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Hodge theory for combinatorial geometries

By Karim Adiprasito, June Huh, and Eric Katz

Abstract

We prove the hard Lefschetz theorem and the Hodge-Riemann rela-

tions for a commutative ring associated to an arbitrary matroid M. We use

the Hodge-Riemann relations to resolve a conjecture of Heron, Rota, and

Welsh that postulates the log-concavity of the coefficients of the character-

istic polynomial of M. We furthermore conclude that the f -vector of the

independence complex of a matroid forms a log-concave sequence, proving

a conjecture of Mason and Welsh for general matroids.

1. Introduction

The combinatorial theory of matroids starts with Whitney [Whi35], who

introduced matroids as models for independence in vector spaces and graphs.

See [Kun86, Ch. I] for an excellent historical overview. By definition, a matroid

M is given by a closure operator defined on all subsets of a finite set E satisfying

the Steinitz-MacLane exchange property:

For every subset I of E and every element a not in the closure of I, if

a is in the closure of I ∪ {b}, then b is in the closure of I ∪ {a}.
The matroid is called loopless if the empty subset of E is closed, and it is

called a combinatorial geometry if, in addition, all single element subsets of

E are closed. A closed subset of E is called a flat of M, and every subset

of E has a well-defined rank and corank in the poset of all flats of M. The

notion of matroid played a fundamental role in graph theory, coding theory,

combinatorial optimization, and mathematical logic; we refer to [Wel71] and

[Oxl92] for a general introduction.

As a generalization of the chromatic polynomial of a graph [Bir13], [Whi32],

Rota defined for an arbitrary matroid M the characteristic polynomial

χM(λ) =
∑
I⊆E

(−1)|I| λcrk(I),
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where the sum is over all subsets I ⊆ E and crk(I) is the corank of I in M

[Rot64]. Equivalently, the characteristic polynomial of M is

χM(λ) =
∑
F

µ(∅, F )λcrk(F ),

where the sum is over all flats F of M and µ is the Möbius function of the

poset of flats of M; see Chapters 7 and 8 of [Whi87]. Among the problems that

withstood many advances in matroid theory are the following log-concavity

conjectures formulated in the 1970s.

Write r + 1 for the rank of M, that is, the rank of E in the poset of flats

of M.

Conjecture 1.1. Let wk(M) be the absolute value of the coefficient of

λr−k+1 in the characteristic polynomial of M. Then the sequence wk(M) is

log-concave:

wk−1(M)wk+1(M) ≤ wk(M)2 for all 1 ≤ k ≤ r.

In particular, the sequence wk(M) is unimodal :

w0(M) ≤ w1(M) ≤ · · · ≤ wl(M) ≥ · · · ≥ wr(M) ≥ wr+1(M) for some index l.

We remark that the positivity of the numbers wk(M) is used to deduce

the unimodality from the log-concavity [Wel76, Ch. 15].

For chromatic polynomials, the unimodality was conjectured by Read, and

the log-concavity was conjectured by Hoggar [Rea68], [Hog74]. The prediction

of Read was then extended to arbitrary matroids by Rota and Heron, and the

conjecture in its full generality was given by Welsh [Rot71], [Her72], [Wel76].

We refer to [Whi87, Ch. 8] and [Oxl92, Ch. 15] for overviews and historical

accounts.

A subset I ⊆ E is said to be independent in M if no element i in I is in

the closure of I \ {i}. A related conjecture of Welsh and Mason concerns the

number of independent subsets of E of given cardinality [Wel71], [Mas72].

Conjecture 1.2. Let fk(M) be the number of independent subsets of E

with cardinality k. Then the sequence fk(M) is log-concave:

fk−1(M)fk+1(M) ≤ fk(M)2 for all 1 ≤ k ≤ r.

In particular, the sequence fk(M) is unimodal :

f0(M) ≤ f1(M) ≤ · · · ≤ fl(M) ≥ · · · ≥ fr(M) ≥ fr+1(M) for some index l.

We prove Conjectures 1.1 and 1.2 by constructing a “cohomology ring” of

M that satisfies the hard Lefschetz theorem and the Hodge-Riemann relations;

see Theorem 1.4.
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1.1. Matroid theory has experienced a remarkable development in the

past century and has been connected to diverse areas such as topology [GM92],

geometric model theory [Pil96], and noncommutative geometry [vN98]. The

study of hyperplane arrangements provided a particularly strong connection;

see, for example, [OT92], [Sta07]. Most important for our purposes is the

work of de Concini and Procesi on certain “wonderful” compactifications of

hyperplane arrangement complements [DCP95]. The original work focused

only on realizable matroids, but Feichtner and Yuzvinsky [FY04] defined a

commutative ring associated to an arbitrary matroid that specializes to the

cohomology ring of a wonderful compactification in the realizable case.

Definition 1.3. Let SM be the polynomial ring

SM := R
î
xF |F is a nonempty proper flat of M

ó
.

The Chow ring of M is defined to be the quotient

A∗(M)R := SM/(IM + JM),

where IM is the ideal generated by the quadratic monomials

xF1xF2 , F1 and F2 are two incomparable nonempty proper flats of M,

and JM is the ideal generated by the linear forms∑
i1∈F

xF −
∑
i2∈F

xF , i1 and i2 are distinct elements of the ground set E.

Conjecture 1.1 was proved for matroids realizable over C in [Huh12] by

relating wk(M) to the Milnor numbers of a hyperplane arrangement realizing

M over C. Subsequently in [HK12], using the intersection theory of wonder-

ful compactifications and the Khovanskii-Teissier inequality [Laz04, §1.6], the

conjecture was verified for matroids that are realizable over some field. Lenz

used this result to deduce Conjecture 1.2 for matroids realizable over some

field [Len13].

After the completion of [HK12], it was gradually realized that the validity

of the Hodge-Riemann relations for the Chow ring of M is a vital ingredient

for the proof of the log-concavity conjectures; see Theorem 1.4 below. While

the Chow ring of M could be defined for arbitrary M, it was unclear how to

formulate and prove the Hodge-Riemann relations. From the point of view of

[FY04], the ring A∗(M)R is the Chow ring of a smooth, but noncompact toric

variety X(ΣM), and there is no obvious way to reduce to the classical case of

projective varieties. In fact, we will see that X(ΣM) is “Chow equivalent” to a

smooth or mildly singular projective variety over K if and only if the matroid

M is realizable over K; see Theorem 5.12.

1.2. We are nearing a difficult chasm, as there is no reason to expect a

working Hodge theory beyond the case of realizable matroids. Nevertheless,
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there was some evidence on the existence of such a theory for arbitrary ma-

troids. For example, it was proved in [AS16], using the method of concentration

of measure, that the log-concavity conjectures hold for a class of non-realizable

matroids introduced by Goresky and MacPherson in [GM88, III.4.1].

We now state the main theorem of this paper. A real-valued function c

on the set of nonempty proper subsets of E is said to be strictly submodular if

cI1 + cI2 > cI1∩I2 + cI1∪I2 for any two incomparable subsets I1, I2 ⊆ E,

where we replace c∅ and cE by zero whenever they appear in the above in-

equality. We note that strictly submodular functions exist. For example,

I 7−→ |I||E \ I|

is a strictly submodular function. A strictly submodular function c defines an

element

`(c) :=
∑
F

cFxF ∈ A1(M)R,

where the sum is over all nonempty proper flats of M. Note that the rank

function of any matroid on E can, when restricted to the set of nonempty

proper subsets of E, be obtained as a limit of strictly submodular functions.

We write “deg” for the isomorphism Ar(M)R ' R determined by the property

that

deg(xF1xF2 · · ·xFr) = 1 for any flag of nonempty proper flats

F1 ( F2 ( · · · ( Fr.

We refer to Section 5.3 for the existence and the uniqueness of the linear map

“deg.”

Theorem 1.4. Let ` be an element of A1(M)R associated to a strictly

submodular function.

(1) (Hard Lefschetz theorem). For every nonnegative integer q ≤ r
2 , the mul-

tiplication by ` defines an isomorphism

Lq` : Aq(M)R −→ Ar−q(M)R, a 7−→ `r−2q · a.

(2) (Hodge–Riemann relations). For every nonnegative integer q ≤ r
2 , the

multiplication by ` defines a symmetric bilinear form

Qq` : Aq(M)R ×Aq(M)R −→ R, (a1, a2) 7−→ (−1)q deg(a1 · Lq` a2)

that is positive definite on the kernel of ` · Lq` .

In fact, we will prove that the Chow ring of M satisfies the hard Lefschetz

theorem and the Hodge-Riemann relations with respect to any strictly convex

piecewise linear function on the tropical linear space ΣM associated to M; see

Theorem 8.8. This implies Theorem 1.4. Our proof of the hard Lefschetz
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theorem and the Hodge-Riemann relations for general matroids is inspired by

an ingenious inductive proof of the analogous facts for simple polytopes given

by McMullen [McM93]; compare also [dCM02] for related ideas in a different

context. To show that this program, with a considerable amount of work,

extends beyond polytopes, is our main purpose here.

In Section 9, we show that the Hodge-Riemann relations, which are in

fact stronger than the hard Lefschetz theorem, imply Conjectures 1.1 and 1.2.

We remark that, in the context of projective toric varieties, a similar reasoning

leads to the Alexandrov-Fenchel inequality on mixed volumes of convex bodies.

In this respect, broadly speaking the approach of the present paper can be

viewed as following Rota’s idea that log-concavity conjectures should follow

from their relation with the theory of mixed volumes of convex bodies; see

[Kun95].

1.3. There are other combinatorial approaches to intersection theory for

matroids. Mikhalkin et al. introduced an integral Hodge structure for arbitrary

matroids modeled on the cohomology of hyperplane arrangement complements

[IKMZ16]. Adiprasito and Björner showed that an analogue of the Lefschetz

hyperplane section theorem holds for all smooth (i.e., locally matroidal) pro-

jective tropical varieties [AB14].

Theorem 1.4 should be compared with the counterexample to a version of

Hodge conjecture for positive currents in [BH17]: The example used in [BH17]

gives a tropical variety that satisfies Poincaré duality, the hard Lefschetz the-

orem, but not the Hodge-Riemann relations.

Finally, we remark that Zilber and Hrushovski have worked on subjects

related to intersection theory for finitary combinatorial geometries; see [Hru92].

At present the relationship between their approach and ours is unclear.

1.4. Overview over the paper. Sections 2 and 3 develop basic combina-

torics and geometry of order filters in the poset of nonempty proper flats of a

matroid M. The order filters and the corresponding geometric objects ΣM,P ,

which are related to each other by “matroidal flips,” play a central role in our

inductive approach to the Main Theorem 1.4.

Sections 4 and 5 discuss piecewise linear and polynomial functions on sim-

plicial fans and, in particular, those on the Bergman fan ΣM. These sections are

more conceptual than the previous sections and, with the exception of the im-

portant technical Section 4.3, can be read immediately after the introduction.

In Section 6 we prove that the Chow ring A∗(M) satisfies Poincaré duality.

The result and the inductive scheme in its proof will be used in the proof of the

Main Theorem 1.4. After some general algebraic preparation in Section 7, the

Hard Lefschetz theorem and the Hodge-Riemann relations for matroids will be

proved in Section 8.



386 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

In Section 9, we identify the coefficients of the reduced characteristic poly-

nomial of a matroid as “intersection numbers” in the Chow ring of the ma-

troid. The identification is used to deduce the log-concavity conjectures from

the Hodge-Riemann relations.
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2. Finite sets and their subsets

2.1. Let E be a nonempty finite set of cardinality n+1, say {0, 1, . . . , n}.
We write ZE for the free abelian group generated by the standard basis vectors

ei corresponding to the elements i ∈ E. For an arbitrary subset I ⊆ E, we set

eI :=
∑
i∈I

ei.

We associate to the set E a dual pair of rank n free abelian groups

NE := ZE/〈eE〉, ME := e⊥E ⊂ ZE , 〈−,−〉 : NE ×ME −→ Z.

The corresponding real vector spaces will be denoted

NE,R := NE ⊗Z R, ME,R := ME ⊗Z R.

We use the same symbols ei and eI to denote their images in NE and NE,R.

The groups N and M associated to nonempty finite sets are related to

each other in a natural way. For example, if F is a nonempty subset of E, then

we have a surjective homomorphism

NE −→ NF , eI 7−→ eI∩F

and an injective homomorphism

MF −→ME , ei − ej 7−→ ei − ej .

If F is a nonempty proper subset of E, we have a decomposition

(e⊥F ⊂ME) = (e⊥E\F ⊂ME) = MF ⊕ME\F .

Dually, we have an isomorphism from the quotient space

NE/〈eF 〉 = NE/〈eE\F 〉 −→ NF ⊕NE\F , eI 7−→ eI∩F ⊕ eI\F .

This isomorphism will be used later to analyze local structure of Bergman fans.
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More generally, for any map between nonempty finite sets π : E1 → E2,

there are an associated homomorphism

πN : NE2 −→ NE1 , eI 7−→ eπ−1(I)

and the dual homomorphism

πM : ME1 −→ME2 , ei − ej 7−→ eπ(i) − eπ(j).

When π is surjective, πN is injective and πM is surjective.

2.2. Let P(E) be the poset of nonempty proper subsets of E. Through-

out this section the symbol F will stand for a totally ordered subset of P(E),

that is, a flag of nonempty proper subsets of E:

F =
{
F1 ( F2 ( · · · ( Fl

}
⊆P(E).

We write min F for the intersection of all subsets in F . In other words, we set

min F :=

F1 if F is nonempty,

E if F is empty.

Definition 2.1. When I is a proper subset of min F , we say that I is

compatible with F in E, and we write I < F .

The set of all compatible pairs in E form a poset under the relation

(I1 < F1) � (I2 < F2)⇐⇒ I1 ⊆ I2 and F1 ⊆ F2.

We note that any maximal compatible pair I <F gives a basis of the group NE :{
ei and eF for i ∈ I and F ∈ F

}
⊆ NE .

If 0 is the unique element of E not in I and not in any member of F , then

the above basis of NE is related to the basis {e1, e2, . . . , en} by an invertible

upper triangular matrix.

Definition 2.2. For each compatible pair I < F in E, we define two

polyhedra

MI<F := conv
{
ei and eF for i ∈ I and F ∈ F

}
⊆ NE,R,

σI<F := cone
{
ei and eF for i ∈ I and F ∈ F

}
⊆ NE,R.

Here “conv S” stands for the set of convex combinations of a set of vectors S,

and “cone S” stands for the set of nonnegative linear combinations of a set of

vectors S.
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Since maximal compatible pairs give bases of NE , the polytope MI<F is

a simplex, and the cone σI<F is unimodular with respect to the lattice NE .

When {i} is compatible with F ,

M{i}<F =M∅<{{i}}∪F and σ{i}<F = σ∅<{{i}}∪F .

Any proper subset of E is compatible with the empty flag in P(E), and the

empty subset of E is compatible with any flag in P(E). Thus we may write

the simplex MI<F as the simplicial join

MI<F = MI<∅ ∗ M∅<F

and the cone σI<F as the vector sum

σI<F = σI<∅ + σ∅<F .

The set of all simplices of the form MI<F is in fact a simplicial complex. More

precisely, we have

MI1<F1 ∩ MI2<F2=MI1∩I2<F1∩F2 if |I1| 6= 1 and |I2| 6= 1.

2.3. An order filter P of P(E) is a collection of nonempty proper subsets

of E with the following property:

If F1 ⊆ F2 are nonempty proper subsets of E, then F1 ∈P implies F2 ∈P.

We do not require that P is closed under intersection of subsets. We will see

in Proposition 2.4 that any such order filter cuts out a simplicial sphere in the

simplicial complex of compatible pairs.

Definition 2.3. The Bergman complex of an order filter P ⊆P(E) is the

collection of simplices

∆P :=
{
MI<F for I /∈P and F ⊆P

}
.

The Bergman fan of an order filter P ⊆ P(E) is the collection of simplicial

cones

ΣP :=
{
σI<F for I /∈P and F ⊆P

}
.

The Bergman complex ∆P is a simplicial complex because P is an order filter.

The extreme cases P = ∅ and P = P(E) correspond to familiar geo-

metric objects. When P is empty, the collection ΣP is the normal fan of the

standard n-dimensional simplex

∆n := conv
¶
e0, e1, . . . , en

©
⊆ RE .
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When P contains all nonempty proper subsets of E, the collection ΣP is the

normal fan of the n-dimensional permutohedron

Πn := conv
{

(x0, x1, . . . , xn) | x0, x1, . . . , xn

is a permutation of 0, 1, . . . , n
}
⊆ RE .

Proposition 2.4 below shows that, in general, the Bergman complex ∆P is a

simplicial sphere and ΣP is a complete unimodular fan.

Proposition 2.4. For any order filter P ⊆P(E), the collection ΣP is

the normal fan of a polytope.

Proof. We show that ΣP can be obtained from Σ∅ by performing a se-

quence of stellar subdivisions. This implies that a polytope with normal fan

ΣP can be obtained by repeatedly truncating faces of the standard simplex ∆n.

For a detailed discussion of stellar subdivisions of normal fans and truncations

of polytopes, we refer to Chapters III and V of [Ewa96]. In the language of

toric geometry, this shows that the toric variety of ΣP can be obtained from

the n-dimensional projective space by blowing up torus orbit closures.

Choose a sequence of order filters obtained by adding a single subset in

P at a time:

∅, . . . ,P−,P+, . . . ,P with P+ = P− ∪ {Z}.

The corresponding sequence of Σ interpolates between the collections Σ∅ and

ΣP :

Σ∅  · · · ΣP−  ΣP+  · · · ΣP .

The modification in the middle replaces the cones of the form σZ<F with the

sums of the form

σ∅<{Z} + σI<F ,

where I is any proper subset of Z. In other words, the modification is the stellar

subdivision of ΣP− relative to the cone σZ<∅. Since a stellar subdivision of

the normal fan of a polytope is the normal fan of a polytope, by induction we

know that the collection ΣP is the normal fan of a polytope. �

Note that, in the notation of the preceding paragraph, ΣP− = ΣP+ if Z

has cardinality 1.

3. Matroids and their flats

3.1. Let M be a loopless matroid of rank r + 1 on the ground set E.

We denote rkM, crkM, and clM for the rank function, the corank function, and
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the closure operator of M respectively. We omit the subscripts when M is

understood from the context. If F is a nonempty proper flat of M, we write

MF := the restriction of M to F , a loopless matroid on F of rank = rkM(F ),

MF := the contraction of M by F , a loopless matroid on

E \ F of rank = crkM(F ).

We refer to [Oxl92] and [Wel76] for basic notions of matroid theory.

Let P(M) be the poset of nonempty proper flats of M. There are an

injective map from the poset of the restriction

ιF : P(MF ) −→P(M), G 7−→ G

and an injective map from the poset of the contraction

ιF : P(MF ) −→P(M), G 7−→ G ∪ F.

We identify the flats of MF with the flats of M containing F using ιF . If P is

a subset of P(M), we set

PF := (ιF )−1P and PF := (ιF )−1P.

3.2. Throughout this section the symbol F will stand for a totally or-

dered subset of P(M), that is, a flag of nonempty proper flats of M:

F =
{
F1 ( F2 ( · · · ( Fl

}
⊆P(M).

As before, we write min F for the intersection of all members of F inside E.

We extend the notion of compatibility in Definition 2.1 to the case when the

matroid M is not Boolean.

Definition 3.1. When I is a subset of min F of cardinality less than

rkM(min F ), we say that I is compatible with F in M, and we write I <M F .

Since any flag of nonempty proper flats of M has length at most r, any

cone

σI<MF = cone
{
ei and eF for i ∈ I and F ∈ F

}
associated to a compatible pair in M has dimension at most r. Conversely, any

such cone is contained in an r-dimensional cone of the same type: For this one

may take

I ′ = a subset that is maximal among those containing I

and compatible with F in M,

F ′ = a flag of flats maximal among those containing F

and compatible with I ′ in M,
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or alternatively take

F ′ = a flag of flats maximal among those containing F

and compatible with I in M,

I ′ = a subset that is maximal among those containing I

and compatible with F ′ in M.

We note that any subset of E with cardinality at most r is compatible in

M with the empty flag of flats, and the empty subset of E is compatible in M

with any flag of nonempty proper flats of M. Therefore we may write

MI<MF = MI<M∅ ∗ M∅<MF and σI<MF = σI<M∅ + σ∅<MF .

The set of all simplices associated to compatible pairs in M form a simplicial

complex, that is,

MI1<MF1 ∩ MI2<MF2=MI1∩I2<MF1∩F2 .

3.3. An order filter P of P(M) is a collection of nonempty proper flats

of M with the following property:

If F1 ⊆ F2 are nonempty proper flats of M, then F1 ∈P implies F2 ∈P.

We write P̂ := P∪{E} for the order filter of the lattice of flats of M generated

by P.

Definition 3.2. The Bergman fan of an order filter P ⊆P(M) is the set

of simplicial cones

ΣM,P :=
{
σI<F for clM(I) /∈ P̂ and F ⊆P

}
.

The reduced Bergman fan of P is the subset of the Bergman fan‹ΣM,P :=
{
σI<MF for clM(I) /∈ P̂ and F ⊆P

}
.

When P = P(M), we omit P from the notation and write the Bergman fan

by ΣM.

We note that the Bergman complex and the reduced Bergman complex‹∆M,P ⊆ ∆M,P , defined in analogous ways using the simplices MI<F and

MI<MF , share the same set of vertices.

Two extreme cases give familiar geometric objects. When P is the set of

all nonempty proper flats of M, we have

ΣM = ΣM,P = ‹ΣM,P

= the fine subdivision of the tropical linear space of M [AK06].

When P is empty, we have‹ΣM,∅ = the r-dimensional skeleton of the normal fan of the simplex ∆n,



392 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

and ΣM,∅ is the fan whose maximal cones are σF<∅ for rank r flats F of M.

We remark that

∆M,∅ = the Alexander dual of the matroid complex

IN(M∗) of the dual matroid M∗.

See [Bjö92] for basic facts on the matroid complexes and [MS05b, Ch. 5] for

the Alexander dual of a simplicial complex.

We show that, in general, the Bergman fan and the reduced Bergman fan

are indeed fans, and the reduced Bergman fan is pure of dimension r.

Proposition 3.3. The collection ΣM,P is a subfan of the normal fan of

a polytope.

Proof. Since P is an order filter, any face of a cone in ΣM,P is in ΣM,P .

Therefore it is enough to show that there is a normal fan of a polytope that

contains ΣM,P as a subset.

For this we consider the order filter of P(E) generated by P, that is, the

collection of sets

P̃ :=
¶

nonempty proper subset of E containing a flat in P
©
⊆P(E).

If the closure of I ⊆ E in M is not in P̂, then I does not contain any flat

in P, and hence

ΣM,P ⊆ Σ‹P .
The latter collection is the normal fan of a polytope by Proposition 2.4. �

Since P is an order filter, any face of a cone in ‹ΣM,P is in ‹ΣM,P , and

hence ‹ΣM,P is a subfan of ΣM,P . It follows that the reduced Bergman fan also

is a subfan of the normal fan of a polytope.

Proposition 3.4.The reduced Bergman fan ‹ΣM,P is pure of dimension r.

Proof. Let I be a subset of E whose closure is not in P, and let F be a

flag of flats in P compatible with I in M. We show that there are I ′ containing

I and F ′ containing F such that

I ′ <M F ′, clM(I ′) /∈ P̂, F ′ ⊆P, and |I ′|+ |F ′| = r.

First choose any flag of flats F ′ that is maximal among those contain-

ing F , contained in P, and compatible with I in M. Next choose any flat

F of M that is maximal among those containing I and strictly contained in

min F ′.
We note that, by the maximality of F and the maximality of F ′ respec-

tively,

rkM(F ) = rkM(min F ′)− 1 = r − |F ′|.
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Since the rank of a set is at most its cardinality, the above implies

|I| ≤ r − |F ′| ≤ |F |.

This shows that there is I ′ containing I, contained in F , and with cardinality

exactly r − |F ′|. Any such I ′ is automatically compatible with F ′ in M.

We show that the closure of I ′ is not in P by showing that the flat F is not

in P. If otherwise, by the maximality of F ′, the set I cannot be compatible

in M with the flag {F}, meaning

|I| ≥ rkM(F ).

The above implies that the closure of I in M, which is not in P, is equal to F .

This gives the desired contradiction. �

Our inductive approach to the hard Lefschetz theorem and the Hodge-

Riemann relations for matroids is modeled on the observation that any facet

of a permutohedron is the product of two smaller permutohedrons. We note

below that the Bergman fan ΣM,P has an analogous local structure when M

has no parallel elements, that is, when no two elements of E are contained in

a common rank 1 flat of M.

Recall that the star of a cone σ in a fan Σ in a vector space NR is the fan

star(σ,Σ) :=
¶
σ′ | σ′ is the image in NR/〈σ〉 of a cone σ′ in Σ containing σ

©
.

If σ is a ray generated by a vector e, we write star(e,Σ) for the star of σ in Σ.

Proposition 3.5. Let M be a loopless matroid on E, and let P be an

order filter of P(M).

(1) If F is a flat in P , then the isomorphism NE/〈eF 〉 → NF ⊕NE\F induces

a bijection

star(eF ,ΣM,P) −→ ΣMF ,PF × ΣMF
.

(2) If {i} is a proper flat of M, then the isomorphism NE/〈ei〉 → NE\{i}
induces a bijection

star(ei,ΣM,P) −→ ΣM{i},P{i} .

Under the same assumptions, the stars of eF and ei in the reduced Bergman

fan ‹ΣM,P admit analogous descriptions.

Recall that a loopless matroid is a combinatorial geometry if all single

element subsets of E are flats. When M is not a combinatorial geometry,

the star of ei in ΣM,P is not necessarily a product of smaller Bergman fans.

However, when M is a combinatorial geometry, Proposition 3.5 shows that the

star of every ray in ΣM,P is a product of at most two Bergman fans.
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4. Piecewise linear functions and their convexity

4.1. Piecewise linear functions on possibly incomplete fans will play an

important role throughout the paper. In this section, we prove several general

properties concerning convexity of such functions, working with a dual pair

free abelian groups

〈−,−〉 : N×M −→ Z, NR := N⊗Z R, MR := M⊗Z R

and a fan Σ in the vector space NR. Throughout this section we assume that

Σ is unimodular ; that is, every cone in Σ is generated by a part of a basis of N.

The set of primitive ray generators of Σ will be denoted VΣ.

We say that a function ` : |Σ| → R is piecewise linear if it is continuous

and the restriction of ` to any cone in Σ is the restriction of a linear function

on NR. The function ` is said to be integral if

`
Ä
|Σ| ∩N

ä
⊆ Z,

and the function ` is said to be positive if

`
Ä
|Σ| \ {0}

ä
⊆ R>0.

An important example of a piecewise linear function on Σ is the Courant

function xe associated to a primitive ray generator e of Σ, whose values at VΣ

are given by the Kronecker delta function. Since Σ is unimodular, the Courant

functions are integral, and they form a basis of the group of integral piecewise

linear functions on Σ:

PL(Σ) =

{ ∑
e∈VΣ

ce xe | ce ∈ Z
}
' ZVΣ .

An integral linear function on NR restricts to an integral piecewise linear func-

tion on Σ, giving a homomorphism

resΣ : M −→ PL(Σ), m 7−→
∑
e∈VΣ

〈e,m〉xe.

We denote the cokernel of the restriction map by

A1(Σ) := PL(Σ)/M.

In general, this group may have torsion, even under our assumption that Σ is

unimodular. When integral piecewise linear functions ` and `′ on Σ differ by

the restriction of an integral linear function on NR, we say that ` and `′ are

equivalent over Z.

Note that the group of piecewise linear functions modulo linear functions

on Σ can be identified with the tensor product

A1(Σ)R := A1(Σ)⊗Z R.
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When piecewise linear functions ` and `′ on Σ differ by the restriction of a

linear function on NR, we say that ` and `′ are equivalent.

We describe three basic pullback homomorphisms between the groups A1.

Let Σ′ be a subfan of Σ, and let σ be a cone in Σ.

(1) The restriction of functions from Σ to Σ′ defines a surjective homomor-

phism

PL(Σ) −→ PL(Σ′),

and this descends to a surjective homomorphism

pΣ′⊆Σ : A1(Σ) −→ A1(Σ′).

In terms of Courant functions, pΣ′⊆Σ is uniquely determined by its values

xe 7−→

xe if e is in VΣ′ ,

0 if otherwise.

(2) Any integral piecewise linear function ` on Σ is equivalent over Z to an

integral piecewise linear function `′ that is zero on σ, and the choice of

such `′ is unique up to an integral linear function on NR/〈σ〉. Therefore

we have a surjective homomorphism

pσ∈Σ : A1(Σ) −→ A1(star(σ,Σ)),

uniquely determined by its values on xe for primitive ray generators e not

contained in σ:

xe 7−→

xe if there is a cone in Σ containing e and σ,

0 if otherwise.

Here e is the image of e in the quotient space NR/〈σ〉.
(3) A piecewise linear function on the product of two fans Σ1 ×Σ2 is the sum

of its restrictions to the subfans

Σ1 × {0} ⊆ Σ1 × Σ2 and {0} × Σ2 ⊆ Σ1 × Σ2.

Therefore we have an isomorphism

PL(Σ1 × Σ2) ' PL(Σ1)⊕ PL(Σ2),

and this descends to an isomorphism

pΣ1,Σ2
: A1(Σ1 × Σ2) ' A1(Σ1)⊕A1(Σ2).



396 KARIM ADIPRASITO, JUNE HUH, and ERIC KATZ

4.2. We define the link of a cone σ in Σ to be the collection

link(σ,Σ) :=
¶
σ′ ∈ Σ | σ′ is contained in a cone

in Σ containing σ, and σ ∩ σ′ = {0}
©
.

Note that the link of σ in Σ is a subfan of Σ.

Definition 4.1. Let ` be a piecewise linear function on Σ, and let σ be a

cone in Σ.

(1) The function ` is convex around σ if it is equivalent to a piecewise linear

function that is zero on σ and nonnegative on the rays of the link of σ.

(2) The function ` is strictly convex around σ if it is equivalent to a piecewise

linear function that is zero on σ and positive on the rays of the link of σ.

The function ` is convex if it is convex around every cone in Σ and strictly

convex if it is strictly convex around every cone in Σ.

When Σ is complete, the function ` is convex in the sense of Definition 4.1

if and only if it is convex in the usual sense:

`(u1 + u2) ≤ `(u1) + `(u2) for u1,u2 ∈ NR.

In general, writing ι for the inclusion of the torus orbit closure corresponding

to σ in the toric variety of Σ, we have

` is convex around σ

⇐⇒ ι∗ of the class of the divisor associated to ` is effective.

For a detailed discussion and related notions of convexity from the point of

view of toric geometry, see [GM12, §2].

Definition 4.2. The ample cone of Σ is the open convex cone

KΣ :=
¶

classes of strictly convex piecewise linear functions on Σ
©
⊆ A1(Σ)R.

The nef cone of Σ is the closed convex cone

NΣ :=
¶

classes of convex piecewise linear functions on Σ
©
⊆ A1(Σ)R.

Note that the closure of the ample cone KΣ is contained in the nef

cone NΣ. In many interesting cases, the reverse inclusion also holds.

Proposition 4.3. If KΣ is nonempty, then NΣ is the closure of KΣ.

Proof. If `1 is a convex piecewise linear function and `2 is strictly convex

piecewise linear function on Σ, then the sum `1 + ε `2 is strictly convex for

every positive number ε. This shows that the nef cone of Σ is in the closure of

the ample cone of Σ. �
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We record here that the various pullbacks of an ample class are ample.

The proof is straightforward from Definition 4.1.

Proposition 4.4. Let Σ′ be a subfan of Σ, σ be a cone in Σ, and let

Σ1 × Σ2 be a product fan.

(1) The pullback homomorphism pΣ′⊆Σ induces a map between the ample cones

KΣ −→ KΣ′ .

(2) The pullback homomorphism pσ∈Σ induces a map between the ample cones

KΣ −→ Kstar(σ,Σ).

(3) The isomorphism pΣ1,Σ2
induces a bijective map between the ample cones

KΣ1×Σ2 −→ KΣ1 ×KΣ2 .

Recall that the support function of a polytope is a strictly convex piecewise

linear function on the normal fan of the polytope. An elementary proof can be

found in [Oda88, Cor. A.19]. It follows from the first item of Proposition 4.4

that any subfan of the normal fan of a polytope has a nonempty ample cone. In

particular, by Proposition 3.3, the Bergman fan ΣM,P has a nonempty ample

cone.

Strictly convex piecewise linear functions on the normal fan of the per-

mutohedron can be described in a particularly nice way: A piecewise linear

function on ΣP(E) is strictly convex if and only if it is of the form∑
F∈P(E)

cFxF , cF1 + cF2 > cF1∩F2 + cF1∪F2

for any incomparable F1, F2, with c∅ = cE = 0.

For this and related results, see [BB11]. The restriction of any such strictly

submodular function gives a strictly convex function on the Bergman fan ΣM

and defines an ample class on ΣM.

4.3. We specialize to the case of matroids and prove basic properties of

convex piecewise linear functions on the Bergman fan ΣM,P . We write KM,P

for the ample cone of ΣM,P and NM,P for the nef cone of ΣM,P .

Proposition 4.5. Let M be a loopless matroid on E, and let P be an

order filter of P(M).

(1) The nef cone of ΣM,P is equal to the closure of the ample cone of ΣM,P :

KM,P = NM,P .

(2) The ample cone of ΣM,P is equal to the interior of the nef cone of ΣM,P :

KM,P = N ◦
M,P .
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Proof. Propositions 3.3 shows that the ample cone KM,P is nonempty.

Therefore, by Proposition 4.3, the nef cone NM,P is equal to the closure

of KM,P .

The second assertion can be deduced from the first using the following

general property of convex sets: An open convex set is equal to the interior of

its closure. �

The main result here is that the ample cone and its ambient vector space

KM,P ⊆ A1(ΣM,P)R

depend only on P and the combinatorial geometry of M; see Proposition 4.8

below. We set

E :=
¶
A | A is a rank 1 flat of M

©
.

Definition 4.6. The combinatorial geometry of M is the simple matroid M

on E determined by its poset of nonempty proper flats P(M) = P(M).

The set of primitive ray generators of ΣM,P is the disjoint union¶
ei | the closure of i in M is not in P

©
∪
¶
eF | F is a flat in P

©
⊆ NE,R,

and the set of primitive ray generators of ΣM,P is the disjoint union¶
eA | A is a rank 1 flat of M not in P

©
∪
¶
eF | F is a flat in P

©
⊆ NE,R.

The corresponding Courant functions on the Bergman fans will be denoted xi,

xF , and xA, xF respectively.

Let π be the surjective map between the ground sets of M and M given

by the closure operator of M. We fix an arbitrary section ι of π by choosing

an element from each rank 1 flat:

π : E −→ E, ι : E −→ E, π ◦ ι = id.

The maps π and ι induce the horizontal homomorphisms in the diagram

PL(ΣM,P)
πPL // PL(ΣM,P)
ιPL

oo

ME

πM //

res

OO

ME ,

res

OO

ιM
oo

where the homomorphism πPL is obtained by setting

xi 7−→ xπ(i), xF 7−→ xF

for elements i whose closure is not in P, and for flats F in P,



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 399

and the homomorphism ιPL is obtained by setting

xA 7−→ xι(A), xF 7−→ xF

for rank 1 flats A not in P, and for flats F in P.

In the diagram above, we have

πPL ◦ res = res ◦ πM, ιPL ◦ res = res ◦ ιM, πPL ◦ ιPL = id, πM ◦ ιM = id.

Proposition 4.7. The homomorphism πPL induces an isomorphism

πPL : A1(ΣM,P) −→ A1(ΣM,P).

The homomorphism ιPL induces the inverse isomorphism

ιPL : A1(ΣM,P) −→ A1(ΣM,P).

We use the same symbols to denote the isomorphisms A1(ΣM,P)R �
A1(ΣM,P)R.

Proof. It is enough to check that the composition ιPL ◦πPL is the identity.

Let i and j be elements whose closures are not in P. Consider the linear

function on NE,R given by the integral vector

ei − ej ∈ME .

The restriction of this linear function to ΣM,P is the linear combination

res(ei − ej) =
(
xi +

∑
i∈F∈P

xF
)
−
(
xj +

∑
j∈F∈P

xF
)
.

If i and j have the same closure, then a flat contains i if and only if it contains j,

and hence the linear function witnesses that the piecewise linear functions xi
and xj are equivalent over Z. It follows that ιPL ◦ πPL = id. �

The maps π and ι induce simplicial maps between the Bergman complexes

∆M,P

π∆ // ∆M,P ,ι∆
oo MI<F 7−→ Mπ(I)<F , MI<F 7−→ Mι(I )<F .

The simplicial map π∆ collapses those simplices containing vectors of parallel

elements, and

π∆ ◦ ι∆ = id.

The other composition ι∆ ◦ π∆ is a deformation retraction. For this note that

MI<F ∈ ∆M,P =⇒ ι∆ ◦ π∆(MI<F ) ∪ MI<F ⊆ Mπ−1πI<F .

The simplex Mπ−1πI<F is in ∆M,P ; hence we can find a homotopy ι∆◦π∆ ' id.

Proposition 4.8. The isomorphism πPL restricts to a bijective map be-

tween the ample cones

KM,P −→ KM,P .
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Proof. By Proposition 4.5, it is enough to show that πPL restricts to a

bijective map

NM,P −→ NM,P .

We use the following maps corresponding to π∆ and ι∆:

ΣM,P

πΣ // ΣM,P ,ιΣ
oo σI<F 7−→ σπ(I)<F , σI<F 7−→ σι(I )<F .

One direction is more direct: The homomorphism ιPL maps a convex

piecewise linear function ` to a convex piecewise linear function ιPL(`). Indeed,

for any cone σI<F in ΣM,P ,(
` is zero on σπ(I)<F and nonnegative on the link of σπ(I)<F in ΣM,P

)
=⇒

(
ιPL(`) is zero on σπ−1π(I)<F

and nonnegative on the link of σπ−1π(I)<F in ΣM,P

)
=⇒

(
ιPL(`) is zero on σI<F and nonnegative on the link of σI<F in ΣM,P

)
.

Next we show the other direction: The homomorphism πPL maps a convex

piecewise linear function ` to a convex piecewise linear function πPL(`). The

main claim is that, for any cone σI<F in ΣM,P ,

` is convex around σπ−1(I )<F =⇒ πPL(`) is convex around σI<F .

This can be deduced from the following identities between the subfans of ΣM,P :

π−1
Σ

(
the set of all faces of σI<F

)
=
(
the set of all faces of σπ−1(I )<F

)
,

π−1
Σ

(
the link of σI<F in ΣM,P

)
=
(
the link of σπ−1(I )<F in ΣM,P

)
.

It is straightforward to check the two equalities from the definitions of ΣM,P

and ΣM,P . �

Remark 4.9. Note that a Bergman fan and the corresponding reduced

Bergman fan share the same set of primitive ray generators. Therefore we

have isomorphisms

A1(ΣM,P) //

��

A1(ΣM,P)

��

oo

A1(‹ΣM,P) //

OO

A1(‹ΣM,P).oo

OO
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We remark that there are inclusion maps between the corresponding ample

cones

KM,P

��

KM,P

��›KM,P
›KM,P .

oo

In general, all three inclusions shown above may be strict.

5. Homology and cohomology

5.1. Let Σ be a unimodular fan in an n-dimensional latticed vector

space NR, and let Σk be the set of k-dimensional cones in Σ. If τ is a codi-

mension 1 face of a unimodular cone σ, we write

eσ/τ :=the primitive generator of the unique 1-dimensional face of σ not in τ .

Definition 5.1. A k-dimensional Minkowski weight on Σ is a function

ω : Σk −→ Z

that satisfies the balancing condition: For every (k−1)-dimensional cone τ in Σ,∑
τ⊂σ

ω(σ)eσ/τ is contained in the subspace generated by τ .

The group of Minkowski weights on Σ is the group

MW∗(Σ) :=
⊕
k∈Z

MWk(Σ),

where MWk(Σ) :=
¶
k-dimensional Minkowski weights on Σ

©
⊆ ZΣk .

The group of Minkowski weights was studied by Fulton and Sturmfels in

the context of toric geometry [FS97]. An equivalent notion of stress space was

independently pursued by Lee in [Lee96]. Both were inspired by McMullen,

who introduced the notion of weights on polytopes and initiated the study of

its algebraic properties [McM89], [McM96]. We record here some immediate

properties of the group of Minkowski weights on Σ.

(1) The group MW0(Σ) is canonically isomorphic to the group of integers:

MW0(Σ) = ZΣ0 ' Z.

(2) The group MW1(Σ) is perpendicular to the image of the restriction map

from M:

MW1(Σ) = im(resΣ)⊥ ⊆ ZΣ1 .

(3) The group MWk(Σ) is trivial for k negative or k larger than the dimension

of Σ.
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If Σ is in addition complete, then an n-dimensional weight on Σ satisfies

the balancing condition if and only if it is constant. Therefore, in this case,

there is a canonical isomorphism

MWn(Σ) ' Z.

We show that the Bergman fan ΣM has the same property with respect to its

dimension r.

Proposition 5.2. An r-dimensional weight on ΣM satisfies the balancing

condition if and only if it is constant.

It follows that there is a canonical isomorphism MWr(ΣM) ' Z. We begin

the proof of Proposition 5.2 with the following lemma.

Lemma 5.3. The Bergman fan ΣM is connected in codimension 1.

We remark that Lemma 5.3 is a direct consequence of the shellability of

∆M; see [Bjö92].

Proof. The claim is that, for any two r-dimensional cones σF , σG in ΣM,

there is a sequence

σF = σ0 ⊃ τ1 ⊂ σ1 ⊃ · · · ⊂ σl−1 ⊃ τl ⊂ σl = σG ,

where τi is a common facet of σi−1 and σi in ΣM. We express this by writing

σF ∼ σG .

We prove by induction on the rank of M. If min F = min G , then the

induction hypothesis applied to Mmin F shows that

σF ∼ σG .

If otherwise, we choose a flag of nonempty proper flats H maximal among

those satisfying min F ∪min G < H . By the induction hypothesis applied to

Mmin F , we have

σF ∼ σ{min F}∪H .

Similarly, by the induction hypothesis applied to Mmin G , we have

σG ∼ σ{min G }∪H .

Since any 1-dimensional fan is connected in codimension 1, this complete the

induction. �

Proof of Proposition 5.2. The proof is based on the flat partition property

for matroids M on E:

If F is a flat of M, then the flats of M that cover F partition E \ F .
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Let τG be a codimension 1 cone in the Bergman fan ΣM, and set

Vstar(G ) := the set of primitive ray generators of the star of

τG in ΣM ⊆ NE,R/〈τF 〉.

The flat partition property applied to the restrictions of M shows that, first,

the sum of all the vectors in Vstar(G ) is zero and, second, any proper subset

of Vstar(G ) is linearly independent. Therefore, for an r-dimensional weight ω

on ΣM,

ω satisfies the balancing condition at τG

⇐⇒ ω is constant on cones containing τG .

By the connectedness of Lemma 5.3, the latter condition for every τG implies

that ω is constant. �

5.2. We continue to work with a unimodular fan Σ in NR. As before, we

write VΣ for the set of primitive ray generators of Σ. Let SΣ be the polynomial

ring over Z with variables indexed by VΣ:

SΣ := Z[xe]e∈VΣ
.

For each k-dimensional cone σ in Σ, we associate a degree k square-free mono-

mial

xσ :=
∏
e∈σ

xe.

The subgroup of SΣ generated by all such monomials xσ will be denoted

Zk(Σ) :=
⊕
σ∈Σk

Zxσ.

Let Z∗(Σ) be the sum of Zk(Σ) over all nonnegative integers k.

Definition 5.4. The Chow ring of Σ is the commutative graded algebra

A∗(Σ) := SΣ/(IΣ + JΣ),

where IΣ and JΣ are the ideals of SΣ defined by

IΣ := the ideal generated by the square-free monomials not in Z∗(Σ),

JΣ := the ideal generated by the linear forms
∑
e∈VΣ

〈e,m〉xe for m ∈M.

We write Ak(Σ) for the degree k component of A∗(Σ), and we set

A∗(Σ)R := A∗(Σ)⊗Z R and Ak(Σ)R := Ak(Σ)⊗Z R.

If we identify the variables of SΣ with the Courant functions on Σ, then the

degree 1 component of A∗(Σ) agrees with the group introduced in Section 4:

A1(Σ) = PL(Σ)/M.
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Note that the pullback homomorphisms between A1 introduced in that section

uniquely extend to graded ring homomorphisms between A∗:

(1) The homomorphism pΣ′⊆Σ uniquely extends to a surjective graded ring

homomorphism

pΣ′⊆Σ : A∗(Σ) −→ A∗(Σ′).

(2) The homomorphism pσ∈Σ uniquely extends to a surjective graded ring

homomorphism

pσ∈Σ : A∗(Σ) −→ A∗(star(σ,Σ)).

(3) The isomorphism pΣ1,Σ2
uniquely extends to a graded ring isomorphism

pΣ1,Σ2
: A∗(Σ1 × Σ2) −→ A∗(Σ1)⊗Z A

∗(Σ2).

We remark that the Chow ring A∗(Σ)R can be identified with the ring

of piecewise polynomial functions on Σ modulo linear functions on NR; see

[Bil89].

Proposition 5.5. The group Ak(Σ) is generated by Zk(Σ) for each non-

negative integer k.

In particular, if k larger than the dimension of Σ, then Ak(Σ) = 0.

Proof. Let σ be a cone in Σ, let e1, e2, . . . , el be its primitive ray genera-

tors, and consider a degree k monomial of the form

xk1
e1
xk2
e2
· · ·xklel , k1 ≥ k2 ≥ · · · ≥ kl ≥ 1.

We show that the image of this monomial in Ak(Σ) is in the span of Zk(Σ).

We do this by descending induction on the dimension of σ. If dim σ = k,

there is nothing to prove. If otherwise, we use the unimodularity of σ to choose

m ∈M such that

〈e1,m〉 = −1 and 〈e2,m〉 = · · · = 〈el,m〉 = 0.

This shows that, modulo the relations given by IΣ and JΣ, we have

xk1
e1
xk2
e2
· · ·xklel = xk1−1

e1
xk2
e2
· · ·xklel

∑
e∈link(σ)

〈e,m〉xe,

where the sum is over the set of primitive ray generators of the link of σ in Σ.

The induction hypothesis applies to each of the terms in the expansion of the

right-hand side. �

The group of k-dimensional weights on Σ can be identified with the dual

of Zk(Σ) under the tautological isomorphism

tΣ : ZΣk −→ HomZ(Zk(Σ),Z), ω 7−→
(
xσ 7−→ ω(σ)

)
.

By Proposition 5.5, the target of tΣ contains HomZ(Ak(Σ),Z) as a subgroup.
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Proposition 5.6. The isomorphism tΣ restricts to the bijection between

the subgroups

MWk(Σ) −→ HomZ(Ak(Σ),Z).

The bijection in Proposition 5.6 is an analogue of the Kronecker duality

homomorphism in algebraic topology. We use it to define the cap product

Al(Σ)×MWk(Σ) −→ MWk−l(Σ), ξ ∩ ω (σ) := tΣω (ξ · xσ).

This makes the group MW∗(Σ) a graded module over the Chow ring A∗(Σ).

Proof. The homomorphisms from Ak(Σ) to Z bijectively correspond to

the homomorphisms from Zk(Σ) to Z that vanish on the subgroup

Zk(Σ) ∩ (IΣ + JΣ) ⊆ Zk(Σ).

The main point is that this subgroup is generated by polynomials of the form( ∑
e∈link(τ)

〈e,m〉xe

)
xτ ,

where τ is a (k− 1)-dimensional cone of Σ and m is an element perpendicular

to 〈τ〉. This is a special case of [FMSS95, Th. 1]. It follows that a k-dimensional

weight ω corresponds to a homomorphism Ak(Σ)→ Z if and only if∑
τ⊂σ

ω(σ) 〈eσ/τ ,m〉 = 0 for all m ∈ 〈τ〉⊥,

where the sum is over all k-dimensional cones σ in Σ containing τ . Since

〈τ〉⊥⊥ = 〈τ〉, the latter condition is equivalent to the balancing condition on

ω at τ . �

5.3. The ideals IΣ and JΣ have a particularly simple description when

Σ = ΣM. In this case, we label the variables of SΣ by the nonempty proper

flats of M and write

SΣ = Z[xF ]F∈P(M).

For a flag of nonempty proper flats F , we set xF =
∏
F∈F xF .

(Incomparability relations). The ideal IΣ is generated by the quadratic mono-

mials

xF1xF2 ,

where F1 and F2 are two incomparable nonempty proper flats of M.

(Linear relations). The ideal JΣ is generated by the linear forms∑
i1∈F

xF −
∑
i2∈F

xF ,

where i1 and i2 are distinct elements of the ground set E.

The quotient ring A∗(ΣM) and its generalizations were studied by Feichtner

and Yuzvinsky in [FY04].
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Definition 5.7. To an element i in E, we associate linear forms

αM,i :=
∑
i∈F

xF , βM,i :=
∑
i/∈F

xF .

Their classes in A∗(ΣM), which are independent of i, will be written αM and

βM respectively.

We show that Ar(ΣM) is generated by the element αrM, where r is the

dimension of ΣM.

Proposition 5.8. Let F1 ( F2 ( · · · ( Fk be any flag of nonempty

proper flats of M.

(1) If the rank of Fm is not m for some m ≤ k, then

xF1xF2 · · ·xFk
αr−kM = 0 ∈ Ar(ΣM).

(2) If the rank of Fm is m for all m ≤ k, then

xF1xF2 · · ·xFk
αr−kM = αrM ∈ Ar(ΣM).

In particular, for any two maximal flags of nonempty proper flats F1 and

F2 of M,

xF1 = xF2 ∈ Ar(ΣM).

Since MWr(ΣM) is isomorphic to Z, this implies that Ar(ΣM) is isomorphic

to Z; see Proposition 5.10.

Proof. As a general observation, we note that for any element i not in a

nonempty proper flat F ,

xF αM = xF
(∑

G

xG
)
∈ A∗(ΣM),

where the sum is over all proper flats containing F and {i}. In particular, if

the rank of F is r, then the product is zero.

We prove the first assertion by descending induction on k, which is nec-

essarily less than r. If k = r − 1, then the rank of Fk should be r, and hence

the product is zero. For general k, we choose an element i not in Fk. By the

observation made above, we have

xF1xF2 · · ·xFk
αr−kM = xF1xF2 · · ·xFk

(∑
G

xG
)
αr−k−1

M ,

where the sum is over all proper flats containing Fk and {i}. The right-hand

side is zero by the induction hypothesis for k + 1 applied to each of the terms

in the expansion.
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We prove the second assertion by ascending induction on k. When k = 1,

we choose an element i in F1 and consider the corresponding representative of

αM to write

αrM =
(∑

G

xG
)
αr−1

M ,

where the sum is over all proper flats containing i. By the first part of the

proposition for k = 1, only one term in the expansion of the right-hand side is

nonzero, and this gives

αrM = xF1 α
r−1
M .

For general k, we start from the induction hypothesis

αrM = xF1xF2 · · ·xFk−1
α
r−(k−1)
M .

Choose an element i in Fk \Fk−1 and use the general observation made above

to write

αrM = xF1xF2 · · ·xFk−1

(∑
G

xG
)
αr−kM ,

where the sum is over all proper flats containing Fk−1 and {i}. By the first

part of the proposition for k, only one term in the expansion of the right-hand

side is nonzero, and we get

αrM = xF1xF2 · · ·xFk−1
xFk

αr−kM . �

When Σ is complete, Fulton and Sturmfels showed in [FS97] that there is

an isomorphism

Ak(Σ) −→ MWn−k(Σ), ξ 7−→
Ä
σ 7−→ deg ξ · xσ

ä
,

where n is the dimension of Σ and “deg” is the degree map of the complete

toric variety of Σ. In Theorem 6.19, we show that there is an isomorphism for

the Bergman fan

Ak(ΣM) −→ MWr−k(ΣM), ξ 7−→
Ä
σF 7−→ deg ξ · xF

ä
,

where r is the dimension of ΣM and “deg” is a homomorphism constructed

from M. These isomorphisms are analogues of the Poincaré duality homo-

morphism in algebraic topology.

Definition 5.9. The degree map of M is the homomorphism obtained by

taking the cap product

deg : Ar(ΣM) −→ Z, ξ 7−→ ξ ∩ 1M,

where 1M = 1 is the constant r-dimensional Minkowski weight on ΣM.
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By Proposition 5.5, the homomorphism deg is uniquely determined by its

property

deg(xF ) = 1 for all monomials xF

corresponding to an r-dimensional cone in ΣM.

Proposition 5.10. The degree map of M is an isomorphism.

Proof. The second part of Proposition 5.8 shows that Ar(ΣM) is generated

by the element αrM and that deg(αrM) = deg(xF ) = 1. �

5.4. We remark on algebraic geometric properties of Bergman fans, work-

ing over a fixed field K. For basics on toric varieties, we refer to [Ful93]. The

results of this subsection will be independent from the remainder of the paper.

The main object is the smooth toric variety X(Σ) over K associated to a

unimodular fan Σ in NR:

X(Σ) :=
⋃
σ∈Σ

Spec K[σ∨ ∩M ].

It is known that the Chow ring of Σ is naturally isomorphic to the Chow ring

of X(Σ):

A∗(Σ) −→ A∗(X(Σ)), xσ 7−→ [X(star(σ))].

See [Dan78, §10] for the proof when Σ is complete, and see [BDCP90] and

[Bri96] for the general case.

Definition 5.11. A morphism between smooth algebraic varieties X1→X2

is a Chow equivalence if the induced homomorphism between the Chow rings

A∗(X2)→ A∗(X1) is an isomorphism.

In fact, the results of this subsection will be valid for any variety that is

locally a quotient of a manifold by a finite group so that A∗(X)⊗Z Q has the

structure of a graded algebra over Q. Matroids provide nontrivial examples of

Chow equivalences. For example, consider the subfan ‹ΣM,P ⊆ ΣM,P and the

corresponding open subset

X(‹ΣM,P) ⊆ X(ΣM,P).

In Proposition 6.2, we show that the above inclusion is a Chow equivalence for

any M and P.

We remark that, when K = C, a Chow equivalence need not induce an

isomorphism between singular cohomology rings. For example, consider any

line in a projective plane minus two points

CP1 ⊆ CP2 \ {p1, p2}.

The inclusion is a Chow equivalence for any two distinct points p1, p2 outside

CP1, but the two spaces have different singular cohomology rings.
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We show that the notion of Chow equivalence can be used to characterize

the realizability of matroids.

Theorem 5.12. There is a Chow equivalence from a smooth projective

variety over K to X(ΣM) if and only if the matroid M is realizable over K.

Proof. This is a classical variant of the tropical characterization of the

realizability of matroids in [KP11]. We write r for the dimension of ΣM and

n for the dimension of X(ΣM). As before, the ground set of M will be E =

{0, 1, . . . , n}.
The “if” direction follows from the construction of De Concini-Procesi

wonderful models [DCP95]. Suppose that the loopless matroid M is realized

by a spanning set of nonzero vectors

R = {f0, f1, . . . , fn} ⊆ V/K.

The realization R gives an injective linear map between two projective spaces

LR : P(V ∨) −→ X(Σ∅), LR = [f0 : f1 : · · · : fn],

where Σ∅ is the complete fan in NE,R corresponding to the empty order fil-

ter of P(E). Note that the normal fan of the n-dimensional permutohedron

ΣP(E) can be obtained from the normal fan of the n-dimensional simplex Σ∅
by performing a sequence of stellar subdivisions. In other words, there is a

morphism between toric varieties

π : X(ΣP(E)) −→ X(Σ∅),

which is the composition of blowups of torus-invariant subvarieties. To be

explicit, consider a sequence of order filters of P(E) obtained by adding a

single subset at a time:

∅, . . . ,P−,P+, . . . ,P(E) with P+ = P− ∪ {Z}.

The corresponding sequence of Σ interpolates between the collections Σ∅ and

ΣP(E):

Σ∅  · · · ΣP−  ΣP+  · · · ΣP(E).

The modification in the middle replaces the cones of the form σZ<F with the

sums of the form

σ∅<{Z} + σI<F ,

where I is any proper subset of Z. The wonderful model YR associated to

R is by definition the strict transform of P(V ∨) under the composition of

toric blowups π. The torus-invariant prime divisors of X(ΣP(E)) correspond

to nonempty proper subsets of E, and those divisors intersecting YR exactly
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correspond to nonempty proper flats of M. Therefore the smooth projective

variety YR is contained in the open subset

X(ΣM) ⊆ X(ΣP(E)).

The inclusion YR ⊆ X(ΣM) is a Chow equivalence [FY04, Cor. 2].

The “only if” direction follows from computations in A∗(ΣM) made in the

previous subsection. Suppose that there is a Chow equivalence from a smooth

projective variety

f : Y −→ X(ΣM).

Propositions 5.5 and 5.10 show that

Ar(Y ) ' Ar(ΣM) ' Z and Ak(Y ) ' Ak(ΣM) ' 0 for all k larger than r.

Since Y is complete, the above implies that the dimension of Y is r. Let g be

the composition

Y
f // X(ΣM)

πM // X(Σ∅) ' Pn,

where πM is the restriction of the composition of toric blowups π. We use

Proposition 5.8 to compute the degree of the image g(Y ) ⊆ Pn.

For this we note that, for any element i ∈ E, we have

π−1
M {zi = 0} =

⋃
i∈F

DF ,

where zi is the homogeneous coordinate of Pn corresponding to i and DF is the

torus-invariant prime divisor of X(ΣM) corresponding to a nonempty proper

flat F . All the components of π−1
M {zi = 0} appear with multiplicity 1, and

hence

π∗M OPn(1) = αM ∈ A1(ΣM).

Hence, under the isomorphism f∗ between the Chow rings, the 0-dimensional

cycle (g∗OPn(1))r is the image of the generator

(π∗M OPn(1))r = αrM ∈ Ar(ΣM) ' Z.

By the projection formula, the above implies that the degree of the image of

Y in Pn is 1. In other words, g(Y ) ⊆ Pn is an r-dimensional linear subspace

defined over K. We express the inclusion in the form

LR : P(V ∨) −→ Pn, LR = [f0 : f1 : · · · : fn].

Let M′ be the loopless matroid on E defined by the set of nonzero vectors

R ⊆ V/K. The image of Y in X(ΣM) is the wonderful model YR , and hence

X(ΣM′) ⊆ X(ΣM).

Observe that none of the torus-invariant prime divisors of X(ΣM) are rationally

equivalent to zero. Since f is a Chow equivalence, the observation implies that

the torus-invariant prime divisors of X(ΣM′) and X(ΣM) bijectively correspond



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 411

to each other. Since a matroid is determined by its set of nonempty proper

flats, this shows that M = M′. �

6. Poincaré duality for matroids

6.1. The principal result of this section is an analogue of Poincaré duality

for A∗(ΣM,P); see Theorem 6.19. We give an alternative description of the

Chow ring suitable for this purpose.

Definition 6.1. Let SE∪P be the polynomial ring over Z with variables

indexed by E ∪P:

SE∪P := Z[xi, xF ]i∈E,F∈P .

The Chow ring of (M,P) is the commutative graded algebra

A∗(M,P) := SE∪P/(I1 + I2 + I3 + I4),

where I1, I2, I3, I4 are the ideals of SE∪P defined below.

(Incomparability relations). The ideal I1 is generated by the quadratic mono-

mials

xF1xF2 ,

where F1 and F2 are two incomparable flats in the order filter P.

(Complement relations). The ideal I2 is generated by the quadratic monomials

xi xF ,

where F is a flat in the order filter P and i is an element in the complement

E \ F .

(Closure relations). The ideal I3 is generated by the monomials∏
i∈I

xi,

where I is an independent set of M whose closure is in P ∪ {E}.
(Linear relations). The ideal I4 is generated by the linear forms(

xi +
∑
i∈F

xF
)
−
(
xj +

∑
j∈F

xF
)
,

where i and j are distinct elements of E and the sums are over flats F in P.

When P = P(M), we omit P from the notation and write the Chow ring by

A∗(M).

When P is empty, the relations in I4 show that all xi are equal in the

Chow ring, and hence

A∗(M,∅) ' Z[x]/(xr+1).
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When P is P(M), the relations in I3 show that all xi are zero in the Chow

ring, and hence

A∗(M) ' A∗(ΣM).

In general, if i is an element whose closure is in P, then xi is zero in the Chow

ring. The square-free monomial relations in the remaining set of variables

correspond bijectively to the non-faces of the Bergman complex ∆M,P , and

hence

A∗(M,P) ' A∗(ΣM,P).

More precisely, in the notation of Definitions 5.4 and 6.1, for Σ = ΣM,P , we

have

I1 + I2 + I3 = IΣ and I4 = JΣ.

We show that the Chow ring of (M,P) is also isomorphic to the Chow

ring of the reduced Bergman fan ‹ΣM,P .

Proposition 6.2. Let I be a subset of E, and let F be a flat in an order

filter P of P(M).

(1) If I has cardinality at least the rank of F , then(∏
i∈I

xi
)
xF = 0 ∈ A∗(M,P).

(2) If I has cardinality at least r + 1, then∏
i∈I

xi = 0 ∈ A∗(M,P).

In other words, the inclusion of the open subset X(‹ΣM,P) ⊆ X(ΣM,P)

is a Chow equivalence. Since the reduced Bergman fan has dimension r, this

implies that

Ak(M,P) = 0 for k > r.

Proof. For the first assertion, we use complement relations in I2 to reduce

to the case when I ⊆ F . We prove by induction on the difference between the

rank of F and the rank of I.

When the difference is zero, I contains a basis of F , and the desired

vanishing follows from a closure relation in I3. When the difference is positive,

we choose a subset J ⊆ F with

rk(J) = rk(I) + 1, I \ J = {i} and J \ I = {j}.

From the linear relation in I4 for i and j, we deduce that

xi +
∑
i∈G
j /∈G

xG = xj +
∑
j∈G
i/∈G

xG,
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where the sums are over flatsG in P. Multiplying both sides by
(∏

i∈I∩J xi
)
xF ,

we get (∏
i∈I

xi
)
xF =

( ∏
j∈J

xj
)
xF .

Indeed, a term involving xG in the expansions of the products is zero in the

Chow ring by

(1) an incomparability relation in I1, if G * F ;

(2) a complement relation in I2, if I ∩ J * G;

(3) the induction hypothesis for I ∩ J ⊆ G, if otherwise.

The right-hand side of the equality is zero by the induction hypothesis for

J ⊆ F .

The second assertion can be proved in the same way, by descending in-

duction on the rank of I, using the first part of the proposition. �

We record here that the isomorphism of Proposition 4.7 uniquely extends

to an isomorphism between the corresponding Chow rings.

Proposition 6.3. The homomorphism πPL induces an isomorphism of

graded rings

πPL : A∗(M,P) −→ A∗(M,P).

The homomorphism ιPL induces the inverse isomorphism of graded rings

ιPL : A∗(M,P) −→ A∗(M,P).

Proof. Consider the extensions of πPL and ιPL to the polynomial rings

SE∪P

π̃PL // SE∪P .
ι̃PL

oo

The result follows from the observation that π̃PL and ι̃PL preserve the monomial

relations in I1, I2, and I3. �

6.2. Let P− be an order filter of P(M), and let Z be a flat maximal in

P(M) \P−. We set

P+ := P− ∪ {Z} ⊆P(M).

The collection P+ is an order filter of P(M).

Definition 6.4. The matroidal flip from P− to P+ is the modification of

fans ΣM,P− ΣM,P+ .

The flat Z will be called the center of the matroidal flip. The matroidal

flip removes the cones

σI<F with clM(I) = Z and min F 6= Z
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and replaces them with the cones

σI<F with clM(I) 6= Z and min F = Z.

The center Z is necessarily minimal in P+, and we have

star( σZ<∅ , ΣM,P−) ' ΣMZ
,

star(σ∅<{Z},ΣM,P+) ' ΣMZ ,∅ × ΣMZ
.

Remark 6.5. The matroidal flip preserves the homotopy type of the un-

derlying simplicial complexes ∆M,P− and ∆M,P+ . To see this, consider the

inclusion

∆M,P+ ⊆ ∆∗M,P− := the stellar subdivision of ∆M,P− relative to MZ<∅.

We claim that the left-hand side is a deformation retract of the right-hand side.

More precisely, there is a sequence of compositions of elementary collapses

∆∗M,P− = ∆1,1
M,P−

 ∆1,2
M,P−

 · · ·  ∆
1,crk(Z)−1
M,P−

 

∆
1,crk(Z)
M,P−

= ∆2,1
M,P−

 ∆2,2
M,P−

 · · ·  ∆
2,crk(Z)−1
M,P−

 

∆
2,crk(Z)
M,P−

= ∆3,1
M,P−

 ∆3,2
M,P−

 · · ·  ∆
3,crk(Z)−1
M,P−

 · · ·  ∆M,P+ ,

where ∆m,k+1
M,P−

is the subcomplex of ∆m,k
M,P−

obtained by collapsing all the faces

MI<F with

clM(I) = Z, min F 6= Z, |Z \ I| = m, |F | = crkM(Z)− k.

The faces MI<F satisfying the above conditions can be collapsed in ∆m,k
M,P−

because

link(MI<F ,∆
m,k
M,P−

) = {eZ}.
It follows that the homotopy type of the Bergman complex ∆M,P is indepen-

dent of P. For basics of elementary collapses of simplicial complexes, see

[Koz08, Ch. 6]. The special case that ∆M,∅ is homotopic to ∆M is an elemen-

tary consequence of the nerve theorem and gives a homotopy version of the

usual crosscut theorem [Koz08, Ch. 13].

We construct homomorphisms associated to the matroidal flip, the pull-

back homomorphism and the Gysin homomorphism.

Proposition 6.6. There is a graded ring homomorphism between the

Chow rings

ΦZ : A∗(M,P−) −→ A∗(M,P+)

uniquely determined by the property

xF 7−→ xF and xi 7−→

xi + xZ if i ∈ Z ,

xi if i /∈ Z .
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The map ΦZ will be called the pullback homomorphism associated to the

matroidal flip from P− to P+. We will show that the pullback homomorphism

is injective in Theorem 6.18.

Proof. Consider the homomorphism between the polynomial rings

φZ : SE∪P− −→ SE∪P+

defined by the same rule determining ΦZ . We claim that

φZ(I1) ⊆ I1, φZ(I2) ⊆ I1 + I2, φZ(I3) ⊆ I2 + I3, φZ(I4) ⊆ I4.

The first and the last inclusions are straightforward to verify.

We check the second inclusion. For an element i in E \ F , we have

φZ(xixF ) =

xixF + xZxF if i ∈ Z,

xixF if i /∈ Z.

If i is in Z \F , then the monomial xZxF is in I1 because Z is minimal in P+.

We check the third inclusion. For an independent set I whose closure is

in P− ∪ {E},
φZ
(∏
i∈I

xi
)

=
∏
i∈I\Z

xi
∏

i∈I∩Z
(xi + xZ).

The term
∏
i∈I xi in the expansion of the right-hand side is in I3. Since Z is

minimal in P+, there is an element in I \Z, and hence all the remaining terms

in the expansion are in I2. �

Proposition 6.7. The pullback homomorphism ΦZ is an isomorphism

when rkM(Z) = 1.

Proof. Let j1 and j2 be distinct elements of Z. If Z has rank 1, then a

flat contains j1 if and only if it contains j2. It follows from the linear relation

in SE∪P− for j1 and j2 that

xj1 = xj2 ∈ A∗(M,P−).

We choose an element j ∈ Z and construct the inverse Φ′Z of ΦZ by setting

xZ 7−→ xj , xF 7−→ xF , and xi 7−→

0 if i ∈ Z,

xi if i /∈ Z.

It is straightforward to check that Φ′Z is well defined and that Φ′Z = Φ−1
Z . �

As before, we identify the flats of MZ with the flats of M containing Z,

and we identify the flats of MZ with the flats of M contained in Z.

Proposition 6.8. Let p and q be positive integers.
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(1) There is a group homomorphism

Ψp,q
Z : Aq−p(MZ) −→ Aq(M,P+)

uniquely determined by the property xF 7−→ xpZ xF .

(2) There is a group homomorphism

Γp,qZ : Aq−p(MZ) −→ Aq(M)

uniquely determined by the property xF 7−→ xpZ xF .

The map Ψp,q
Z will be called the Gysin homomorphism of type p, q asso-

ciated to the matroidal flip from P− to P+. We will show that the Gysin

homomorphism is injective when p < rkM(Z) in Theorem 6.18.

Proof. It is clear that the Gysin homomorphism Ψp,q
Z respects the incom-

parability relations. We check that Ψp,q
Z respects the linear relations.

Let i1 and i2 be elements in E \ Z, and consider the linear relation in

SE∪P+ for i1 and i2:(
xi1 +

∑
i1∈F

xF
)
−
(
xi1 +

∑
i2∈F

xF
)
∈ I4.

Since i1 and i2 are not in Z, multiplying the linear relation with xpZ gives

xpZ

( ∑
Z∪{i1}⊆F

xF −
∑

Z∪{i2}⊆F
xF
)
∈ I1 + I2 + I4.

The second statement on Γp,qZ can be proved in the same way, using i1 and

i2 in Z. �

Let P be any order filter of P(M). We choose a sequence of order filters

of the form

∅,P1,P2, . . . ,P, . . . ,P(M),

where an order filter in the sequence is obtained from the preceding one by

adding a single flat. The corresponding sequence of matroidal flips interpolates

between ΣM,∅ and ΣM:

ΣM,∅  ΣM,P1  · · · ΣM,P  · · · ΣM.

Definition 6.9. We write ΦP and ΦPc for the compositions of pullback

homomorphisms

ΦP : A∗(M,∅) −→ A∗(M,P) and ΦPc : A∗(M,P) −→ A∗(M).

Note that ΦP and ΦPc depend only on P and not on the chosen sequence

of matroidal flips. The composition of all the pullback homomorphisms ΦPc ◦
ΦP is uniquely determined by its property

ΦPc ◦ ΦP (xi) = αM.



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 417

6.3. Let P− and P+ be as before, and let Z be the center of the ma-

troidal flip from P− to P+. For positive integers p and q, we consider the

pullback homomorphism in degree q

Φq
Z : Aq(M,P−) −→ Aq(M,P+)

and the Gysin homomorphism of type p, q

Ψp,q
Z : Aq−p(MZ) −→ Aq(M,P+).

Proposition 6.10. For any positive integer q, the sum of the pullback

homomorphism and Gysin homomorphisms

Φq
Z ⊕

rk(Z)−1⊕
p=1

Ψp,q
Z

is a surjective group homomorphism to Aq(M,P+).

The proof is given below Lemma 6.16. In Theorem 6.18, we will show that

the sum is in fact an isomorphism.

Corollary 6.11. The pullback homomorphism ΦZ is an isomorphism in

degree r:

Φr
Z : Ar(M,P−) ' Ar(M,P+).

Repeated application of the corollary shows that, for any order filter P,

the homomorphisms ΦP and ΦPc are isomorphisms in degree r:

Φr
P : Ar(M,∅) ' Ar(M,P) and Φr

Pc : Ar(M,P) ' Ar(M).

Proof of Corollary 6.11. The contracted matroid MZ has rank crkM(Z),

and hence

Ψp,q
Z = 0 when p < rkM(Z) and q = r.

Therefore Proposition 6.10 for q = r says that the homomorphism ΦZ is sur-

jective in degree r.

Choose a sequence of matroidal flips

ΣM,∅  · · · ΣM,P−  ΣM,P+  · · · ΣM,

and consider the corresponding group homomorphisms

Ar(M,∅)
ΦP− // Ar(M,P−)

ΦPZ // Ar(M,P+)
ΦPc

+ // Ar(M).

Proposition 6.10 applied to each matroidal flips in the sequence shows that

all three homomorphisms are surjective. The first group is clearly isomorphic

to Z, and by Proposition 5.10, the last group is also isomorphic to Z. It follows

that all three homomorphisms are isomorphisms. �
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Let βMZ
be the element β in Definition 5.7 for the contracted matroid MZ .

The first part of Proposition 6.8 shows that the expression xZ βMZ
defines an

element in A∗(M,P+).

Lemma 6.12. For any element i in Z , we have

xixZ + x2
Z + xZβMZ

= 0 ∈ A∗(M,P+).

Proof. We choose an element j in E \ Z and consider the linear relation

in SE∪P+ for i and j:(
xi +

∑
i∈F
j /∈F

xF

)
−
(
xj +

∑
j∈F
i/∈F

xF

)
∈ I4.

Since i is in Z, and Z is minimal in P+, multiplying the linear relation with

xZ gives

xZxi + x2
Z +

( ∑
Z(F(F∪{j}

xZxF

)
∈ I1 + I2 + I4.

The sum in the parenthesis is the image of βMZ
under the homomorphism Ψ1,2

Z .

�

Let αMZ be the element α in Definition 5.7 for the restricted matroid MZ .

The second part of Proposition 6.8 shows that the expression xZ αMZ defines

an element in A∗(M).

Lemma 6.13. If Z is maximal among flats strictly contained in a proper

flat ‹Z , then

xZxZ̃(xZ + αMZ ) = 0 ∈ A∗(M).

If Z is maximal among flats strictly contained in the flat E, then

xZ(xZ + αMZ ) = 0 ∈ A∗(M).

Proof. We justify the first statement; the second statement can be proved

in the same way.

Choose an element i in Z and an element j in ‹Z \ Z. The linear relation

for i and j shows that ∑
i∈F
j /∈F

xF =
∑
j∈F
i/∈F

xF ∈ A∗(M).

Multiplying both sides by the monomial xZ x
Z̃

, the incomparability relations

give

x2
Z x

Z̃
+
( ∑
i∈F(Z

xF xZ
)
x
Z̃

= 0 ∈ A∗(M).

The sum in the parenthesis is the image of αMZ under the homomorphism Γ1,2
Z .

�
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Lemma 6.14. The sum of the images of Gysin homomorphisms is the

ideal generated by xZ :∑
p>0

∑
q>0

im Ψp,q
Z = xZ A∗(M,P+).

Proof. It is enough to prove that the right-hand side is contained in the

left-hand side. Since Z is minimal in P+, the incomparability relations in I1

and the complement relations in I2 show that any nonzero degree q monomial

in the ideal generated by xZ is of the form

xkZ
∏
F∈F

xkFF
∏
i∈I

xkii , I ⊆ Z < F ,

where the sum of the exponents is q. Since the exponent k of xZ is positive,

Lemma 6.12 shows that this monomial is in the sum

im Ψk,q
Z + im Ψk+1,q

Z + · · ·+ im Ψq,q
Z . �

Lemma 6.15. For positive integers p and q, we have

xZ im Φq
Z ⊆ im Ψ1,q+1

Z and xZ im Ψp,q
Z ⊆ im Ψp+1,q+1

Z .

If F is a proper flat strictly containing Z , then

xF im Φq
Z ⊆ im Φq+1

Z and xF im Ψp,q
Z ⊆ im Ψp,q+1

Z .

Proof. Only the first inclusion is nontrivial. Note that the left-hand side

is generated by elements of the form

ξ = xZ
∏
F∈F

xkFF
∏
i∈I\Z

xkii
∏

i∈I∩Z
(xi + xZ)ki ,

where I is a subset of E and F is a flag in P−. When I is contained in Z,

Lemma 6.12 shows that

ξ = xZ
∏
F∈F

xkFF
∏
i∈I

(−βMZ
)ki ∈ im Ψ1,q+1

Z .

When I is not contained in Z, a complement relation in SE∪P+ shows that

ξ = 0. �

Lemma 6.16. For any integers k ≥ rkM(Z) and q ≥ k, we have

im Ψk,q
Z ⊆ im Φq

Z +
k−1∑
p=1

im Ψp,q
Z .

Proof. By the second statement of Lemma 6.15, it is enough to prove the

assertion when q = k: The general case can be deduced by multiplying both

sides of the inclusion by xF for Z < F .
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By the first statement of Lemma 6.15, it is enough to justify the above

when k = rkM(Z): The general case can be deduced by multiplying both sides

of the inclusion by powers of xZ .

We prove the assertion when k = q = rkM(Z). For this we choose a basis

I of Z and expand the product∏
i∈I

(xi + xZ) ∈ im Φk
Z .

The closure relation for I shows that the term
∏
i∈I xi in the expansion is zero,

and hence, by Lemma 6.12,∏
i∈I

(xi + xZ) = (−βMZ
)k − (−xZ − βMZ

)k ∈ im Φk
Z .

Expanding the right-hand side, we see that

xkZ ∈ im Φk
Z +

k−1∑
p=1

im Ψp,k
Z .

Since im Ψk,k
Z is generated by xkZ , this implies the asserted inclusion. �

Proof of Proposition 6.10. By Lemma 6.16, it is enough to show that the

sum Φq
Z ⊕

⊕q
p=1 Ψp,q

Z is surjective. By Lemma 6.14, the image of the second

summand is the degree q part of the ideal generated by xZ .

We show that any monomial is in the image of the pullback homomorphism

ΦZ modulo the ideal generated by xZ . Note that any degree q monomial not

in the ideal generated by xZ is of the form∏
F∈F

xkFF
∏
i∈I

xkii , Z /∈ F .

Modulo the ideal generated by xZ , this monomial is equal to

ΦZ

( ∏
F∈F

xkFF
∏
i∈I

xkii

)
=
∏
F∈F

xkFF
∏
i∈I\Z

xkii
∏

i∈I∩Z
(xi + xZ)ki . �

We use Proposition 6.10 to show that the Gysin homomorphism between

top degrees is an isomorphism.

Proposition 6.17. The Gysin homomorphism Ψp,q
Z is an isomorphism

when p = rk(Z) and q = r:

Ψp,q
Z : Acrk(Z)−1(MZ) ' Ar(M,P+).

Proof. We consider the composition

Acrk(Z)−1(MZ)
Ψp,q

Z // Ar(M,P+)
ΦPc

+ // Ar(M), xF 7−→ x
rk(Z)
Z xF .

The second map is an isomorphism by Corollary 6.11, and therefore it is enough

to show that the composition is an isomorphism.
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For this we choose two flags of nonempty proper flats of M:

Z1 = a flag of flats strictly contained in Z with |Z1| = rk(Z)− 1,

Z2 = a flag of flats strictly containing Z with |Z2| = crk(Z)− 1.

We claim that the composition maps a generator to a generator:

(−1)rk(Z)−1 x
rk(Z)
Z xZ2 = xZ1 xZ xZ2 ∈ A∗(M).

Indeed, the map Γ
1,rk(Z)
Z applied to the second formula of Proposition 5.8 for

MZ gives

xZ1 xZ xZ2 = (αMZ )rk(Z)−1 xZ xZ2 ∈ A∗(M)

and, by Lemma 6.13, the right-hand side of the above is equal to

(−1)rk(Z)−1 x
rk(Z)
Z xZ2 ∈ A∗(M). �

6.4. Let P−, P+, and Z be as before, and let P be any order filter of

P(M).

Theorem 6.18 (Decomposition). For any positive integer q, the sum of

the pullback homomorphism and the Gysin homomorphisms

Φq
Z ⊕

rk(Z)−1⊕
p=1

Ψp,q
Z

is an isomorphism to Aq(M,P+).

Theorem 6.19 (Poincaré Duality). For any nonnegative integer q ≤ r,

the multiplication map

Aq(M,P)×Ar−q(M,P) −→ Ar(M,P)

defines an isomorphism between groups

Ar−q(M,P) ' HomZ(Aq(M,P), Ar(M,P)).

In particular, the groups Aq(M,P) are torsion free. We simultaneously

prove Theorem 6.18 (Decomposition) and Theorem 6.19 (Poincaré Duality)

by lexicographic induction on the rank of matroids and the cardinality of the

order filters. The proof is given below in Lemma 6.21.

Lemma 6.20. Let q1 and q2 be positive integers.

(1) For any positive integer p, we have

im Ψp,q1
Z · im Φq2

Z ⊆ im Ψp,q1+q2
Z .

(2) For any positive integers p1 and p2, we have

im Ψp1,q1
Z · im Ψp2,q2

Z ⊆ im Ψp1+p2,q1+q2
Z .
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The first inclusion shows that, when q1 + q2 = r and p is less than rk(Z),

im Ψp,q1
Z · im Φq2

Z = 0.

The second inclusion shows that, when q1+q2 = r and p1+p2 is less than rk(Z),

im Ψp1,q1
Z · im Ψp2,q2

Z = 0.

Proof. The assertions are direct consequences of Lemma 6.15. �

Lemma 6.21. Let q be a positive integer, and let p1, p2 be distinct positive

integers less than rk(Z).

(1) If Poincaré Duality holds for A∗(M,P−), then

ker Φq
Z = 0 and im Φq

Z ∩
rk(Z)−1∑
p=1

im Ψp,q
Z = 0.

(2) If Poincaré Duality holds for A∗(MZ), then

ker Ψp1,q
Z = ker Ψp2,q

Z = 0 and im Ψp1,q
Z ∩ im Ψp2,q

Z = 0

Proof. Let ξ be a nonzero element in the domain of Φq
Z . Since ΦZ is an

isomorphism between top degrees, Poincaré Duality for (M,P−) implies that

Φq
Z(ξ) · im Φr−q

Z 6= 0.

This shows that Φq
Z is injective. On the other hand, Lemma 6.20 shows that( rk(Z)−1∑

p=1

im Ψp,q
Z

)
· im Φr−q

Z = 0.

This shows that the image of Φq
Z intersects the image of ⊕rk(Z)−1

p=1 Ψp,q
Z trivially.

Let ξ be a nonzero element in the domain of Ψp,q
Z , where p = p1 or p = p2.

Since ΨZ is an isomorphism between top degrees, Poincaré Duality for MZ

implies that

Ψp,q
Z (ξ) · im Ψ

rk(Z)−p,r−q
Z 6= 0.

This shows that Ψp,q
Z is injective. For the assertion on the intersection, we

assume that p = p1 > p2. Under this assumption Lemma 6.20 shows

im Ψp2,q
Z · im Ψ

rk(Z)−p,r−q
Z = 0.

This shows that the image of Ψp1,q
Z intersects the image of Ψp2,q

Z trivially. �

Proofs of Theorems 6.18 and 6.19. We simultaneously prove Decomposi-

tion and Poincaré Duality by lexicographic induction on the rank of M and

the cardinality of P−. Note that both statements are valid when r = 1, and
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Poincaré Duality holds when q = 0 or q = r. Assuming that Poincaré Duality

holds for A∗(MZ), we show the implications(
Poincaré Duality holds for A∗(M,P−)

)
=⇒

(
Poincaré Duality holds for A∗(M,P−)

and Decomposition holds for P− ⊆P+

)
=⇒

(
Poincaré Duality holds for A∗(M,P+)

)
.

The base case of the induction is provided by the isomorphism

A∗(M,∅) ' Z[x]/(xr+1).

The first implication follows from Proposition 6.10 and Lemma 6.21.

We prove the second implication. Decomposition for P− ⊆ P+ shows

that, for any positive integer q < r, we have

Aq(M,P+) = im Φq
Z ⊕ im Ψ1,q

Z ⊕ im Ψ2,q
Z ⊕ · · · ⊕ im Ψ

rk(Z)−1,q
Z , and

Ar−q(M,P+) = im Φr−q
Z ⊕ im Ψ

rk(Z)−1,r−q
Z

⊕ im Ψ
rk(Z)−2,r−q
Z ⊕ · · · ⊕ im Ψ1,r−q

Z .

By Poincaré Duality for (M,P−) and Poincaré Duality for MZ , all the sum-

mands above are torsion free. We construct bases of the sums by choosing

bases of their summands.

We use Corollary 6.11 and Proposition 6.17 to obtain isomorphisms

Ar(M,P−) ' Ar(M,P+) ' Acrk(Z)−1(MZ) ' Z.

For a positive integer q < r, consider the matrices of multiplications

M+ :=
(
Aq(M,P+)×Ar−q(M,P+) −→ Z

)
,

M− :=
(
Aq(M,P−)×Ar−q(M,P−) −→ Z

)
and, for positive integers p < rk(Z),

Mp :=
(
Aq−p(MZ)×Ar−q−rk(Z)+p(MZ) −→ Z

)
.

By Lemma 6.20, under the chosen bases ordered as shown above, M+ is a

block upper triangular matrix with block diagonals M− and Mp, up to signs.

It follows from Poincaré Duality for (M,P−) and Poincaré Duality for MZ that

det M+ = ±det M− ×
rk(Z)−1∏
p=1

det Mp = ±1.

This proves the second implication, completing the lexicographic induction.

�
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7. Hard Lefschetz property and Hodge-Riemann relations

7.1. Let r be a nonnegative integer. We record basic algebraic facts con-

cerning Poincaré duality, the hard Lefschetz property, and the Hodge-Riemann

relations.

Definition 7.1. A graded Artinian ring R∗ satisfies Poincaré duality of

dimension r if

(1) there are isomorphisms R0 ' R and Rr ' R,

(2) for every integer q > r, we have Rq ' 0, and

(3) for every integer q ≤ r, the multiplication defines an isomorphism

Rr−q −→ HomR(Rq, Rr).

In this case, we say that R∗ is a Poincaré duality algebra of dimension r.

In the remainder of this subsection, we suppose that R∗ is a Poincaré

duality algebra of dimension r. We fix an isomorphism, called the degree map

for R∗,

deg : Rr −→ R.

Proposition 7.2. For any nonzero element x in Rd, the quotient ring

R∗/ann(x), where ann(x) := {a ∈ R∗ | x · a = 0},

is a Poincaré duality algebra of dimension r − d.

By definition, the degree map for R∗/ann(x) induced by x is the homo-

morphism

deg(x · −) : Rr−d/ann(x) −→ R, a+ ann(x) 7−→ deg(x · a).

The Poincaré duality for R∗ shows that the degree map for R∗/ann(x) is an

isomorphism.

Proof. This is straightforward to check; see, for example, [MS05a, Cor.

I.2.3]. �

Definition 7.3. Let ` be an element of R1, and let q be a nonnegative

integer ≤ r
2 .

(1) The Lefschetz operator on Rq associated to ` is the linear map

Lq` : Rq −→ Rr−q, a 7−→ `r−2q a.

(2) The Hodge-Riemann form on Rq associated to ` is the symmetric bilinear

form

Qq` : Rq ×Rq −→ R, (a1, a2) 7−→ (−1)q deg (a1 · Lq`(a2)).
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(3) The primitive subspace of Rq associated to ` is the subspace

P q` := {a ∈ Rq | ` · Lq`(a) = 0} ⊆ Rq.

Definition 7.4 (Hard Lefschetz property and Hodge-Riemann relations).

We say that

(1) R∗ satisfies HL(`) if the Lefschetz operator Lq` is an isomorphism on Rq

for all q ≤ r
2 , and

(2) R∗ satisfies HR(`) if the Hodge-Riemann form Qq` is positive definite on

P q` for all q ≤ r
2 .

If the Lefschetz operator Lq` is an isomorphism, then there is a decompo-

sition

Rq+1 = P q+1
` ⊕ `Rq.

Consequently, when R∗ satisfies HL(`), we have the Lefschetz decomposition of

Rq for q ≤ r
2 :

Rq = P q` ⊕ `P
q−1
` ⊕ · · · ⊕ `q P 0

` .

An important basic fact is that the Lefschetz decomposition of Rq is orthogonal

with respect to the Hodge-Riemann form Qq` : For nonnegative integers q1 <

q2 ≤ q, we have

Qq`

(
`q1a1, `

q2a2

)
= (−1)qdeg

(
`q2−q1

Ä
`r−2(q−q1)a1

ä
a2

)
= 0, a1 ∈ P q−q1` , a2 ∈ P q−q2` .

Proposition 7.5. The following conditions are equivalent for ` ∈ R1:

(1) R∗ satisfies HL(`).

(2) The Hodge-Riemann form Qq` on Rq is nondegenerate for all q ≤ r
2 .

Proof. The Hodge-Riemann form Qq` on Rq is nondegenerate if and only

if the composition

Rq
Lq
` // Rr−q // HomR(Rq, Rr)

is an isomorphism, where the second map is given by the multiplication in R∗.

Since R∗ satisfies Poincaré duality, the composition is an isomorphism if and

only if Lq` is an isomorphism. �

If Lq`(a) = 0, then Qq`(a, a) = 0 and a ∈ P q` . Thus the property HR(`)

implies the property HL(`).

Proposition 7.6. The following conditions are equivalent for ` ∈ R1:

(1) R∗ satisfies HR(`).
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(2) The Hodge-Riemann form Qq` on Rq is nondegenerate and has signature

q∑
p=0

(−1)q−p
(

dimRR
p − dimRR

p−1
)

for all q ≤ r

2
.

Here, the signature of a symmetric bilinear form is n+ − n−, where n+

and n− are the number of positive and negative eigenvalues of any matrix

representation the bilinear form [Jac85, §6.3].

Proof. If R∗ satisfies HR(`), then R∗ satisfies HL(`), and therefore we have

the Lefschetz decomposition

Rq = P q` ⊕ `P
q−1
` ⊕ · · · ⊕ `q P 0

` .

Recall that the Lefschetz decomposition of Rq is orthogonal with respect to

Qq` , and note that there is an isometryÄ
P p` , Q

p
`

ä
'
Ä
`q−pP p` , (−1)q−pQq`

ä
for every nonnegative integer p ≤ q.

Therefore the condition HR(`) implies that

(
signature of Qq` on Rq

)
=

q∑
p=0

(−1)q−p
(
signature of Qp` on P p`

)

=
q∑
p=0

(−1)q−p
(
dimRR

p − dimRR
p−1
)
.

Conversely, suppose that the Hodge-Riemann forms Qq` are nondegenerate

and their signatures are given by the stated formula. Proposition 7.5 shows

that R∗ satisfies HL(`), and hence

Rq = P q` ⊕ `P
q−1
` ⊕ · · · ⊕ `q P 0

` .

The Lefschetz decomposition of Rq is orthogonal with respect to Qq` , and there-

fore(
signature of Qq` on P q`

)
=
(
signature of Qq` on Rq

)
−
(
signature of Qq−1

` on Rq−1
)
.

The assumptions on the signatures of Qq` and Qq−1
` show that the right-hand

side is

dimRR
q − dimRR

q−1 = dimRP
q
` .

Since Qq` is nondegenerate on P q` , this means that Qq` is positive definite on P q` .

�
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7.2. In this subsection, we show that the properties HL and HR are

preserved under the tensor product of Poincaré duality algebras.

Let R∗1 and R∗2 be Poincaré duality algebras of dimensions r1 and r2 re-

spectively. We choose degree maps for R∗1 and for R∗2, denoted

deg1 : Rr11 −→ R, deg2 : Rr22 −→ R.

We note that R1⊗RR2 is a Poincaré duality algebra of dimension r1 + r2: For

any two graded components of the tensor product with complementary degrees(
Rp1 ⊗R R

0
2

)
⊕
(
Rp−1

1 ⊗R R
1
2

)
⊕ · · · ⊕

(
R0

1 ⊗R R
p
2

)
,(

Rq1 ⊗R R
0
2

)
⊕
(
Rq−1

1 ⊗R R
1
2

)
⊕ · · · ⊕

(
R0

1 ⊗R R
q
2

)
,

the multiplication of the two can be represented by a block diagonal matrix

with diagonals(
Rp−k1 ⊗R R

k
2

)
×
(
Rq−r2+k

1 ⊗R R
r2−k
2

)
−→ Rr11 ⊗R R

r2
2 .

By definition, the induced degree map for the tensor product is the isomorphism

deg1 ⊗R deg2 : Rr11 ⊗R R
r2
2 −→ R.

We use the induced degree map whenever we discuss the property HR for

tensor products.

Proposition 7.7. Let `1 be an element of R1
1, and let `2 be an element

of R1
2.

(1) If R∗1 satisfies HL(`1) and R∗2 satisfies HL(`2), then R∗1 ⊗R R
∗
2 satisfies

HL(`1 ⊗ 1 + 1⊗ `2).

(2) If R∗1 satisfies HR(`1) and R∗2 satisfies HR(`2), then R∗1 ⊗R R
∗
2 satisfies

HR(`1 ⊗ 1 + 1⊗ `2).

We begin the proof with the following special case.

Lemma 7.8. Let r1≤r2 be nonnegative integers, and consider the Poincaré

duality algebras

R∗1 = R[x1]/(xr1+1
1 ) and R∗2 = R[x2]/(xr2+1

2 )

equipped with the degree maps

deg1 : Rr11 −→ R, xr11 7−→ 1,

deg2 : Rr22 −→ R, xr22 7−→ 1.

Then R∗1 satisfies HR(x1), R2 satisfies HR(x2), and R∗1⊗RR
∗
2 satisfies HR(x1⊗

1 + 1⊗ x2).
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The first two assertions are easy to check, and the third assertion fol-

lows from the Hodge-Riemann relations for the cohomology of the compact

Kähler manifold CPr1 × CPr2 . Below we sketch a combinatorial proof using

the Lindström-Gessel-Viennot lemma (cf. [McD11, proof of Lemma 2.2]).

Proof. For the third assertion, we identify the tensor product with

R∗ := R[x1, x2]/(xr1+1
1 , xr2+1

2 ) and set ` := x1 + x2.

The induced degree map for the tensor product will be written

deg : Rr1+r2 −→ R, xr11 x
r2
2 7−→ 1.

Claim. For some (equivalently any) choice of basis of Rq , we have

(−1)
q(q+1)

2 det
Ä
Qq`
ä
> 0 for all nonnegative integers q ≤ r1.

We show that it is enough to prove the claim. The inequality of the claim

implies that Qq` is nondegenerate for q ≤ r1, and hence Lq` is an isomorphism

for q ≤ r1. The Hilbert function of R∗ forces the dimensions of the primitive

subspaces to satisfy

dimRP
q
` =

1 for q ≤ r1,

0 for q > r1

and that there is a decomposition

Rq = P q` ⊕ `P
q−1
` ⊕ · · · ⊕ `qP 0

` for q ≤ r1.

Every summand of the above decomposition is 1-dimensional, and hence(
signature of Qq` on Rq

)
= ±1−

(
signature of Qq−1

` on Rq−1
)
.

The claim on the determinant of Qq` determines the sign of ±1 in the above

equality: (
signature of Qq`

)
= 1−

(
signature of Qq−1

`

)
.

It follows that the signature of Qq` on P q` is 1 for q ≤ r1, and thus R satisfies

HR(`).

To prove the claim, we consider the monomial basis{
xi1x

q−i
2 | i = 0, 1, . . . , q

}
⊆ Rq.

The matrix [aij ] that represents (−1)qQq` has binomial coefficients as its entries:

[aij ] :=

[
deg

(
(x1 + x2)r1+r2−2qxi+j1 xq−i+q−j2

)]
=

[Ç
r1 + r2 − 2q

r1 − i− j

å]
.

The sign of the determinant of [aij ] can be determined using the Lindström-

Gessel-Viennot lemma:

(−1)q(q+1)/2det [aij ] > 0.

See [Aig07, §5.4] for an exposition and similar examples. �
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Now we reduce Proposition 7.7 to the case of Lemma 7.8. We first intro-

duce some useful notions to be used in the remaining part of the proof.

Let R∗ be a Poincaré duality algebra of dimension r, and let ` be an

element of R1.

Definition 7.9. Let V ∗ be a graded subspace of R∗. We say that

(1) V ∗ satisfies HL(`) if Qq` restricted to V q is nondegenerate for all nonnega-

tive q ≤ r
2 .

(2) V ∗ satisfies HR(`) if Qq` restricted to V q is nondegenerate and has signature

q∑
p=0

(−1)q−p
(
dimRV

p − dimRV
p−1
)

for all nonnegative q ≤ r

2
.

Propositions 7.5 and 7.6 show that this agrees with the previous definition

when V ∗ = R∗.

Definition 7.10. Let V ∗1 and V ∗2 be graded subspaces of R∗. We write

V ∗1 ⊥PD V ∗2

to mean that V ∗1 ∩V ∗2 = 0 and V r−q
1 V q

2 = 0 for all nonnegative integers q ≤ r,
and we write

V ∗1 ⊥Q∗` V
∗

2

to mean that V ∗1 ∩ V ∗2 = 0 and Qq`(V
q

1 , V
q

2 ) = 0 for all nonnegative integers

q ≤ r
2 .

Here we record basic properties of the two notions of orthogonality. Let

S∗ be another Poincaré duality algebra of dimension s.

Lemma 7.11. Let V ∗1 , V
∗

2 ⊆ R∗ and W ∗1 ,W
∗
2 ⊆ S∗ be graded subspaces.

(1) If V ∗1 ⊥Q∗` V
∗

2 and if both V ∗1 , V ∗2 satisfy HL(`), then V ∗1 ⊕V ∗2 satisfy HL(`).

(2) If V ∗1 ⊥Q∗` V ∗2 and if both V ∗1 , V ∗2 satisfy HR(`), then V ∗1 ⊕ V ∗2 satisfy

HR(`).

(3) If V ∗1 ⊥PD V ∗2 and if `V ∗1 ⊆ V ∗1 , then V ∗1 ⊥Q∗` V
∗

2 .

(4) If V ∗1 ⊥PD V ∗2 , then (V ∗1 ⊗R W
∗
1 ) ⊥PD (V ∗2 ⊗R W

∗
2 ).

Proof. The first two assertions are straightforward. We justify the third

assertion: For any nonnegative integer q ≤ r
2 , the assumption on V ∗1 implies

Lq`V
q

1 ⊆ V
r−q

1 , and hence

Qq`(V
q

1 , V
q

2 ) ⊆ deg(V r−q
1 V q

2 ) = 0.

For the fourth assertion, we check that for any nonnegative integers p1, p2, q1, q2

whose sum is r + s,

V p1
1 V p2

2 ⊗R W
q1
1 W q2

2 = 0.
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The assumption on V ∗1 and V ∗2 shows that the first factor is trivial if p1+p2 ≥ r,
and the second factor is trivial if otherwise. �

Proof of Proposition 7.7. Suppose that R∗1 satisfies HR(`1) and that R∗2
satisfies HR(`2). We set

R∗ := R∗1 ⊗R R
∗
2, ` := `1 ⊗ 1 + 1⊗ `2.

We show that R∗ satisfy HR(`). The assertion on HL can be proved in the

same way.

For every p ≤ r1
2 , choose an orthogonal basis of P p`1 ⊆ Rp1 with respect

to Qp`1 : {
vp1 , v

p
2 , . . . , v

p
m(p)

}
⊆ P p`1 .

Similarly, for every q ≤ r2
2 , choose an orthogonal basis of P q`2 ⊆ R

q
2 with respect

to Qq`2 : {
wq1, w

q
2, . . . , w

q
n(q)

}
⊆ P q`2 .

Here we use the upper indices to indicate the degrees of basis elements. To

each pair of vpi and wqj , we associate a graded subspace of R∗:

B∗(vpi , w
q
j ) := B∗(vpi )⊗R B

∗(wqj ), where

B∗(vpi ) := 〈vpi 〉 ⊕ `1〈vpi 〉 ⊕ · · · ⊕ `r1−2p
1 〈vqi 〉 ⊆ R

∗
1,

B∗(wqj ) := 〈wqj 〉 ⊕ `2〈w
q
j 〉 ⊕ · · · ⊕ `

r2−2q〈wqj 〉 ⊆ R
∗
2,

Let us compare the tensor product B∗(vpi , w
q
j ) with the truncated polynomial

ring

S∗p,q := R[x1, x2]/(xr1−2p+1
1 , xr2−2q+1

2 ).

The properties HR(`1) and HR(`2) show that, for every nonnegative integer

k ≤ r1+r2−2p−2q
2 , there is an isometry(

Bk+p+q(vpi , w
q
j ), Q

k+p+q
`

)
'
(
Skp,q, (−1)p+qQkx1+x2

)
.

Therefore, by Lemma 7.8, the graded subspace B∗(vpi , w
q
j ) ⊆ R∗ satisfies

HR(`).

The properties HL(`1) and HL(`2) imply that there is a direct sum de-

composition

R∗ =
⊕
p,q,i,j

B∗(vpi , w
q
j ).

It is enough to prove that the above decomposition is orthogonal with respect

to Q∗` :

Claim. Any two distinct summands of R∗ satisfy B∗(v, w) ⊥Q∗
`
B∗(v′, w′).
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For the proof of the claim, we may suppose that w 6= w′. The orthogonality

of the Lefschetz decomposition for R∗2 with respect to Q∗`2 shows that

B(w) ⊥PD B(w′).

By the fourth assertion of Lemma 7.11, the above implies

B∗(v, w) ⊥PD B∗(v′, w′).

By the third assertion of Lemma 7.11, this gives the claimed statement. �

7.3. Let Σ be a unimodular fan, or more generally a simplicial fan in NR.

The purpose of this subsection is to state and prove Propositions 7.15 and 7.16,

which together support the inductive structure of the proof of Main Theo-

rem 8.8.

Definition 7.12. We say that Σ satisfies Poincaré duality of dimension r

if A∗(Σ)R is a Poincaré duality algebra of dimension r.

In the remainder of this subsection, we suppose that Σ satisfies Poincaré

duality of dimension r. We fix an isomorphism, called the degree map for Σ,

deg : Ar(Σ)R −→ R.

As before, we write VΣ for the set of primitive ray generators of Σ.

Note that for any nonnegative integer q and e ∈ VΣ, there is a commutative

diagram

Aq(Σ)
pe //

xe·−
''

Aq(star(e,Σ))

xe·−

��
Aq+1(Σ),

where pe is the pullback homomorphism pe∈Σ and xe ·− are the multiplications

by xe. It follows that there is a surjective graded ring homomorphism

πe : A∗(star(e,Σ)) −→ A∗(Σ)/ann(xe).

Proposition 7.13. The star of e in Σ satisfies Poincaré duality of di-

mension r − 1 if and only if πe is an isomorphism :

A∗(star(e,Σ)) ' A∗(Σ)/ann(xe).

Proof. The “if” direction follows from Proposition 7.2: The quotient of

A∗(Σ) by the annihilator of xe is a Poincaré duality algebra of dimension r−1.

The “only if” direction follows from the observation that any surjective

graded ring homomorphism between Poincaré duality algebras of the same

dimension is an isomorphism. �
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Definition 7.14. Let Σ be a fan that satisfies Poincaré duality of dimen-

sion r. We say that

(1) Σ satisfies the hard Lefschetz property if A∗(Σ)R satisfies HL(`) for all

` ∈ KΣ;

(2) Σ satisfies the Hodge-Riemann relations if A∗(Σ)R satisfies HR(`) for all

` ∈ KΣ; and

(3) Σ satisfies the local Hodge-Riemann relations if the Poincaré duality alge-

bra

A∗(Σ)R/ann(xe)

satisfies HR(`e) with respect to the degree map induced by xe for all ` ∈
KΣ and e ∈ VΣ.

Hereafter we write `e for the image of ` in the quotient A∗(Σ)R/ann(xe).

Proposition 7.15. If Σ satisfies the local Hodge-Riemann relations, then

Σ satisfies the hard Lefschetz property.

Proof. By definition, for ` ∈ KΣ there are positive real numbers ce such

that

` =
∑
e∈VΣ

ce xe ∈ A1(Σ)R.

We need to show that the Lefschetz operator Lq` on Aq(Σ)R is injective for all

q ≤ r
2 . Nothing is claimed when r = 2q, so we may assume that r − 2q is

positive.

Let f be an element in the kernel of Lq` , and write fe for the image of f

in the quotient Aq(Σ)R/ann(xe). Note that the element f has the following

properties:

(1) for all e ∈ VΣ, the image fe belongs to the primitive subspace P q`e ; and

(2) for the positive real numbers ce as above, we have∑
e∈VΣ

ceQ
q
`e

(fe, fe) = Qq`(f, f) = 0.

By the local Hodge-Riemann relations, the two properties above show that all

the fe are zero:

xe · f = 0 ∈ A∗(Σ)R for all e ∈ VΣ.

Since the elements xe generate the Poincaré duality algebra A∗(Σ)R, this im-

plies that f = 0. �

Proposition 7.16. If Σ satisfies the hard Lefschetz property, then the

following are equivalent :

(1) A∗(Σ)R satisfies HR(`) for some ` ∈ KΣ;

(2) A∗(Σ)R satisfies HR(`) for all ` ∈ KΣ.
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Proof. Let `0 and `1 be elements of KΣ, and suppose that A∗(Σ)R satisfies

HR(`0). Consider the parametrized family

`t := (1− t) `0 + t `1, 0 ≤ t ≤ 1.

Since KΣ is convex, the elements `t are ample for all t.

Note that Qq`t are nondegenerate on Aq(Σ)R for all t and q ≤ r
2 because

Σ satisfies the hard Lefschetz property. It follows that the signatures of Qq`t
should be independent of t for all q ≤ r

2 . Since A∗(Σ)R satisfies HR(`0), the

common signature should be

q∑
p=0

(−1)q−p
(
dimR Ap(Σ)R − dimR Ap−1(Σ)R

)
.

We conclude by Proposition 7.6 that A∗(Σ)R satisfies HR(`1). �

8. Proof of the main theorem

8.1. As a final preparation for the proof of the main theorem, we show

that the property HR is preserved by a matroidal flip for particular choices of

ample classes.

Let M be as before, and consider the matroidal flip from P− to P+ with

center Z. We will use the following homomorphisms:

(1) the pullback homomorphism ΦZ : A∗(M,P−) −→ A∗(M,P+);

(2) the Gysin homomorphisms Ψp,q
Z : Aq−p(MZ) −→ Aq(M,P+);

(3) the pullback homomorphism pZ : A∗(M,P−) −→ A∗(MZ).

The homomorphism pZ is obtained from the graded ring homomorphism pσ∈Σ,

where σ = σZ<∅ and Σ = ΣM,P− , making use of the identification

star(σ,Σ) ' ΣMZ
.

In the remainder of this section, we fix a strictly convex piecewise linear func-

tion `− on ΣM,P− . For nonnegative real numbers t, we set

`+(t) := ΦZ(`−)− txZ ∈ A1(M,P+)⊗Z R.

We write `Z for the pullback of `− to the star of the cone σZ<∅ in the Bergman

fan ΣM,P− :

`Z := pZ(`−) ∈ A1(MZ)⊗Z R.
Proposition 4.4 shows that `Z is the class of a strictly convex piecewise linear

function on ΣMZ
.

Lemma 8.1. `+(t) is strictly convex for all sufficiently small positive t.

Proof. It is enough to show that `+(t) is strictly convex around a given

cone σI<F in ΣM,P+ .
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When Z /∈ F , the cone σI<F is in the fan ΣM,P− , and hence we may

suppose that

`− is zero on σI<F and positive on the link of σI<F in ΣM,P− .

It is straightforward to deduce from the above that if

0 < t <
∑
i∈Z\I

`−(ei),

then `+(t) is zero on σI<F and positive on the link of σI<F in ΣM,P+ . Note

that Z \ I is nonempty and each of the summands in the right-hand side of the

above inequality is positive.

When Z ∈ F , the cone σZ<F\{Z} is in the fan ΣM,P− , and hence we may

suppose that

`− is zero on σZ<F\{Z} and positive on the link of σZ<F\{Z} in ΣM,P− .

Let J be the flat minF \ {Z}, and let m(t) be the linear function on NE

defined by setting

ei 7−→


t
|Z\I| if i ∈ Z \ I,
−t
|J\Z| if i ∈ J \ Z,

0 if otherwise.

It is straightforward to deduce from the above that, for all sufficiently small

positive t,

`+(t) +m(t) is zero on σI<F and positive on the link of σI<F in ΣM,P+ .

More precisely, the latter statement is valid for all t that satisfy the inequalities

0 < t < min
{
`−(eF ), eF is in the link of σZ<F\{Z} in ΣM,P−

}
.

Here the minimum of the empty set is defined to be ∞. �

We write “deg” for the degree map of M and of MZ , and we fix the degree

maps

deg+ : Ar(M,P+) −→ Z, a 7−→ deg
Ä
ΦPc

+
(a)
ä
,

deg− : Ar(M,P−) −→ Z, a 7−→ deg
Ä
ΦPc

−
(a)
ä
;

see Definition 6.9. We omit the subscripts + and − from the notation when

there is no danger of confusion. The goal of this subsection is to prove the

following:

Proposition 8.2. Let `−, `Z , and `+(t) be as above, and suppose that

(1) the Chow ring of ΣM,P− satisfies HR(`−), and

(2) the Chow ring of ΣMZ
satisfies HR(`Z).

Then the Chow ring of ΣM,P+ satisfies HR(`+(t)) for all sufficiently small

positive t.
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Hereafter we suppose HR(`−) and HR(`Z). We introduce the main char-

acters appearing in the proof of Proposition 8.2:

(1) a Poincaré duality algebra of dimension r:

A∗+ :=
r⊕
q=0

Aq+, Aq+ := Aq(M,P+)⊗Z R;

(2) a Poincaré duality algebra of dimension r:

A∗− :=
r⊕
q=0

Aq−, Aq− :=
(
im Φq

Z

)
⊗Z R;

(3) a Poincaré duality algebra of dimension r − 2:

T ∗Z :=
r−2⊕
q=0

T qZ , T qZ :=
(
Z[xZ ]/(x

rk(Z)−1
Z )⊗Z A

∗(MZ)
)q
⊗Z R;

(4) a graded subspace of A∗+, the sum of the images of the Gysin homomor-

phisms:

G∗Z :=
r−1⊕
q=1

GqZ , GqZ :=

rk(Z)−1⊕
p=1

(
im Ψp,q

Z

)
⊗Z R.

The truncated polynomial ring in the definition of T ∗Z is given the degree map

(−xZ)rk(Z)−2 7−→ 1,

so that the truncated polynomial ring satisfies HR(−xZ). The tensor product

T ∗Z is given the induced degree map

(−xZ)rk(Z)−2xZ 7−→ 1,

where Z is any maximal flag of nonempty proper flats of MZ . It follows from

Proposition 7.7 that the tensor product satisfies HR(1⊗ `Z − xZ ⊗ 1).

Definition 8.3. For nonnegative q ≤ r
2 , we write the Poincaré duality

pairings for A∗− and T ∗Z by¨
−,−

∂q
A∗−

: Aq− ×A
r−q
− −→ R,¨

−,−
∂q−1

T ∗Z
: T q−1

Z × T r−q−1
Z −→ R.

We omit the superscripts q and q−1 from the notation when there is no danger

of confusion.

Theorem 6.18 shows that ΦZ defines an isomorphism between the graded

rings

A∗(M,P−)⊗Z R ' A∗−
and that there is a decomposition into a direct sum

A∗+ = A∗− ⊕G∗Z .
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In addition, it shows that xZ · − is an isomorphism between the graded vector

spaces

T ∗Z ' G∗+1
Z .

The inverse of the isomorphism xZ · − will be denoted x−1
Z · −.

We equip the above graded vector spaces with the following symmetric

bilinear forms:

Definition 8.4. Let q be a nonnegative integer ≤ r
2 .

(1)
Ä
Aq+, Q

q
−⊕Q

q
Z

ä
: Qq− and QqZ are the bilinear forms on Aq− and GqZ defined

below.

(2)
Ä
Aq−, Q

q
−
ä
: Qq− is the restriction of the Hodge-Riemann form Qq`+(0) to Aq−.

(3)
Ä
T qZ , Q

q
T

ä
: QqT is the Hodge-Riemann form associated to

T :=
(
1⊗ `Z − xZ ⊗ 1

)
∈ T 1

Z .

(4)
Ä
GqZ , Q

q
Z

ä
: QqZ is the bilinear form defined by saying that xZ · − gives an

isometry (
T q−1
Z , Qq−1

T

)
'
(
GqZ , Q

q
Z

)
.

We observe that Qq−⊕Q
q
Z satisfies the following version of Hodge-Riemann

relations:

Proposition 8.5. The bilinear form Qq− ⊕ Q
q
Z is nondegenerate on Aq+

and has signature
q∑
p=0

(−1)q−p
(

dimRA
p
+ − dimRA

p−1
+

)
for all nonnegative q ≤ r

2
.

Proof. Theorem 6.18 shows that ΦZ ⊗Z R defines an isometry(
Aq(M,P−)R , Q

q
`−

)
'
(
Aq− , Q

q
−

)
.

It follows from the assumption on ΣM,P− that Qq− is nondegenerate on Aq− and

has signature
q∑
p=0

(−1)q−p
(
dimRA

p
− − dimRA

p−1
−

)
.

It follows from the assumption on ΣMZ
that QqZ is nondegenerate on GqZ and

has signature

q−1∑
p=0

(−1)q−p−1
(
dimRT

p
Z − dimRT

p−1
Z

)
=

q−1∑
p=0

(−1)q−p−1
(
dimRG

p+1
Z − dimRG

p
Z

)

=
q∑
p=0

(−1)q−p
(
dimRG

p
Z − dimRG

p−1
Z

)
.
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The assertion is deduced from the fact that the signature of the sum is the

sum of the signatures. �

We now construct a continuous family of symmetric bilinear forms Qqt on

Aq+ parametrized by positive real numbers t. This family Qqt will be shown to

have the following properties:

(1) For every positive real number t, there is an isometry(
Aq+ , Q

q
t

)
'
(
Aq+ , Q

q
`+(t)

)
.

(2) The sequence Qqt as t goes to zero converges to the sum of Qq− and QqZ :

lim
t→0

Qqt = Qq− ⊕Q
q
Z .

For positive real numbers t, we define a graded linear transformation

St : A∗+ −→ A∗+

to be the sum of the identity on A∗− and the linear transformations(
im Ψp,q

Z

)
⊗Z R −→

(
im Ψp,q

Z

)
⊗Z R, a 7−→ t−

rk(Z)
2

+p a.

The inverse transformation S−1
t is the sum of the identity on A∗− and the linear

transformations(
im Ψp,q

Z

)
⊗Z R −→

(
im Ψp,q

Z

)
⊗Z R, a 7−→ t

rk(Z)
2
−p a.

Definition 8.6. The symmetric bilinear form Qqt is defined so that St de-

fines an isometry(
Aq+ , Q

q
t

)
'
(
Aq+ , Q

q
`+(t)

)
for all nonnegative integers q ≤ r

2
.

In other words, for any elements a1, a2 ∈ Aq+, we set

Qqt (a1, a2) := (−1)q deg
Ä
St(a1) · `+(t)r−2q · St(a2)

ä
.

The first property of Qqt mentioned above is built into the definition. We

verify the assertion on the limit of Qqt as t goes to zero.

Proposition 8.7. For all nonnegative integers q ≤ r
2 , we have

lim
t→0

Qqt = Qq− ⊕Q
q
Z .

Proof. We first construct a deformation of the Poincaré duality pairing

Aq+ ×A
r−q
+ −→ R:¨

a1, a2

∂q
t

:= deg
Ä
St(a1), St(a2)

ä
, t > 0.

We omit the upper index q when there is no danger of confusion.
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Claim (1). For any b1, b2 ∈ A∗− and c1, c2 ∈ G∗Z and a1 = b1 + c1, a2 =

b2 + c2 ∈ A∗+,¨
a1, a2

∂
0

:= lim
t→0

¨
a1, a2

∂
t

=
¨
b1, b2

∂
A∗−
−
¨
x−1
Z c1, x

−1
Z c2

∂
T ∗Z
.

We write z := rk(Z) and choose bases of Aq+ and Ar−q+ that respect the

decompositions

Aq+ = Aq− ⊕
(
im Ψ1,q

Z ⊕ im Ψ2,q
Z ⊕ · · · ⊕ im Ψz−1,q

Z

)
⊗Z R and

Ar−q+ = Ar−q− ⊕
(
im Ψz−1,r−q

Z ⊕ im Ψz−2,r−q
Z ⊕ · · · ⊕ im Ψ1,r−q

Z

)
⊗Z R.

Let M− be the matrix of the Poincaré duality pairing between Aq− and Ar−q− .

Let Mp1,p2 be the matrix of the Poincaré duality pairing between im Ψp1,q
Z ⊗Z R

and im Ψp2,r−q
Z ⊗Z R. Lemma 6.20 shows that the matrix of the deformed

Poincaré pairing on A∗+ is

M− 0 0 0 · · · 0

0 M1,z−1 tM2,z−1 t2M3,z−1 · · · tz−2Mz−1,z−1

0 0 M2,z−2 tM3,z−2 tz−3Mz−1,z−2

0 0 0 M3,z−3 · · · tz−4Mz−1,z−3
...

...
...

...
. . .

...

0 0 0 0 0 Mz−1,1


.

The claim on the limit of the deformed Poincaré duality pairing follows. The

minus sign on the right-hand side of the claim comes from the following com-

putation made in Proposition 6.17:

deg
Ä
x

rk(Z)
Z xZ

ä
= (−1)rk(Z)−1.

We use the deformed Poincaré duality pairing to understand the limit of

the bilinear form Qqt . For an element a of A1
+, we write the multiplication with

a by

Ma : A∗+ −→ A∗+1
+ , x 7−→ a · x,

and we define its deformation Ma
t := S−1

t ◦Ma ◦ St. In terms of the operator

M
`+(t)
t , the bilinear form Qqt can be written

Qqt (a1, a2) = (−1)q deg
(
St(a1) ·M `+(t) ◦ · · · ◦M `+(t) ◦ St (a2)

)
= (−1)q deg

(
St(a1) · St ◦M `+(t)

t ◦ · · · ◦M `+(t)
t (a2)

)
= (−1)q

〈
a1 , M

`+(t)
t ◦ · · · ◦M `+(t)

t (a2)
〉
t
.



HODGE THEORY FOR COMBINATORIAL GEOMETRIES 439

Define linear operators M1⊗`Z , MxZ⊗1, and MT on G∗Z by the isomorphisms(
G∗Z ,M

1⊗`Z
)
'
(
T ∗−1, 1⊗ `Z · −

)
,(

G∗Z ,M
xZ⊗1

)
'
(
T ∗−1, xZ ⊗ 1 · −

)
,(

G∗Z ,M
T
)
'
(
T ∗−1,T · −

)
.

Note that the linear operator MT is the difference M1⊗`Z −MxZ⊗1.

Claim (2). The limit of the operator M
`+(t)
t as t goes to zero decomposes

into the sum (
A∗+ , lim

t→0
M

`+(t)
t

)
=
(
A∗− ⊕G∗Z , M `+(0) ⊕MT

)
.

Assuming the second claim, we finish the proof as follows: We have

lim
t→0

Qqt (a1, a2) = (−1)q lim
t→0

〈
a1 , M

`+(t)
t ◦ · · · ◦M `+(t)

t (a2)
〉
t
,

and from the first and the second claim, we see that the right-hand side is

(−1)q
〈
a1 , (M `+(0)⊕MT )◦· · ·◦(M `+(0)⊕MT ) (a2)

〉
0

= Qq−(b1, b2)+QqZ(c1, c2),

where ai = bi + ci for bi ∈ A∗− and ci ∈ G∗Z . Notice that the minus sign in the

first claim cancels with (−1)q−1 in the Hodge-Riemann form(
T q−1
Z , Qq−1

T

)
'
(
GqZ , Q

q
Z

)
.

We now prove the second claim made above. Write M
`+(t)
t as the difference

M
`+(t)
t = S−1

t ◦M `+(t) ◦ St = S−1
t ◦

(
M `+(0) −M txZ

)
◦ St = M

`+(0)
t −M txZ

t .

By Lemma 6.20, the operators M `+(0) and St commute, and hence(
A∗+ , M

`+(0)
t

)
=
(
A∗+ , M

`+(0)
)

=
(
A∗− ⊕G∗Z , M `+(0) ⊕M1⊗`Z

)
.

Lemma 6.20 shows that the matrix of MxZ in the chosen bases of Aq+ and Aq+1
+

is of the form 

0 0 0 · · · 0 B0

C 0 0 · · · 0 B1

0 Id 0 · · · 0 B2
...

...
. . .

. . .
...

...

0 0 · · · Id 0 Bz−2

0 0 · · · 0 Id Bz−1


,

where “Id” are the identity matrices representing

Aq−p(MZ)R ' im Ψp,q
Z −→ im Ψp+1,q+1

Z ' Aq−p(MZ)R.
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Note that the matrix of the deformed operator M txZ
t can be written

0 0 0 · · · 0 t
rk(Z)

2 B0

t
rk(Z)

2 C 0 0 · · · 0 trk(Z)−1B1

0 Id 0 · · · 0 trk(Z)−2B2
...

...
. . .

. . .
...

...

0 0 · · · Id 0 t2Bz−2

0 0 · · · 0 Id tBz−1


.

At the limit t = 0, the matrix represents the sum 0⊕MxZ⊗1, and therefore(
A∗+ , lim

t→0
M

`+(t)
t

)
=
(
A∗− ⊕G∗Z , M `+(0) ⊕M1⊗`Z

)
−
(
A∗− ⊕G∗Z , 0⊕MxZ⊗1

)
=
(
A∗− ⊕G∗Z , M `+(0) ⊕MT

)
.

This completes the proof of the second claim. �

Proof of Proposition 8.2. By Propositions 8.5 and 8.7, we know limt→0Q
q
t

is nondegenerate on Aq+ and has signature

q∑
p=0

(−1)q−p
(
dimRA

p
+ − dimRA

p−1
+

)
for all nonnegative q ≤ r

2
.

Therefore the same must be true for Qqt for all sufficiently small positive t. By

construction, there is an isometry(
Aq+ , Q

q
t

)
'
(
Aq+ , Q

q
`+(t)

)
,

and thus A∗+ satisfies HR(`+(t)) for all sufficiently small positive t. �

8.2. We are now ready to prove the main theorem. We write “deg” for

the degree map of M and, for an order filter P of PM, we fix an isomorphism

Ar(M,P) −→ Z, a 7−→ deg
Ä
ΦPc(a)

ä
.

Theorem 8.8 (Main Theorem). Let M be a loopless matroid, and let P
be an order filter of PM.

(1) The Bergman fan ΣM,P satisfies the hard Lefschetz property.

(2) The Bergman fan ΣM,P satisfies the Hodge-Riemann relations.

When P = PM, the above implies Theorem 1.4 in the introduction be-

cause any strictly submodular function defines a strictly convex piecewise linear

function on ΣM.

Proof. We prove by lexicographic induction on the rank of M and the

cardinality of P. The base case of the induction is when P is empty, where

we have

A∗(M,∅)R ' R[x]/(xr+1), xi 7−→ x.
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Under the above identification, the ample cone is the set of positive multiples

of x, and the degree xr is 1. It is straightforward to check in this case that

the Bergman fan satisfies the hard Lefschetz property and the Hodge-Riemann

relations.

For the general case, we set P = P+ and consider the matroidal flip from

P− to P+ with center Z. By Propositions 4.7 and 4.8, we may replace M by

the associated combinatorial geometry M. In this case, Proposition 3.5 shows

that the star of every ray in ΣM,P is a product of at most two Bergman fans

of matroids (one of which may not be a combinatorial geometry) to which the

induction hypothesis on the rank of matroid applies. We use Propositions 7.7

and 4.4 to deduce that the star of every ray in ΣM,P satisfies the Hodge-

Riemann relations; that is, ΣM,P satisfies the local Hodge-Riemann relations.

By Proposition 7.15, this implies that ΣM,P satisfies the hard Lefschetz prop-

erty.

Next we show that ΣM,P satisfies the Hodge-Riemann relations. Since

ΣM,P satisfies the hard Lefschetz property, Proposition 7.16 shows that it is

enough to prove that the Chow ring of ΣM,P satisfies HR(`) for some ` ∈ KM,P .

Since the induction hypothesis on the size of order filter applies to both ΣM,P−

and ΣMZ
, this follows from Proposition 8.2. �

We remark that the same inductive approach can be used to prove the

following stronger statement. (See [Cat08] for an overview of the analogous

facts in the context of convex polytopes and compact Kähler manifolds.) We

leave details to the interested reader.

Theorem 8.9. Let M be a loopless matroid on E, and let P be an order

filter of PM.

(1) The Bergman fan ΣM,P satisfies the mixed hard Lefschetz theorem: For

any multiset

L :=
¶
`1, `2, . . . , `r−2q

©
⊆ KM,P ,

the linear map given by the multiplication

LqL : Aq(M,P)R −→ Ar−q(M,P)R, a 7−→
Ä
`1`2 · · · `r−2q

ä
· a

is an isomorphism for all nonnegative integers q ≤ r
2 .

(2) The Bergman fan ΣM,P satisfies the mixed Hodge-Riemann Relations:

For any multiset

L :=
¶
`1, `2, . . . , `r−2q

©
⊆ KM,P and any ` ∈ KM,P ,

the symmetric bilinear form given by the multiplication

QqL : Aq(M,P)R×Aq(M,P)R −→ R, (a1, a2) 7−→ (−1)qdeg
Ä
a1 ·LqL (a2)

ä
is positive definite on the kernel of `·LqL for all nonnegative integers q ≤ r

2 .
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9. Log-concavity conjectures

9.1. Let M be a loopless matroid of rank r + 1 on the ground set E =

{0, 1, . . . , n}. The characteristic polynomial of M is defined to be

χM(λ) =
∑
I⊆E

(−1)|I| λcrk(I),

where the sum is over all subsets I ⊆ E and crk(I) is the corank of I in M.

Equivalently,

χM(λ) =
∑
F⊆E

µM(∅, F ) λcrk(F ),

where the sum is over all flats F ⊆ E and µM is the Möbius function of the

lattice of flats of M. Any one of the two descriptions clearly shows that

(1) the degree of the characteristic polynomial is r + 1,

(2) the leading coefficient of the characteristic polynomial is 1, and

(3) the characteristic polynomial satisfies χM(1) = 0.

See [Zas87], [Aig87] for basic properties of the characteristic polynomial and

its coefficients.

Definition 9.1. The reduced characteristic polynomial χM(λ) is

χM(λ) := χM(λ)/(λ− 1).

We define a sequence of integers µ0(M), µ1(M), . . . , µr(M) by the equality

χM(λ) =
r∑

k=0

(−1)kµk(M)λr−k.

The first number in the sequence is 1, and the last number in the sequence

is the absolute value of the Möbius number µM(∅, E). In general, µk(M) is the

alternating sum of the absolute values of the coefficients of the characteristic

polynomial

µk(M) = wk(M)− wk−1(M) + · · ·+ (−1)kw0(M).

We will show that the Hodge-Riemann relations for A∗(M)R imply the log-

concavity

µk−1(M)µk+1(M) ≤ µk(M)2 for 0 < k < r.

Because the convolution of two log-concave sequences is log-concave, the above

implies the log-concavity of the sequence wk(M).

Definition 9.2. Let F = {F1 ( F2 ( · · · ( Fk} be a k-step flag of

nonempty proper flats of M.

(1) The flag F is said to be initial if r(Fm) = m for all indices m.

(2) The flag F is said to be descending if min(F1) > min(F2) > · · · >
min(Fk) > 0.
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We write Dk(M) for the set of initial descending k-step flags of nonempty

proper flats of M.

Here, the usual ordering of the ground set E = {0, 1, . . . , n} is used to

define min(F ).

For inductive purposes it will be useful to consider the truncation of M,

denoted tr(M). This is the matroid on E whose rank function is defined by

rktr(M)(I) := min(rkM(I), r).

The lattice of flats of tr(M) is obtained from the lattice of flats of M by removing

all the flats of rank r. It follows that, for any nonnegative integer k < r, there

is a bijection

Dk(M) ' Dk(tr(M))

and an equality between the coefficients of the reduced characteristic polyno-

mials

µk(M) = µk(tr(M)).

The second equality shows that all the integers µk(M) are positive; see [Zas87,

Th. 7.1.8].

Lemma 9.3. For every positive integer k ≤ r, we have

µk(M) = |Dk(M)|.

Proof. The assertion for k = r is the known fact that µr(M) is the number

of facets of ∆M that are glued along their entire boundaries in its lexicographic

shelling; see [Bjö92, Prop. 7.6.4]. The general case is obtained from the same

equality applied to repeated truncations of M. See [HK12, Prop. 2.4] for an

alternative approach using Weisner’s theorem. �

We now show that µk(M) is the degree of the product αr−kM βkM. See

Definition 5.7 for the elements αM, βM ∈ A1(M), and Definition 5.9 for the

degree map of M.

Lemma 9.4. For every positive integer k ≤ r, we have

βkM =
∑
F

xF ∈ A∗(M),

where the sum is over all descending k-step flags of nonempty proper flats of M.

Proof. We prove by induction on the positive integer k. When k = 1, the

assertion is precisely that βM,0 represents βM in the Chow ring of M:

βM = βM,0 =
∑
0/∈F

xF ∈ A∗(M).
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In the general case, we use the induction hypothesis for k to write

βk+1
M =

∑
F

βM xF ,

where the sum is over all descending k-step flags of nonempty proper flats of

M. For each of the summands βM xF , we write

F =
¶
F1 ( F2 ( · · · ( Fk

©
, and set iF := min(F1).

By considering the representative of βM corresponding to the element iF , we

see that

βM xF =
( ∑
iF /∈F

xF
)
xF =

∑
G

xG ,

where the second sum is over all descending flags of nonempty proper flats of

M of the form

G =
¶
F ( F1 ( · · · ( Fk

©
.

This complete the induction. �

Combining Lemmas 9.3, 9.4, and Proposition 5.8, we see that the coeffi-

cients of the reduced characteristic polynomial of M are given by the degrees

of the products αr−kM βkM:

Proposition 9.5. For every nonnegative integer k ≤ r, we have

µk(M) = deg(αr−kM βkM).

We illustrate the proof of the above formula for the rank 3 uniform matroid

U on {0, 1, 2, 3} with flats

∅, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {0, 1, 2, 3}.

The constant term µ2(U) of the reduced characteristic polynomial of U is 3,

which is the size of the set of initial descending 2-step flags of nonempty proper

flats,

D2(U) =
{
{2} ⊆ {1, 2}, {3} ⊆ {1, 3}, {3} ⊆ {2, 3}

}
.

In the Chow ring of U, we have βU,1 = βU,2 = βU,3 by the linear relations, and

hence

β2
U = βU(x1 + x2 + x3 + x12 + x13 + x23)

= βU,1(x1 + x12 + x13) + βU,2(x2 + x23) + βU,3(x3)

= (x0 + x2 + x3 + x02 + x03 + x23)(x1 + x12 + x13)

+ (x0 + x1 + x3 + x01 + x03 + x13)(x2 + x23)

+ (x0 + x1 + x2 + x01 + x02 + x12)(x3).
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Using the incomparability relations, we see that there are only three nonvan-

ishing terms in the expansion of the last expression, each corresponding to one

of the three initial descending flag of flats:

β2 = x2x12 + x3x13 + x3x23.

9.2. Now we explain why the Hodge-Riemann relations imply the log-

concavity of the reduced characteristic polynomial. We first state a lemma

involving inequalities among degrees of products:

Lemma 9.6. Let `1 and `2 be elements of A1(M)R. If `2 is nef, then

deg(`1 `1 `
r−2
2 ) deg(`2 `2 `

r−2
2 ) ≤ deg(`1 `2 `

r−2
2 )2.

Proof. We first prove the statement when `2 is ample. Let Q1
`2

be the

Hodge-Riemann form

Q1
`2 : A1(M)R ×A1(M)R −→ R, (a1, a2) 7−→ −deg(a1 `

r−2
2 a2).

Theorem 8.8 for P = PM shows that the Chow ring A∗(M) satisfies HL(`2)

and HR(`2). The property HL(`2) gives the Lefschetz decomposition

A1(M)R = 〈`2〉 ⊕ P 1
`2(M),

which is orthogonal with respect to the Hodge-Riemann form Q1
`2

. The prop-

erty HR(`2) says that Q1
`2

is negative definite on 〈`2〉 and positive definite on

its orthogonal complement P 1
`2

(M).

Consider the restriction of Q1
`2

to the subspace 〈`1, `2〉 ⊆ A1(M)R. Either

`1 is a multiple of `2 or the restriction of Q1
`2

is indefinite, and hence

deg(`1 `1 `
r−2
2 ) deg(`2 `2 `

r−2
2 ) ≤ deg(`1 `2 `

r−2
2 )2.

Next we prove the statement when `2 is nef. The discussion below Propo-

sition 4.4 shows that the ample cone KM is nonempty. Choose any ample

class `, and use the assumption that `2 is nef to deduce that

`2(t) := `2 + t ` is ample for all positive real numbers t.

Using the first part of the proof, we get, for any positive real number t,

deg(`1 `1 `2(t)r−2) deg(`2(t) `2(t) `2(t)r−2) ≤ deg(`1 `2(t) `2(t)r−2)2.

By taking the limit t→ 0, we obtain the desired inequality. �

Lemma 9.7. Let M be a loopless matroid.

(1) The element αM is the class of a convex piecewise linear function on ΣM.

(2) The element βM is the class of a convex piecewise linear function on ΣM.

In other words, αM and βM are nef.
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Proof. For the first assertion, it is enough to show that αM is the class

of a nonnegative piecewise linear function that is zero on a given cone σ∅<F

in ΣM. For this we choose an element i not in any of the flats in F . The

representative αM,i of αM has the desired property.

Similarly, for the second assertion, it is enough to show that βM is the class

of a nonnegative piecewise linear function that is zero on a given cone σ∅<F

in ΣM. For this we choose an element i in the flat min F . The representative

βM,i of βM has the desired property. �

Proposition 9.8. For every positive integer k < r, we have

µk−1(M)µk+1(M) ≤ µk(M)2.

Proof. We prove by induction on the rank of M. When k is less than

r − 1, the induction hypothesis applies to the truncation of M. When k is

r − 1, Proposition 9.5 shows that the assertion is equivalent to the inequality

deg(α2
M βr−2

M )deg(β2
M βr−2

M ) ≤ deg(α1
M βr−1

M )2.

This follows from Lemma 9.6 applied to αM and βM, because βM is nef by

Lemma 9.7. �

We conclude with the proof of the announced log-concavity results.

Theorem 9.9. Let M be a matroid, and let G be a graph.

(1) The coefficients of the reduced characteristic polynomial of M form a log-

concave sequence.

(2) The coefficients of the characteristic polynomial of M form a log-concave

sequence.

(3) The number of independent subsets of size i of M form a log-concave

sequence in i.

(4) The coefficients of the chromatic polynomial of G form a log-concave

sequence.

The second item proves the aforementioned conjecture of Heron [Her72],

Rota [Rot71], and Welsh [Wel76]. The third item proves the conjecture of

Mason [Mas72] and Welsh [Wel71]. The last item proves the conjecture of

Read [Rea68] and Hoggar [Hog74].

Proof. It follows from Proposition 9.8 that the coefficients of the reduced

characteristic polynomial of M form a log-concave sequence. Since the convo-

lution of two log-concave sequences is a log-concave sequence, the coefficients

of the characteristic polynomial of M also form a log-concave sequence.

To justify the third assertion, we use the result of Brylawski [Bry77],

[Len13] that the number of independent subsets of size k of M is the absolute

value of the coefficient of λr−k of the reduced characteristic polynomial of
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another matroid. It follows that the number of independent subsets of size k

of M form a log-concave sequence in k.

For the last assertion, we recall that the chromatic polynomial of a graph

is given by the characteristic polynomial of the associated graphic matroid

[Wel76]. More precisely, we have

χG(λ) = λnG · χMG
(λ),

where nG is the number of connected components of G. It follows that the

coefficients of the chromatic polynomial of G form a log-concave sequence. �
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