatment on this operator, rather than on the complete type space.

10.3. Genericity

Though the conceptual insights of this paper are most easily seen under genericity, we in fact 
require no genericity at all. In contrast, BS require the game to have “no relevant ties” (NRT) 
(see also Battigalli, 1997); i.e., that the last common ancestor of any two outcomes have different 
payoffs at those outcomes. NRT ensures a unique BI outcome. The requirement has teeth; e.g., it 
excludes chess. Heifetz and Perea (2015) also use NRT.

Without any genericity condition, EFR still implies a BI outcome. But there are BI outcomes 
that are inconsistent with EFR; see Chen and Micali (2013), p. 149, Example 7.

Appendix A. Proof of Theorem D

Lemma A.1. The list B of all basic tautologies is coherent.

Proof. Follows from Lemma 6.2 and Example 6.1. �
Let 1 denote an arbitrary but fixed basic tautology (like ah ∨ ¬ah), and set 0 := ¬1. Define a 

mapping from sentences f ∈ χ ′ to basic sentences f ′ ∈ χ inductively as follows:

(1) (ah)
′ := ah for every action ah.

(2) (f ∨ g)′ := f ′ ∨ g′.
(3) (¬f )′ := ¬f ′.
(4) (bhf )′ := bh(f

′).
(5) (tf )′ := 1 if f ′ ∈B and (tf )′ = 0 if f ′ /∈B.

It may be seen that f ′ = f for every basic sentence f . Now let

(6) L = {f : f ′ ∈ B}.

Lemma A.2. L is coherent, strongly closed, and includes all tautologies.

48 This is, after all, a forward inference of sorts. Lessons from the past are applied to the future, if only to abandon 
previously held beliefs. In contrast, Stalnaker’s agents learn nothing from the past.
49 Thus in Reny’s game (Fig. 1), BI calls for Bob1 to exit, whereas csbr allows him either to stay or to exit.
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Proof. We first prove coherence. Suppose f and ¬f are in L. Then by definition, f ′ and (¬f )′
are basic tautologies. But (¬f )′ = ¬f ′, so the list of basic tautologies is incoherent, contradict-
ing Lemma A.1.

To see that L is logically closed, assume f ∈ L and (f → g) ∈ L. Then by definition, f ′ ∈B

and (f → g)′ ∈ B. But (f → g)′ = f ′ → g′; so g′ ∈B, which entails g ∈ L. That L is epistem-
ically closed follows similarly from B being epistemically closed. To see that L is tautologically 
closed, let f ∈ L; then by definition, f ′ ∈ B, so (t (f ))′ = 1, so t (f ) ∈ L.

That L contains all sentences in (6.3.1) follows from k′ being an axiom if k is.
That L contains all sentences in (6.3.2) follows from the definition of L.
To see that L contains all sentences in (6.3.3), let k = t (f → g) → (t (f ) → t (g)). If 

(t (f → g))′ = 0 then clearly k′ is in B. If (t (f → g))′ = 1, then f ′ → g′ ∈ B; so since B
is logically closed, g′ is in B whenever f ′ is in B; so (tf → tg)′ is in B. �
Lemma A.3. � f ↔ f ′ for every sentence f .

Proof. By induction. For basic f it is clear, since f ′ = f . Next, let f = bh(g) for some g. By the 
induction hypothesis, � g ↔ g′, so since T is epistemically closed, � bh(g ↔ g′). Now by axiom 
(6.2.4), � bh(g ↔ g′) → (bhg ↔ bh(g

′)). So since T is logically closed, � bh(g) ↔ bh(g
′); i.e., 

� f ↔ f ′.
If f = tg, then by the induction hypothesis,

(7) � g ↔ g′.
So since T is tautologically closed, � t (g ↔ g′). But � t (g ↔ g′) → (tg ↔ t (g′)), by (6.3.3). 
So since T is logically closed,
(8) � tg ↔ t (g′).
If g′ ∈B, then � g, by (7); so � tg, since T is tautologically closed; by (5), (tg)′ = 1, so � (tg)′; 
so
(9) � tg ↔ (tg)′.
If g′ /∈ B, then � ¬t (g′), by (6.3.2); by (5), (tg)′ = 0, so � ¬(tg)′; so � t (g′) ↔ (tg)′; so by (8), 
we again get (9). So (9) holds in either case; i.e., � f ↔ f ′.

If f = ¬g or f = g ∨ k, the induction hypothesis easily yields � f ↔ f ′. �
Lemma A.4. T ∩ χ =B.

Proof. Since T is closed and contains the basic axioms (6.2.1–8), it follows that B ⊂ T. But 
T ⊂ L by Lemma A.1, and L ∩ χ =B; so T ∩ χ =B. �
Lemma A.5. T = L.

Proof. By Lemma A.3, a sentence f is in T iff f ′ is in T. But f ′ is basic and T ∩ χ = B by 
Lemma A.4, so T = { f |f ′ ∈ B} = L. �

(6.3.4) now follows from Lemmas A.2 and A.4, (6.3.5) from Lemma A.4, and (6.3.6) from 
Lemma A.3. �
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